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Abstract: AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell
proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis
(fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence,
and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of
these functions by numerous pathways. However, the impact on cell functions by lncRNAs and
circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive
information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer
cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2,
S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT
effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and
circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth
literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were
related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions
through modulating AKT and AKT effectors. This review provides insights into a comprehensive
network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer
cell functions.

Keywords: lncRNA; circRNA; AKT; cell functions; cancer

1. Introduction

AKT serine/threonine kinase (AKT) shows activation or overexpression in several
cancers [1]. AKT signaling is vital for diverse regulations to modulate several cell func-
tions [2–4], such as survival, proliferation, metabolism, and angiogenesis. Additionally,
several AKT signaling-associated cell functions include apoptosis, autophagy, endoplasmic
reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necropto-
sis, and DNA damage response (damage and repair), senescence, and migration (Figure 1).
AKT mutation occurs in several cancer types, such as leukemia [5], breast [6], and others [7].
However, AKT mutation rates seem low (3–5%) for all cancers [7,8], and this issue was not
included in this review.
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translation initiation factor 4E-binding protein 1 (4EBP1; EIF4EBP1), sterol regulatory el-
ement-binding protein 1 (SREBP1; SREBF1), and hypoxia-inducible factor (HIF) [3,9–11] 
(Figure 1). However, the complex functions of AKT effects on these cell functions need 
further investigation. 

Emerging evidence has shown the impacts of noncoding RNA (ncRNAs), such as 
long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), on regulating cell pro-
gression, especially relevant in cancer cells [12]. LncRNAs are a group of ncRNA mole-
cules containing more than 200 nucleotides. LncRNAs exhibit complex interactions with 
microRNAs (miRNAs), mRNAs, and proteins to regulate cell functions [13]. LncRNAs are 
essential modulators for regulating gene expression and affect diverse cell functions [14]. 
CircRNAs are other ncRNAs formed by splicing and sequentially connecting between 
splice donor and acceptor sites, i.e., backsplicing [15]. CircRNAs may function as protein 
and RNA scaffolds to bind miRNA and regulate transcription or translation in a miRNA 
and RNA-binding protein sponge manner [16,17]. 

Both lncRNAs [18–20] and circRNAs [21,22] are reported as potential tumor markers 
by regulating numerous pathways and controlling cell functions. Mounting evidence 
shows the interaction between ncRNAs and AKT signaling in several cancers [23–25]. As 
mentioned above, this review focuses on understanding the relationship between AKT 
and AKT effectors in lncRNA- and circRNA-modulating cell functions. However, the net-
work between AKT, AKT signaling, lncRNAs, and circRNAs lacks systemic integration. 
In previous reports, possible cell functions were not connected to this AKT–AKT effec-
tors–lncRNAs–circRNAs network. This warrants a detailed organization for understand-
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LncRNAs [26] and circRNAs [27] can function as miRNA sponges, modulating their 
target mRNA expressions. However, the miRNA information was not under the scope of 
this review and is not discussed. Additionally, lncRNAs can interact with DNA, RNA, 
and proteins for gene regulation [28]. Several DNA and proteins targeted by lncRNAs 
were summarized in regulating transcription, posttranscription, cellular organelles, struc-
tural functions, and genomic integrity [28]. For example, lncRNAs can control chromatin 
regulation through the recruitment of chromatin modifiers, decoy of chromatin modifiers, 
and the direct cis or trans interaction with chromatin [28]. LncRNAs also control transcrip-
tion regulation through target-gene inhibition, gene activation, and multiple lncRNAs 
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AKT signaling can modulate several downstream AKT effectors, such as forkhead
box transcription factors (FOXO), c-Myc, mechanistic target of rapamycin (mTOR) com-
plex 1/2 (mTORC1/2), mTOR substrate S6 kinase 1/2 (S6K1/2; RPS6KB1/2), eukaryotic
translation initiation factor 4E-binding protein 1 (4EBP1; EIF4EBP1), sterol regulatory
element-binding protein 1 (SREBP1; SREBF1), and hypoxia-inducible factor (HIF) [3,9–11]
(Figure 1). However, the complex functions of AKT effects on these cell functions need
further investigation.

