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Abstract: To monitor road safety, billions of records can be generated by Controller Area Network
bus each day on public transportation. Automation to determine whether certain driving behaviour
of drivers on public transportation can be considered safe on the road using artificial intelligence or
machine learning techniques for big data analytics has become a possibility recently. Due to the high
false classification rates of the current methods, our goal is to build a practical and accurate method
for road safety predictions that automatically determine if the driving behaviour is safe on public
transportation. In this paper, our main contributions include (1) a novel feature extraction method
because of the lack of informative features in raw CAN bus data, (2) a novel boosting method for
driving behaviour classification (safe or unsafe) to combine advantages of deep learning and shallow
learning methods with much improved performance, and (3) an evaluation of our method using a
real-world data to provide accurate labels from domain experts in the public transportation industry
for the first time. The experiments show that the proposed boosting method with our proposed
features outperforms seven other popular methods on the real-world dataset by 5.9% and 5.5%.

Keywords: controller area network; transportation; deep learning; machine learning

1. Introduction

1.1. Motivations

Decreasing the current number of global deaths and injuries from road traffic accidents by half
is one of the important Sustainable Development Goals as part of the 2030 Agenda for Sustainable
Development adopted by the United Nations General Assembly. Traffic accidents not only bring
huge financial losses to society but also cause great physical and mental damages to everyone [1,2].
Millions of people died from traffic accidents in 2018 [3], and most traffic accidents are caused
by human mishandling [4]. Analyzing the behavior of drivers, especially public transportation
drivers, is important to protect road safety [5–7]. To ensure safety for public transportation,
public transportation operators can be requested to get an evaluation of drivers and to identify
dangerous drivers for retraining. For public transportation fleet management and monitoring,
massive data is collected from vehicles using state-of-the-art technologies of sensors for example
MobilEye from Israel. In the control center, thousands of real-time events and alarms arrive from
the sensors of the vehicles through wireless networks in real time every day. Although it is virtually
impossible to handle such a huge amount of data manually, accurate predictions with machine learning
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to analyze behavior from the vehicles has recently become feasible. Machine learning techniques have
been applied to analyzing behavior in different tasks with various kinds of data collected using sensors
in moving vehicles [8–11]. We investigate efficient and accurate machine learning methods to classify
whether the driving behavior of drivers is safe as it is important that drivers with unsafe behavior
should be warned and retraining can be provided to the drivers.

1.2. Challenges

It is challenging to classify a driver’s driving behavior (safe/unsafe). First, the industrial need for a
high classification performance cannot be satisfied using solely existing methods as the misclassification
rates can be high. The high misclassification rates in previous methods have been pointed out in
previous literature [12,13] as it has been suggested that it is difficult to model the driver’s behavior.
For example, the performance of K Nearest Neighbour (KNN) models is greatly affected by unbalanced
training data in traffic data for safety with many fewer labels for accidents. Second, the lack of features
in the data collected with the Controller Area Network (CAN) bus does not provide lots of information
for driving behavior analysis to train an accurate machine learning classifier. There is no existing
method for road safety predictions with CAN bus data to extract extra useful information from features.
Last, because of the high cost of labeling and privacy issues with public transportation data, to the best
of our knowledge, there is no publicly available dataset with labels for the predictions of safe driving
behavior on public transportation. The lack of urgently needed labels in datasets for road safety makes
it hard to evaluate and build machine learning models.

1.3. Contributions

In this paper, our contributions include (1) a boosting method to make deep learning and statistical
learning complement each other, (2) a novel method to compute extra time-series features to extract
richer information, (3) extensive evaluation on a new real-world dataset with labels from experts in
the public transportation domain.

The motivation for the usage of CAN-bus data is that the CAN standard is one of the most
important bus standards for vehicles [14–17]. The infrastructure already built-in in most vehicles
bought by transportation companies records data efficiently from devices in the vehicles. The CAN
standard is a serial data bus standard designed to enable electronic devices to communicate with each
other. Therefore, CAN data can be easily obtained by transportation companies. There are a small
number of available features in the data collected using the standard CAN bus system. With the lack
of sufficient useful features, it is hard to find patterns in the data to determine driving behavior from
the driver.

The novel boosting method is proposed to combine the advantages of statistical learning and deep
learning. It is shown in our experiments that the ensemble with our proposed features outperforms any
single state-of-the-art method we considered, and our boosting method combines seven state-of-the-art
machine learning methods including support vector machine (SVM), random forest (RF), k-nearest
neighbour (KNN), discriminant analysis, naive Bayes classifier, adaptive boosting (AdaBoost) and a
deep learning neural network called Long Short-Term Memory (LSTM). In addition, the proposed
boosting method outperforms the seven methods also for the case without the proposed feature
extraction method.