Emerging evidence has shown the impacts of noncoding RNA (ncRNAs), such as long
noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), on regulating cell progression,
especially relevant in cancer cells [12]. LncRNAs are a group of ncRNA molecules contain-
ing more than 200 nucleotides. LncRNAs exhibit complex interactions with microRNAs
(miRNAs), mRNAs, and proteins to regulate cell functions [13]. LncRNAs are essential
modulators for regulating gene expression and affect diverse cell functions [14]. CircR-
NAs are other ncRNAs formed by splicing and sequentially connecting between splice
donor and acceptor sites, i.e., backsplicing [15]. CircRNAs may function as protein and
RNA scaffolds to bind miRNA and regulate transcription or translation in a miRNA and
RNA-binding protein sponge manner [16,17].

Both lncRNAs [18–20] and circRNAs [21,22] are reported as potential tumor markers
by regulating numerous pathways and controlling cell functions. Mounting evidence
shows the interaction between ncRNAs and AKT signaling in several cancers [23–25]. As
mentioned above, this review focuses on understanding the relationship between AKT
and AKT effectors in lncRNA- and circRNA-modulating cell functions. However, the
network between AKT, AKT signaling, lncRNAs, and circRNAs lacks systemic integration.
In previous reports, possible cell functions were not connected to this AKT–AKT effectors–
lncRNAs–circRNAs network. This warrants a detailed organization for understanding
their relationships.

LncRNAs [26] and circRNAs [27] can function as miRNA sponges, modulating their
target mRNA expressions. However, the miRNA information was not under the scope of
this review and is not discussed. Additionally, lncRNAs can interact with DNA, RNA, and
proteins for gene regulation [28]. Several DNA and proteins targeted by lncRNAs were
summarized in regulating transcription, posttranscription, cellular organelles, structural
functions, and genomic integrity [28]. For example, lncRNAs can control chromatin regula-
tion through the recruitment of chromatin modifiers, decoy of chromatin modifiers, and
the direct cis or trans interaction with chromatin [28]. LncRNAs also control transcription
regulation through target-gene inhibition, gene activation, and multiple lncRNAs acting
on the same locus. Consequently, the detailed mechanisms for lncRNAs and circRNAs to
control gene expressions are complex and display distinct regulations in different cases.
Therefore, the complicated mechanisms of the interactions between AKT/AKT effectors
and their respective lncRNAs and circRNAs are not included in this review. Alternatively,
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we focused on potential target genes such as AKT and AKT effectors regulated by lncRNAs
and circRNAs that were predicted by databases, as mentioned later.

This review provides an overview of AKT, AKT effectors, lncRNAs, and circRNAs in
regulating cell functions (Figure 1). Firstly, it summarizes detailed information on AKT
and AKT signaling-modulated functions relating lncRNAs and circRNAs to several cell
functions, especially for cancer cells, including apoptosis, autophagy, ER stress, mitochon-
drial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, and
migration. Detailed mechanisms for most lncRNA- and circRNA-associated regulation of
AKT and AKT effectors lack in-depth connection. To fill the gap, we next chose databases
for lncRNAs and circRNAs that provide the predicted targets to AKT and AKT effectors
(Sections 2 and 3). Subsequently, these predicted targets (AKT and AKT effectors) of lncR-
NAs and circRNAs are connected to cell functions by a literature survey. Finally, AKT and
AKT effectors that regulate cell functions appear to be well organized and connected to
lncRNAs and circRNAs.

2. Connecting AKT/AKT Effectors and LncRNAs to Cell Functions

The human AKT family contains AKT1, AKT2, and AKT3 [29–31], located at chro-
mosomes 14, 19, and 1. These AKT family members share several conserved structures
containing the pleckstrin homology (PH) domain at the N-terminal, kinase domain at the
middle region, and the hydrophobic regulating domain at C-terminal [32]. AKT1 expresses
in ubiquitous tissues, while AKT2 and AKT3 are mainly expressed in skeletal muscle and
liver [33] and in brain and testis [34], respectively.