Extra features are computed using our method. Feature engineering is an important tool to
extract useful information in time-series for machine learning methods for better performance when
the number of features is small. We show in our experiments that this significantly improves the
performance of the classifiers. We, thus, propose a method to compute extra time-series features from
the raw data of the CAN bus system to extract extra information.

To completely evaluate methods in the real world, the experiments are conducted using a
real-world dataset collected using the CAN bus system. Because of the high cost of sample labeling,
there is no published real-world dataset with labels for analyzing the driving behavior of drivers on
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public transportation. The samples in the dataset are labeled by the experts of Transportes Urbanos de
Macau (TransMac), which is one of the largest bus companies in Macao.

We divide the rest of this paper into five sections. In Section 2, we describe related work.
Our dataset and the proposed method are described in detail in Sections 3 and 4. In Section 5,
the proposed method is evaluated on two datasets with a comparison to various state-of-the-art
machine learning methods. Section 6 concludes this work.

2. Related Work

In this work, we focus on safety classification with data from the Controller Area Network (CAN)
bus. The development of the CAN bus started in 1983 and was released in 1986 [18]. This standard
has recently become available in most embedded systems for vehicles. The CAN bus is one of five
protocols used in the mandatory onboard diagnostic (OBD-II) standard. The OBD-II standard has been
mandatory for all cars and light trucks sold in the United States since 1996, and the EOBD standard has
been mandatory for all petrol vehicles sold in the European Union since 2001 and all diesel vehicles
since 2004 [19,20]. A lot of recent research focuses on the analysis of sensor data from the CAN bus
system [5,21–28].

Machine learning plays the important role in building data analytics models to handle
massive data [29,30]. Statistical learning and deep learning are important areas in machine learning.
Methods based on statistical learning have been successfully applied to solving many related behavior
analytics problems. In [11,31], Bayesian methods are used to predict braking behavior and model
vehicle speeds. k-nearest neighbors (KNN) is employed to classify driving styles in [10]. Support vector
machines (SVM), deep learning (DL), and decision trees (DT) have been applied to predicting driving
behavior and accident risk predictions [8,9]. Deep learning techniques are popular in recent years
for many tasks [32,33]. The Long Short-Term Memory (LSTM) technique is one of the most popular
deep learning techniques for time-series problems [34]. LSTM networks are a special kind of recurrent
neural networks (RNN), and LSTM networks aim at learning long-term dependencies [35]. In contrast
to the standard RNN, the repeating modules of LSTM networks contain four interacting layers to
enable the ability to change information of the cell state. LSTM is used to detect driver distraction [36].
The ensemble of machine learning methods are shown to outperform, most of the time, one particular
technique [37–39], and we propose a heterogeneous boosting method to obtain better performance.
In our experiments, our boosting method is compared with seven state-of-the-art methods.

3. Evaluation of Road Safety Predictions

For any application domain of machine learning, one of the most objective evaluation methods is
to see how prediction models perform in real-world datasets. However, to the best of our knowledge,
there is no published real-world dataset with labels provided for behavior analysis of public drivers.
In this work, we build a new dataset collected using the CAN bus system from one of two public bus
companies in Macao called TransMac.

One record is produced every three seconds from the reading of the sensors in a moving public
vehicle, and there are totally 6451 records with 24 features in the new dataset. All 6451 records
are labeled by domain experts. There are 507 unsafe cases and 5944 safe cases in the labels. In total,
the recording time for our CAN bus data is 6451× 3 = 19,353 s which is 5.38 h of driving by professional
bus drivers in the company. Although each sample contains 24 features, some features are totally
irrelevant for the training of the machine learning model (see Table 1). As shown in Table 1, features like
vehicle identification are meaningless for the machine learning model. Features containing too much
missing data cannot be useful either. For example, most entries of the “CANALARMSTATE” feature
and the “CANALARMSTATE” are N/As (Not Available). Features used are listed in Table 1 to provide
a reference for the training of our method. In addition, descriptive statistics on the feature set used for
training are shown in Table 2.
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Table 1. Features in our dataset to evaluate road safety.

Feature Name Meaning Used to Train
our Method?

LOGID Bus identifier No

GPSDATE Time NoTIME

VELOCITY Instantaneous speed Yes

MILEAGE GPS mileage Yes

TOTAL Total mileage YesMILEAGE

FRONT Front pressure YesPRESSURE

REAR Rear pressure YesPRESSURE

ENGINESPEED Engine speed Yes

ENGINETEMP Engine temperature Yes

CARSWITCH Switches of the bus No

CARLIGHT Switches of light NoSTATE

CANALARM Switches of alarm NoSTATE

CREATETIME Time No

GPS Instantaneous speed YesVELOCITY

DRIVERID Driver identifier No

LONGITUDE Longitude Yes

LATITUDE Latitude Yes

DIRECTION Turn Yes

STATIONID Station identifier No

ROUTEID Route identifier No

BUSSTATE Bus status No

ALARM Alarm light status NoSTATE

STATION Mileage Yes
MILEAGE each station

UPDOWN Up and down No

Table 2. Descriptive statistics on features used for training models.

Feature Name Mean Std. Dev. Median

VELOCITY 147.9 159.9 90

MILEAGE 65,220,323.4 12,868,396.8 77,710,500

TOTAL 66,584,813.3 15,653,632.7 81,771,740MILEAGE
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Table 2. Cont.

Feature Name Mean Std. Dev. Median

FRONT 843.4 71.7 852PRESSURE

REAR 794.4 32.7 796PRESSURE

ENGINESPEED 976.5 342.6 803

ENGINETEMP 81.6 7.1 83

GPS 141.2 152.8 90VELOCITY

LONGITUDE 113.5 0.0066 113.5

LATITUDE 22.1 0.0195 22.1

DIRECTION 197.3 104.8 195

STATION 346.7 589.3 170MILEAGE

4. The Proposed Method

We propose a feature extraction method (see Algorithm 1) for extracting richer information from
the change of feature vectors against time and propose a boosting method (see Algorithm 2) to classify
whether driving behavior of drivers on public transportation can be considered safe on the road.
The feature extraction method is a general method. It can be used with any other machine learning
classification method. In the experiments, it is shown that our feature extraction method can be used to
improve the performance of any classification method. In addition, it is also shown that our boosting
method outperforms other seven machine learning methods whether or not our feature extraction
method is used.

4.1. Our Method for Richer Information With Feature Extraction

Missing data is common in industrial data collected from CAN data systems. Features with
too many N/A (Not Available) entries cannot be used to train the machine learning methods.
In addition, features irrelevant for driving behavior analysis like the identifier of the vehicles are
excluded. Therefore, there are only a few useful features left for classification without irrelevant
features (see Table 1). The low dimensionality of the feature space of training data severely limits the
descriptive power of the samples. The lack of descriptive power makes it is very difficult to obtain
accurate machine learning models. We argue that richer information can be extracted from the change
of feature values against time and we, hence, propose a feature extraction method to provide extra
useful time-series features to deal with the lack of information in the original features. For example,
the acceleration of the car is important for driver behavior analysis, but this information is not recorded
in the original data. The acceleration of the bus can be obtained by calculating the gradient of the
velocity of the bus. The proposed feature extraction method is shown in Algorithm 1.
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Algorithm 1 Our Method for Richer Information With Feature Extraction

Input: n samples {s1, ..., sn} where si = [ fi,1, ..., fi,m]
T

Output: n samples {s1, ..., sn} with time-series features, si = [ fi,1, ..., fi,m, ti,1, ..., ti,m+7]
T

Divide n samples into p periods,
{

P1, ..., Pp
}

, by the recording time.
for j = 1, ..., p do

for each sample si ∈ Pj do

[ti,1, ..., ti,m]
T = 1
|Pj| ×∑sz∈Pj

[ fz,1, ..., fz,m]T

si = [ fi,1, ..., fi,m, ti,1, ..., ti,m]
T

end for
end for
for each sample si do

ti,m+1 and ti,m+2 are the differences in the feature values of si, for the latitude and the longitude

respectively.
{ti,m+3, ..., ti,m+7} are the gradients of the feature values of si related to the velocity, the mileage,

the tire pressure, the engine speed, and the engine temperature.
si = [ fi,1, ..., fi,m, ti,1, ..., ti,m+7]

T

end for

The input data of Algorithm 1 contains n samples, {s1, ..., sn}, with m features si = [ fi,1, ..., fi,m]
T .