Notably, some lncRNAs were reported to modulate the expressions of AKT1 [35],
AKT2 [36], and AKT3 [37]. However, their connection to cell function was not investigated,
especially for cancer cells. Hence, the relationship that connects AKT and lncRNAs to
their modulating cell functions (Figure 1) was evaluated by literature retrieval (Section 2.1).
However, their potential mechanisms still warrant a detailed exploration, particularly
for the possible targeting to AKT by lncRNAs. Subsequently, the potential targeting to
AKT1, AKT2, and AKT3 by lncRNAs and their associated cell functions are discussed
(Section 2.2). By choosing the lncRNA database (LncTarD [38]), the target information of
respective lncRNAs was predicted, and their impacts on cell functions were evaluated, as
described later.

Some lncRNAs also were reported to modulate the expressions of AKT effectors [38].
However, their connection to cell functions has never been investigated, especially for
cancer cells. Hence, the evidence that connects the AKT effectors and lncRNAs to their
modulating cell functions (Figure 1) was evaluated by literature retrieval (Section 2.3).
However, their potential mechanisms still warrant a detailed assessment, particularly for
the possible targeting to AKT effectors by lncRNAs. Subsequently, the potential targeting to
AKT effectors by lncRNAs and their associated cell functions are discussed (Section 2.4). By
choosing the lncRNA database LncTarD [38], the target information of respective lncRNAs
was predicted and their impacts on cell functions evaluated as described later.

2.1. Connecting AKT and LncRNAs to Cell Functions

Phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling and lncRNAs have a cross-
relationship regulating carcinogenesis [24,39,40]. They are essential in regulating apoptosis,
autophagy, ER stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage
response, senescence, and migration. These AKT-lncRNA–regulating cell functions are
discussed in Sections 2.1.1–2.1.7, especially for cancer cells.

2.1.1. Apoptosis by AKT-Regulating LncRNAs

Apoptosis-modulating effects of lncRNAs involving AKT have been reported. Some
lncRNA studies reported apoptosis-promoting effects in various cancer cell types connect-
ing to AKT. Phosphatase and tension homolog deleted on chromosome ten (PTEN) is a
negative modulator of AKT signaling [41]. LncRNA FER1L4 causes apoptosis of lung
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cancer cells by upregulating PTEN expression and dephosphorylating AKT [42]. LncRNA
LINC00619 is downregulated in osteosarcoma cells, associated with AKT mRNA over-
expression and its protein phosphorylation [43]. LINC00619 overexpression promotes
apoptosis of osteosarcoma cells by targeting hepatocyte growth factor (HGF) and down-
regulating AKT mRNA expressions and its protein phosphorylation [43]. Consequently,
various lncRNAs may be overexpressed in several cancers to modulate AKT for controlling
apoptosis induction.

In contrast, some lncRNA studies reported apoptosis-suppressing effects of several
cancer cell types connecting to AKT. LncRNA HOTAIR inhibits apoptosis of retinoblas-
toma cells by upregulating ribonucleotide reductase regulatory subunit M2 (RRM2) for
phosphorylating AKT, reverted by HOTAIR knockdown [44]. LncRNA RP11-301G19.1
downregulation triggers apoptosis of myeloma cancer cells by dephosphorylating AKT [45].
SNHG20 silencing triggers apoptosis of lung cancer cells by dephosphorylating AKT [46].
ROR1-AS1 is overexpressed in lung cancer tissues. ROR1-AS1 inhibition triggers apoptosis
in lung cancer cells by dephosphorylating AKT [47]. LINC01410 and lncRNA PITPNA-
AS1 are overexpressed in glioblastoma cells [48,49]. LINC01410 knockdown induces
temozolomide-induced apoptosis of glioblastoma cells by upregulating PTEN expression
and dephosphorylating AKT [48]. LncRNA PITPNA-AS1 inhibits apoptosis of glioblastoma
cells by upregulating epidermal growth factor receptor (EGFR) expression and phosphory-
lating AKT [49].

Accordingly, different lncRNAs may promote or suppress apoptosis by phospho-
rylating or dephosphorylating AKT to regulate its activity. As mentioned above, some
tumors are overexpressed or downregulated by AKT-regulating lncRNAs. A strategy to
overexpress or downregulate these specific AKT-regulating lncRNAs can improve the
apoptosis-inducible effects for cancer treatment.