Especially, the features irrelevant for training are excluded in these m features. For example, for our
proposed dataset, the m features are the twelve features used to train the classification model
(see Table 1). It is common in time-series analysis to use moving averages. The moving average
is used to filter out noise. It is a common signal preprocessing step for time-series data if there is noise
in the data [40–42]. We noticed the noise in the CAN-bus data so signal processing filtering techniques
are employed in our work with the aim to achieve better training and classification. The moving
average is used to filter out noise. It is a common signal preprocessing step for time-series data if
there is noise in the data [40–42]. We noticed noise in the CAN-bus data so signal processing filtering
techniques are employed in our work with the aim to achieve better training and classification.

For example, the average driving speed of a driver in two minutes (a period) is useful information
for analyzing his driving behavior. Motivated by this, some time-series features are calculated for this
particular reason (see Algorithm 1). The n samples are divided into p periods by the recording time.
The value of p is a tunable parameter, and it depends on the time interval between two samples.

In our boosting method, one period covers two minutes. For sample si, m time-series features,
{ti,1, ..., ti,m}, are extracted from raw features. The latitude and longitude features, flatitude and
flongitude, are obtained from GPS information. The difference in the latitude/longitude values of
the adjacent samples can be used to measure the velocity of the bus. In Algorithm 1, ti,m+1 and
ti,m+2 of sample si are the differences in the values of sample si and sample si−1, for latitude and
longitude features respectively. The gradient of a feature is used to describe how fast the feature values
change. The velocity, the mileage, the tire pressure, the engine speed, and the engine temperature
are important for accurate classification. These features can reflect the different behavior of drivers,
and {tm+3, ..., tm+7} are calculated to find the rates of change.

The features are irrelevant features if the changes of the features due to reasons other than driving
behavior. In most cases, data used to train machine learning models includes irrelevant features
or redundant features. Certain machine learning models automatically pick useful features during
training. We use techniques that specifically map useful features to the labels (driving behavior in our
case) effectively like random forests (RF) with the importance scores of features generated to ignore
irrelevant features. The RF model is then trained using a subset of features with high importance
scores [43–45]. When the dimensionality of feature space is large, performance could suffer due to the
curse of dimensionality [46,47]. However, in our case, as the number of features is not exceedingly
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high, our experiments show that the techniques perform well without suffering from the curse of
dimensionality.

4.2. Weak Learners

In our heterogeneous boosting method, all the seven methods in Table 3 are used.
Different machine learning methods have their own characteristics and are suitable for different
tasks. SVM, traditionally a statistical machine learning method, is one of the most popular methods
for two-class classification. In SVM, a hyperplane is constructed for classification after the data in
the low-dimensional space is mapped to the high-dimensional space using a kernel function. In our
boosting methods, Radial Basis Function (RBF) kernel is used as the kernel function of the SVM,
and the RBF kernel can be obtained as

R(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
), (1)

where xi, xj are the feature vectors of sample i and sample j. k-nearest-neighbors (KNN)
is a nonparametric classification method, which is simple but effective in machine learning.
The assumption underlying KNN is that the information (e.g., the class in classification problems) of
an output sample is similar to input samples containing similar characteristics to this output sample.
In the proposed boosting method, KNN using the chi-square distance is used to measure the distance
of samples. The chi-square distance between sample i and sample j is obtained as

χ(xi, xj) =

√√√√ F

∑
f=1

w f (xi, f , xj, f )2, (2)

where xi, xj are the feature vectors, and F is the dimentionality of samples. RF, a method based on
bagging, contains a certain number of decision trees to classify. In the RF method, Q decision trees are
trained to determine classification results of RF. Given a sample x, its result y produced by RF is

y =
1
Q

Q

∑
q=1

fq(x), (3)

where fq(x) is the result given by a decision tree. Discriminant Analysis is also known as Fisher
Discriminant Analysis. In Discriminant Analysis, a linear combination of the features is obtained to
classify the samples. AdaBoost used as one of the component learners in our boosting method is a
homogeneous boosting method. The base learners of this homogeneous boosting method are 1-depth
decision trees. In Naive Bayes, Bayes’ theorem with naive independence assumptions between the
features is applied.