2.1.2. Autophagy by AKT-Regulating LncRNAs

Autophagy modulating effects of lncRNAs involving AKT have been reported. The
lncRNA MEG3 overexpression blocks the phosphorylation of PI3K/AKT/mTOR to pro-
mote autophagy in tumor necrosis factor α (TNF-α)-treated keratinocytes [50]. Some lncR-
NAs exhibit bifunctional effects to regulate apoptosis and autophagy. LncRNA ADAMTS9-
AS1 upregulation blocks apoptosis and autophagy of bladder cancer cells by phosphorylat-
ing AKT, reverted by downregulating ADAMTS9-AS1 [51]. Accordingly, different lncRNAs
may promote or suppress autophagy by phosphorylating or dephosphorylating AKT to
regulate its activity.

2.1.3. ER Stress by AKT-Regulating LncRNAs

Drug-induced ER stress effects of lncRNA involving AKT have been reported. 5-
Fluorouracil induces ER stress and glucose-regulated protein 78 (GRP78; BiP) expression of
breast cancer cells to cause 5-fluorouracil resistance, accompanied by upregulating myocar-
dial infarction-associated transcript (MIAT lncRNA) and AKT protein expression [52]. This
warrants surveying more lncRNAs that regulate other ER stress components in the future.

2.1.4. DNA Damage Response by AKT-Regulating LncRNAs

DNA repair-suppressing effects of lncRNAs involving AKT have been reported.
Linc00312 directly targets the DNA-dependent protein kinase, catalytic subunit (DNA-
PKcs), blocks the interaction between DNA-PKcs and Ku80, and inactivates AKT by dephos-
phorylation, suppressing nonhomologous end joining (NHEJ) repair in nasopharyngeal
cancer cells [53]. This warrants surveying more lncRNAs that regulate other DNA damage
and repair in the future.

2.1.5. Senescence by AKT-Regulating LncRNAs

Senescence-inducible effects of lncRNAs involving AKT have been reported. GAS5
silencing induces proliferation and suppresses the senescence of endothelial progenitor cells
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by dephosphorylating PI3K/AKT [54]. This warrants a detailed survey and examination of
senescence effects of AKT-targeting lncRNAs on cancer cells in the future.

2.1.6. Migration by AKT-Regulating LncRNAs

Drug-induced migration-modulating effects of lncRNAs involving AKT have been
reported. Some lncRNA studies investigated migration-promoting effects. PYCR2 knock-
down suppresses the migration of colon cancer cells by downregulating matrix metallopro-
teinase (MMP) 2/9 and dephosphorylating AKT [55]. LINC00963 promotes metastasis of
lung cancer cells by phosphorylating AKT [56]. SOX2 overlapping transcript (SOX2-OT)
promotes the phosphorylation of PI3K/AKT and induces breast cancer cell metastasis [57].
MIR205HG [58] and AC099850.3 [59] enable the migration of liver cancer cells by phospho-
rylating AKT.

In contrast, some lncRNA studies investigated migration-suppressing effects. Platelet-
derived growth factor BB (PDGF-BB) inhibits RP5-857K21.7 expression of airway smooth
muscle cells (ASMCs). RP5-857K21.7 overexpression inhibits the migration of PDGF-BB-
treated ASMCs through dephosphorylating AKT [60]. Accordingly, different lncRNAs
may promote or suppress migration by phosphorylating or dephosphorylating AKT. This
warrants a detailed survey and examination of migration effects of AKT-targeting lncRNAs
on cancer cells in the future.

2.1.7. Potential Future Directions

As described above, several lncRNAs were mentioned to regulate AKT phosphory-
lation or dephosphorylation for its activation and inactivation and, in turn, control cell
functions. Some AKT-regulating lncRNAs are abundant or scarce in various cancers. Over-
expressing or downregulating these AKT-regulating lncRNAs may reverse the status of
cancer cell functions to improve anticancer effects.

However, the cell function mechanism for the modulating effects of lncRNAs on AKT
remains unclear, particularly for assessing the potential targeting to AKT by lncRNAs. More
experiments are warranted to improve the connection between AKT-lncRNAs regulating
cancer cell functions.