The LSTM network used in the proposed boosting method is shown in Figure 1. There are five
layers in the LSTM network: the input layer, the LSTM layer, the fully connected layer, the softmax
layer, and the classification layer. The LSTM network starts with putting the CAN bus data into the
input layer. Using the input data as the training set, the LSTM layer learns long-term dependencies
of samples. To handle time-series data, the LSTM layer contains many LSTM blocks. One LSTM
block uses an input sample and the output of last LSTM block as its input and the block output a
cell state and a hidden state. Finally, the classification results are generated by the fully connected
layer, the softmax layer, and the classification layer through analyzing the long-term dependencies.
In the LSTM network, the vanishing gradient problem is avoided by adding four components to the
RNN network (see Table 4 and Figure 1): the input gate, the output gate, the forget gate, and the
cell candidate. The interaction of the four components is shown in Table 4 and Figure 1. ct and ht

denote the cell state and the hidden state produced by the t-th LSTM block. it, ot, ft, and ct denote
the outputs of the input gate, the output gate, the forget gate, and the cell candidate. As shown in
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Figure 1, the output of the t-th LSTM block are the cell state ct and the hidden state ht. The cell state ct

is obtained by
ct = ft � ct−1 + it � gt, (4)

where � denotes the Hadamard product. The hidden state ht is obtained by

ht = ot � σct, (5)

where σ denotes the state activation function of the LSTM block.

Figure 1. The long short-term memory (LSTM) network used in the proposed boosting method.

It is popular to use two well-known techniques, principal components analysis and t-sne,
with deep learning. We apply these methods to process raw CAN bus data to train the LSTM network.

Table 3. Seven state-of-the-art machine learning methods used in the proposed boosting method.

Machine Learning Methods

Support Vector Machine (SVM)

k Nearest Neighbour (KNN)

Random Forest (RF)

Naive Bayes

Discriminant Analysis

Adaptive Boosting (AdaBoost)

Long Short-Term Memory (LSTM)
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Table 4. Four components of the LSTM network to avoid the vanishing gradient problem in the RNN.

Components Purposes

Input gate Preprocess the input data

Output gate Updata the output hidden state

Forget gate Reset (forget) the input data

Cell candidate Update the output cell state

4.3. Our Method with Boosting

Ensemble learning is a machine learning technique, which is used to combine multiple methods
and to get better performance than that of a particular method. The proposed boosting method
combines seven state-of-the-art machine learning methods. The seven machine learning methods are
support vector machine (SVM) [48,49], k nearest neighbour (KNN) [50], random forest (RF) [43,51],
naive Bayes [52], discriminant analysis [53], adaptive boosting (AdaBoost) [54], and Long Short-Term
Memory (LSTM) [34]. The proposed boosting method is in Algorithm 2.

Algorithm 2 The Proposed Boosting Method

Input: Training data D = {(x1, y1), ..., (xn, yn)} where xi ∈ Rm, yi = 0, 1.
Output: Final strong classifier H(x).

1: Initialize weights w1,i =
1
2c , 1

2(n−c) for safe samples and unsafe samples, respectively, where c is the

number of safe samples.
2: for t = 1 to U do

3: Normalize the weights, wt,i =
wt,i

∑n
j=1 wt,j

.
4: Train all g weak classifiers,

{
l1 (x) , ..., lg (x)

}
, using the training data D with our time-series

features.
5: Prediction using g classifiers, and ht(x) is the classifier lu(x) with the highest correctly rate a.
6: Update the weights: wt+1,i = wt,i × B1−ei , where ei = 0, if the sample si is correctly predicted,

otherwise ei = 1.B = a
1−a .

7: end for
8: The boosting classifier combines the U classifiers: if ∑U

t=1 αtht (x) ≥ 1
2 ∑U

t=1 αt, H (x) = 1 ,

otherwise H (x) = 0.

As shown in Algorithm 2, there are n samples in the training data, and the dimensionality of
them is equal to m. There are g weak learners used in the algorithm. In the proposed boosting method,
g is equal to seven (see Table 3). U is the number of the weak classifiers which are chosen to form final
strong classifier H(x). The value of U is a tunable parameter, and it is equal to five in our method.
Each of the g classifiers is trained based on one particular machine learning method.

5. Experiments

Our experiments are conducted using two datasets: the public Warrigal dataset [55] and our
own dataset provided by TransMac. The Warrigal dataset can be downloaded in http://its.acfr.usyd.
edu.au/datasets/warrigal/. In the experiments, the proposed boosting method is compared with
other seven popular machine learning methods: SVM, KNN, RF, Simple Bayes, Discriminant Analysis,
AdaBoost, and LSTM.