2.2. Connecting AKT1/AKT2/AKT3 and Database-LncRNAs to Cell Functions

To further validate the relationship between AKT and lncRNAs to cell functions,
more potential AKT-targeting lncRNAs are required. By choosing lncRNA databases, such
as LncTarD [38], more AKT-targeting lncRNA candidates are generated. LncTarD is a
comprehensive lncRNA database, including disease-associated lncRNA-target regulations
with experiment supports, associations, and targets to biological functions, as well as
TCGA pan-cancer data. By individual input target genes such as “AKT1, AKT2, and
AKT3,” their respective predicted lncRNAs are generated and exported. LncTarD also
provides the evidence description for each predicted lncRNA. However, these LncTarD-
predicted lncRNAs for AKT1, AKT2, and AKT3 did not provide potential cell functions.
Subsequently, these candidates were used for a literature survey (Google Scholar and
PubMed) to check their possible cell functions. Finally, the connection between these
AKT-targeting database lncRNA candidates and cell functions was established (Figure 2).

Since AKT1, AKT2, and AKT3 are encoded by different genes, their related modulating
lncRNAs are different as well. This lncRNA target information for AKT1, AKT2, and AKT3
was retrieved from the LncTarD database [38] and summarized in Table 1). Several lncRNAs
(ENST00113, MALAT1, CDKN2B-AS1, HULC, LUCAT1, AFAP1-AS1, LINC00462, LOXL1-
AS1, AB073614, H19, and SPRY4-IT1) upregulate AKT1, while some lncRNAs (GAS5,
RP11-708H21.4, FOXD2-AS1, and LINC00312) downregulate AKT1. LncRNA (lncRNA-
p3134) upregulates AKT2, and lncRNA (FEZF1-AS1) upregulates AKT3.
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Figure 2. Strategy for connecting database-predicted AKT-, AKT effector-targeting lncRNAs and
circRNAs to their regulating cell functions. By searching LncTarD [38] and circBase [61], these AKT-
and AKT effector-targeting lncRNA and circRNA candidates were retrieved by individual input of
gene names for AKT1, AKT2, and AKT3, as well as AKT effectors. Subsequently, they were applied
to a literature survey by Google Scholar and PubMed to check their potential cell functions.

Table 1. AKT1-, AKT2-, AKT3-targeting database lncRNAs.

AKT1 AKT2 AKT3

Upregulate

ENST00113
MALAT1
CDKN2B-AS1
HULC
LUCAT1
AFAP1-AS1

LINC00462
LOXL1-AS1
AB073614
H19
SPRY4-IT1

lncRNA-p3134 FEZF1-AS1

Downregulate

GAS5
RP11-708H21.4
FOXD2-AS1
LINC00312

- -

lncRNAs targeting several AKT effectors were retrieved from the LncTarD database [38] (accessed on 13 June
2022).

Interestingly, the lncRNA targets for AKT1, AKT2, and AKT3 are not overlapping.
Notably, the investigation of AKTs should be concerned with transcriptional regulation
regarding their respective lncRNAs. The relationship between AKT1, AKT2, and AKT3
connecting to database lncRNAs in regulating cell functions will be explored further below.

2.2.1. AKT1-, AKT2-, and AKT3-Targeting Database LncRNAs and Cell Functions

Although the respective AKT1-, AKT2-, and AKT3-targeting lncRNAs have been
reported before (Table 1), the cell functions were not connected to these AKT1-, AKT2-,
and AKT3-targeting database lncRNAs. Here, we summarize and integrate available infor-
mation from our in-depth literature search on Google Scholar and PubMed (Figure 2) and
provide novel information about the networking of the AKT1-, AKT2-, and AKT3-targeting
lncRNAs and cell functions. Twelve AKT-targeting database lncRNAs are connected to cell
functions, as summarized, especially for cancer cells (Table 2).
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Table 2. Connecting AKT1-, AKT2-, and AKT3-targeting database lncRNAs to cell functions.

Cell Functions

AKT1/2/3-Targeting
lncRNAs

A
poptosis

A
utophagy

ER
Stress

M
itochondrial

M
orphogenesis

Ferroptosis

N
ecroptosis

D
N

A
D

am
age

R
esponse

Senescence

M
igration

AKT1

ENST00113 [62] [63] # # # # # # [62]
MALAT1 [64] [65] [66] [64] # # # [67] [68]
GAS5 [69,70] [71,72] [73] # [74] [75] [76] [77] [78]
CDKN2B-AS1 [79] [80] [81] # # # [82] [79,82] [83]
HULC [84,85] [86] # # # # [87] [88] [89,90]
LUCAT1 [91] [91] # # [92] [93] [94] # [91]
RP11-708H21.4 [95] # # # # # # # [95]
AFAP1-AS1 [96] # # # # # # # [96]
LINC00462 [97] # # # # # # # [98]
LOXL1-AS1 [99] # # # # # # # [99]
FOXD2-AS1 [100] # # # # # # # [100]
AB073614 [101] # # # # # # # [102]
H19 [103] [104] [105] [106] [107] [105] [108] [109] [104]
SPRY4-IT1 [110] # # # # # [111] # [112]
LINC00312 [113] # # # # # [53] # [114]