5.1. Evaluation Metrics

The classification accuracy, sensitivity, specificity, and the Area Under Curve (AUC) are four of the
most popular evaluation methods for a binary classifier. The sensitivity is the probability of detection
while the specificity gives the probability of false alarm. The AUC value is equal to the probability

http://its.acfr.usyd.edu.au/datasets/warrigal/
http://its.acfr.usyd.edu.au/datasets/warrigal/
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that a randomly chosen positive example is ranked higher than a randomly chosen negative example.
The sensitivity and specificity are also referred to as the True Positive Rate (TPR) and the True Negative
Rate (TNR), respectively. Sensitivity and Specificity are computed using the numbers of true negatives
(TN), false negatives (FN), true positives (TP), and false positives (FP):

TPR = TP/ (TP + FN) , (6)

TNR = TN/ (FP + TN) . (7)

The average accuracy is taken over ten repeated experiments to better evaluate the methods, and
it is obtained by using

Accuracy = (TP + TN) / (TP + TN + NP + NF) . (8)

5.2. Experimental Setup

We use MATLAB to implement the seven methods and the proposed methods. Grid search is
used to determine all the hyperparameters of our classifiers using a validation set. The predicted
dependent variable is safety from 0 (safe) to 1 (unsafe). For our dataset, the training and test labels
were determined by domain experts. For the other dataset, Label 1 indicates ongoing communications
by the driver which can violate safety guidelines and 0 indicates the time without communications by
the driver. In our dataset, there are 507 unsafe cases and 5944 safety cases. In the Warrigal dataset,
there are 17,716 unsafe cases and 205,722 safety cases.

To clearly show the comparison of all methods, the experiments on each dataset are divided into
two parts. In the first part, in order to demonstrate that the proposed boosting method can outperform
other machine learning methods (see Table 3), all methods are trained using the raw data without our
feature extraction method (see Algorithm 1). In the second part, to determine whether our feature
extraction method can be used to improve the performance of machine learning methods, our feature
extraction method is used to compute time-series features, and data with these time-series features
are used to train the methods. By comparing the accuracies with the two sets of experiments, it is
shown that the performance of methods is improved using our feature extraction method. To avoid
the overfitting issue of machine learning, in both sets of the experiments, there are two scales, 70% of
the dataset and 90% of the dataset, of the training set. The samples in the training set are randomly
extracted from the whole dataset.

5.3. Safety Classification on the Warrigal Dataset

The Warrigal dataset [55] is a large dataset collected with the interactions of large trucks
and smaller vehicles, i.e., thirteen vehicles in a large quarry-type environment. The data contains
vehicle state information (like positions, speeds, and heading) and information on vehicle-to-vehicle
communications. Due to the large size of the Warrigal dataset, when the dataset is published, the dataset
is divided into many subsets with one subset for data recorded in a day. Because of the large size
of the dataset and limited computational resources, only one subset (data recorded on 1st February
2009 which is just the first day in the dataset) picked from the data is used for our experiments.
There are 223,438 samples with twelve features in the subset. In the dataset, there is no label for safety
predictions. We consider constant communication through wireless devices as distractions which could
potentially lead to unsafe driving behavior. Samples recorded during constant verbal communication
are labeled as potentially unsafe (or inattentive) while the other samples are labeled safe (or attentive).
More specifically, Label 1 indicates ongoing communications by the driver which can violate safety
guidelines and 0 indicates driving without wireless communication engaged. 17,716 samples are
labeled potentially unsafe and 205,722 are labeled safe.

The comparison among prediction models trained with the raw features of the Warrigal dataset is
shown in Table 5. In terms of classification accuracy, the proposed method outperforms the other seven
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methods by 1.5% and 1.1%, with 70% and 90% of the dataset for training respectively. The novel method
also gets the highest value of AUC. We further demonstrate the effectiveness of our feature extraction
method. The performance of the models trained with our features is shown in Table 6. As observed in
Tables 5 and 6, the proposed boosting method outperforms the other seven state-of-the-art approaches
whether or not our feature extraction method is used. In addition, comparison with the accuracies in
Tables 5 and 6 indicates that the performance of all machine learning methods is improved using our
feature extraction method. Our method with feature extraction outperforms other methods using raw
features by 2.7% and 3.2%, with 70% and 90% of all samples randomly selected for training respectively.

Table 5. The comparison among eight methods on the Warrigal dataset without our time-series features.
The proposed method gets the highest values of accuracy and AUC.