AKT2 lncRNA-p3134 [115] # # # # # # # #

AKT3 FEZF1-AS1 [116] [117] # # # # # # #

# Literature could not be found on Google Scholar or PubMed (12 June 2022). The lncRNAs targeting several
AKT effectors were retrieved from the LncTarD database [38] (accessed on 13 June 2022).

(1) AKT1-Targeting ENST00113 and Cell Functions

LncRNA ENST00113 modulating cell functions are summarized in Table 2). LncRNA
ENST00113 enhances atherosclerosis development [62]. ENST00113 enhances proliferation
and migration, but inhibits apoptosis of human umbilical vein endothelial cells by phos-
phorylating PI3K/AKT/mTOR [62]. AKT inactivation by inhibitor or siRNA suppresses
atherosclerosis by upregulating the autophagy of macrophages [63]. Accordingly, this
warrants a detailed assessment of the impact of ENST00113 on modulating autophagy and
careful examination of cell functions due to ENST00113 on cancer cells in the future.

(2) AKT1-Targeting MALAT1 and Cell Functions

MALAT1 modulating cell functions are summarized in Table 2. MALAT1 enhances the
proliferation and autophagy of glioma cells [65]. MALAT1 inhibition suppresses oxygen-
glucose deprivation/reoxygenation-triggered apoptosis, and ER stress [66]. Upregulation
of mitochondrial fusion protein mitofusin 1 (MFN1) reverses microvascular dysfunction
and cardiac microvascular endothelial cell damage enhanced by MALAT1 knockdown by
suppressing mitochondrial fission and apoptosis [64]. MALAT1 enhances proliferation
and suppresses the senescence of gallbladder cancer cells [67]. MALAT1 improves the
proliferation and migration of colon cancer cells [68]. This deserves a careful examination
of cell functions due to MALAT1 to provide more evidence for impacts on cancer cells in
the future.

(3) AKT1-Targeting GAS5 and Cell Functions

LncRNA GAS5 modulating cell functions are summarized in Table 2. GAS5 upregu-
lation inhibits proliferation and promotes apoptosis of pituitary neuroendocrine [69] and
liver [70] cancer cells. GAS5 induces autophagy of colon [71] and breast [72] cancer cells.
GAS5 blocks high glucose-induced ER stress and apoptosis of retinal epithelial cells [73].
GAS5 pathways impact ferroptosis-associated gene expressions in heart-failure tissue [74].
GAS5 knockdown increases cell viability in the hypoxia-reoxygenation model by reducing
the expression of necrosis markers, such as lactate dehydrogenase [75]. GAS5 upregulation
suppresses DNA repair to ionizing radiation [76]. GAS5 overexpression blocks the senes-
cence of vascular smooth muscle cells [77]. GAS5 upregulation blocks propofol-induced
migration of glioma cells [78]. Accordingly, some cell functions of GAS5 were not investi-
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gated in cancer cells. Careful examination of some cell functions due to GAS5 acting on
cancer cells is needed.

(4) AKT1-Targeting CDKN2B-AS1 and Cell Functions

CDKN2B-AS1 modulating cell functions are summarized in Table 2. CDKN2B-AS1 in-
hibits apoptosis and senescence of cervical cancer, which can be reverted by CDKN2B-AS1
silencing [79]. CDKN2B-AS1 upregulation induces autophagy of idiopathic pulmonary
fibrosis [80]. Additionally, stress-associated endoplasmic reticulum protein 1 (SERP1)
downregulates CDKN2B-AS1 and ER stress of oxygen deprivation-induced injury in car-
diomyocytes [81]. CDKN2B-AS1 modifies senescence and apoptosis, involving cell cycle
disturbance and DNA damage [82]. CDKN2B-AS1 improves the proliferation and metas-
tasis of liver cancer cells [83]. Careful examination of cell functions and CDKN2B-AS1 is
needed to provide more evidence for impacts on cancer cells in the future.