Classifying the Warrigal Dataset WITHOUT Our Features

Methods 70% Percent Data for Training 90% Percent Data for Training
Accu. (%) AUC Specificity Sensitivity Accu. (%) AUC Specificity Sensitivity

Our Method 92.9 0.923 0.932 0.912 93.7 0.931 0.939 0.922
AdaBoost 79.5 0.761 0.832 0.608 83.5 0.798 0.871 0.652

Simple Bayes 77.3 0.742 0.825 0.513 80.1 0.764 0.857 0.522
Discriminant 77.1 0.728 0.815 0.551 82.5 0.776 0.869 0.607Analysis

KNN 83.2 0.733 0.873 0.628 84.3 0.745 0.886 0.628
RF 90.7 0.903 0.923 0.828 91.8 0.910 0.935 0.830

SVM 75.9 0.756 0.722 0.896 82.3 0.815 0.796 0.906
LSTM 91.4 0.818 0.938 0.791 92.6 0.822 0.951 0.801

Table 6. A comparison among eight methods on the Warrigal dataset with our feature extraction
method. The comparison between the values of accuracy and AUC in Table 5 and this table shows that
the performance of all machine learning methods is improved with our feature extraction method.

Classifying the Warrigal Dataset WITH Our Features

Methods 70% Percent Data for Training 90% Percent Data for Training
Accu. (%) AUC Specificity Sensitivity Accu. (%) AUC Specificity Sensitivity

Our Method 94.1 0.944 0.943 0.927 95.8 0.952 0.962 0.937
AdaBoost 80.7 0.781 0.833 0.674 84.3 0.820 0.868 0.718

Simple Bayes 80.2 0.759 0.828 0.669 82.7 0.804 0.858 0.672
Discriminant 79.5 0.776 0.814 0.697 82.9 0.808 0.848 0.731Analysis

KNN 83.5 0.751 0.854 0.737 87.4 0.782 0.898 0.752
RF 91.3 0.913 0.919 0.879 93.9 0.937 0.946 0.903

SVM 78.2 0.755 0.746 0.907 82.8 0.819 0.801 0.907
LSTM 92.7 0.825 0.941 0.853 94.8 0.901 0.961 0.883

5.4. Safety Classification with Our Dataset

The results from the previous experiments show that our method improves the performance of
classification. We further apply our methods to a real-world problem in the industry with a public bus
company in Macao called TransMac. Given the fact that there is no real-world public dataset with labels for
safety classification, the experiments are conducted using a dataset built with data collected from TransMac.

In this subsection, the experimental setup follows that of the previous subsection using a
different dataset with the first set of experiments with feature extraction and the second set without.
The performance comparison of the methods can be found in Tables 7 and 8. As shown in the two tables,
our boosting method outperforms the other methods in all cases. It is shown that the performance of
all methods is improved using our features extraction method. Our boosting method with our feature
extraction method can outperform other methods using raw features by 5.9% and 5.5%, with 70% and
90% of the whole dataset randomly selected for training respectively.
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Table 7. The comparison among eight methods on our real-world dataset without the proposed feature
extraction method. In terms of classification accuracy or AUC, our boosting method outperforms the
other state-of-the-art methods in all cases.

Classifying the New Real-World Dataset WITHOUT Our Features

Methods 70% Percent Data for Training 90% Percent Data for Training
Accu. (%) AUC Specificity Sensitivity Accu. (%) AUC Specificity Sensitivity

Our Method 91.2 0.870 0.921 0.838 92.9 0.881 0.940 0.844
AdaBoost 78.1 0.740 0.808 0.574 80.0 0.753 0.827 0.592

Simple Bayes 62.7 0.586 0.643 0.521 62.0 0.577 0.634 0.515
Discriminant 58.4 0.539 0.589 0.543 60.0 0.564 0.604 0.568Analysis

KNN 72.1 0.648 0.726 0.579 75.2 0.685 0.769 0.619
RF 89.7 0.816 0.924 0.696 91.2 0.804 0.936 0.727

SVM 57.7 0.558 0.532 0.852 61.1 0.598 0.567 0.873
LSTM 77.3 0.757 0.786 0.676 85.2 0.790 0.873 0.694

Table 8. The comparison among eight methods on our real-world dataset with the proposed feature
extraction method. After comparing with the values of classification accuracy and AUC in Table 7,
it shows that the performance of any method is improved using our feature extraction method.

Classifying the New Real-World Dataset WITH Our Features

Methods 70% Percent Data for Training 90% Percent Data for Training
Accu. (%) AUC Specificity Sensitivity Accu. (%) AUC Specificity Sensitivity

Our Method 95.6 0.947 0.960 0.921 96.7 0.969 0.968 0.957
AdaBoost 83.7 0.781 0.857 0.685 85.1 0.802 0.867 0.731

Simple Bayes 66.8 0.651 0.674 0.622 72.1 0.702 0.724 0.692
Discriminant 77.8 0.698 0.794 0.651 80.1 0.732 0.816 0.686Analysis

KNN 77.2 0.716 0.789 0.640 77.6 0.727 0.790 0.669
RF 93.9 0.903 0.958 0.790 94.1 0.904 0.956 0.827

SVM 77.9 0.689 0.753 0.857 80.4 0.732 0.781 0.881
LSTM 75.1 0.734 0.765 0.642 80.3 0.767 0.820 0.675

5.5. Further Evaluation

The CAN-bus data is time-series data. In order to see if predictions can still be accurate when
training is done at a very different time period, we conduct another set of experiments to further
evaluate the performance of our method. In this further experiment, the samples of the training
set and the test set are collected at different times. As our real-world dataset was collected in four
different periods, samples are therefore grouped into four subsets corresponding to the respective time
periods. A four-fold cross-validation is conducted with these four subsets and the average classification
accuracies of different methods are compared as shown in Table 9. Like Tables 7 and 8, it is also found
that the proposed method achieves the highest accuracy shown in the above table with or without
our features. The boosting methods tend to be more expensive during training. We summarize the
training time required for the methods in Table 10.
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Table 9. Classification accuracies of the eight methods using our real-world dataset. In this experiment
for this table, the samples of the training set and test set are collected in four different periods; samples
are therefore grouped into four subsets corresponding to the respective time periods.

On Our Real-World Dataset

Methods With Our Features Without Our Features

Our Method 86.4% 68.7%

AdaBoost 69.3% 66.4%

Simple Bayes 69.4% 59.9%

Discriminant Analysis 62.3% 58.7%

KNN 71.9% 56.9%

RF 65.6% 61.1%

SVM 84.1% 62.0%

LSTM 82.3% 63.9%

Table 10. A summary of the training time required for the methods compared in seconds.

On Our New Dataset On the Warrigal Dataset

With Our Features Without Our Features With Our Features Without Our Features

Scales of 70% 90% 70% 90% 70% 90% 70% 90%Training Set

Our Method 12.8 17.4 7.5 10.6 42.1k 62.9k 21.7k 34.5k
AdaBoost 2.7 3.3 1.9 2.2 13.3k 17.2k 9.72k 14.5k

Simple Bayes 0.11 0.13 0.04 0.05 6.6k 8.3k 4.52k 6.1k
Discriminant 0.08 0.10 0.04 0.07 1.7k 2.1k 1.1k 1.5kAnalysis

KNN 0.07 0.12 0.06 0.08 5.4k 7.2k 3.2k 5.1k
RF 0.35 0.49 0.31 0.35 2.9k 3.6k 2.1k 2.4k

SVM 2.1 2.8 1.5 2.6 12.6k 15.4k 8.7k 12.5k
LSTM 1.9 2.3 1.6 2.0 11.7k 14.2k 7.1k 10.5k

It is observed in our experiments that the performance does not improve when the number of
weak learners in the final strong classifier, U, is larger than 5 although the total number of base learners
built with state-of-the-art classification techniques is seven in our heterogeneous ensemble method.
The empirical result verifying this is shown in Table 11.

Table 11. A summary of the classification accuracy of the proposed boosting method with different
values of parameter U.

Values of U 2 3 4 5 6

Methods Trained with 70% Examples 91.2% 93.5% 93.9% 94.1% 94.0%
Methods Trained with 90% Examples 92.7% 93.9% 95.6% 95.8% 95.2%

6. Conclusions

Automation to determine whether certain driving behavior of drivers on public transportation
can be considered safe on the road using A. I. or machine learning techniques has become a possibility
recently. However, the industrial need for a high classification performance cannot be satisfied using
existing methods using computer vision as the misclassification rates are too high with existing
methods. Due to the high misclassification rates, it makes it hard to compare and to evaluate the
performance of drivers on public transportation.
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Our goal is to build a practical and accurate method for road safety predictions that automatically
determine if the driving behavior is safe on public transportation. In this paper, our main contributions
include (1) a novel feature extraction method because of the lack of informative features in the data,
(2) a novel boosting method for driving behavior classification (safety or not) to combine advantages of
deep learning and traditional statistical learning methods with much improved performance, and (3)
evaluating methods using real-world data to provide accurate evaluations from labels from experts in
the public transportation industry for the first time. The experiments show that the proposed boosting
method with the proposed features outperforms seven other popular methods on the real-world
dataset by 5.9% and 5.5%.
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