(5) AKT1-Targeting HULC and Cell Functions

HULC modulating cell functions are summarized in Table 2. HULC suppresses
apoptosis of osteosarcoma [84] and lung cancer cells [85]. HULC induces autophagy of
liver cancer cells [86]. HULC enhances the DNA repair of liver cancer stem cells [87].
Additionally, hepatitis B virus X protein upregulates HULC and downregulates senescence
protein p18 expressions, suggesting that HULC can modulate cellular senescence [88].
HULC enhances the migration of pancreatic [89] and liver [90] cancer cells. This warrants a
detailed examination of cell functions influenced by HULC to provide more evidence for
their impacts on cancer cells in the future.

(6) AKT1-Targeting LUCAT1 and Cell Functions

LUCAT1 modulating cell functions are summarized in Table 2. LUCAT1 overex-
pression induces autophagy and metastasis, but suppresses apoptosis of lung cancer
cells and promotes its cisplatin resistance [91]. LUCAT1 is reported to be the ferroptosis-
related lncRNA correlated with renal cancer survival [92]. LUCAT1 is reported to be the
necroptosis-related lncRNA in liver tumors [93]. LUCAT1 suppresses DNA damage and
apoptosis of colon cancer cells [94]. A detailed examination of cell functions and LUCAT1
is warranted to provide more evidence for their impacts on cancer cells in the future.

(7) AKT1-Targeting RP11-708H21.4, AFAP1-AS1, LINC00462, and Cell Functions

RP11-708H21.4, AFAP1-AS1, and LINC00462 modulating cell functions are summa-
rized in Table 2. RP11-708H21.4 has low expression in colon cancer cells. RP11-708H21.4
overexpression decreases proliferation and migration and triggers apoptosis of colon can-
cer cells by dephosphorylating AKT and mTOR [95]. Additionally, AFAP1-AS1 silencing
decreases proliferation and migration and induces apoptosis of lung cancer cells [96].
LINC00462 silencing suppresses high glucose-triggered apoptosis of renal tubular epithe-
lial cells [97]. LINC00462 improves the invasion of pancreatic cancer cells [98]. A detailed
assessment of cell functions influenced by RP11-708H21.4, AFAP1-AS1, and LINC00462 is
warranted to provide more evidence for their impacts on cancer cells in the future.

(8) AKT1-Targeting LOXL1-AS1, FOXD2-AS1, AB073614, and Cell Functions

LOXL1-AS1, FOXD2-AS1, and AB073614 modulating cell functions are summarized
in Table 2. LOXL1-AS1 suppresses proliferation and migration and enhances apoptosis of
breast cancer cells [99]. The lncRNA FOXD2-AS1 knockdown decreases proliferation and
migration but triggers apoptosis of glioma cells [100]. AB073614 enhances proliferation
and triggers apoptosis of cervical cancer cells [101]. AB073614 improves metastasis of
gastric cancer cells [102]. This warrants a detailed assessment of cell functions influenced
by LOXL1-AS1, FOXD2-AS1, and AB073614 to provide more evidence for their impacts on
cancer cells in the future.
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(9) AKT1-Targeting H19 and Cell Functions

H19 modulating cell functions are summarized in Table 2. H19 silencing blocks pro-
liferation and triggers apoptosis of vascular smooth muscle cells [103]. H19 upregulation
enhances invasion and autophagy of trophoblast cells [104]. H19 knockdown promotes
resveratrol-induced ER stress and necroptosis of gastric cancer cells by increasing GRP78,
receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and mixed lineage kinase
domain-like (MLKL) expressions [105]. H19 silencing enhances the ferroptosis of lung can-
cer cells [107]. Additionally, lncRNA H19 downregulates mitochondrial fusion expression
of the MFN2 gene in renal tissues of diabetic rats [106]. H19 silencing suppresses ionizing
radiation-induced DNA damage of lung cancer cells, but enhances DNA repair [108]. H19
triggers the senescence of cardiomyocytes [109]. Accordingly, some cell functions of H19
have not been investigated in cancer cells. Careful examination of some cell functions
influenced by H19 is needed to provide more evidence for their impacts on cancer cells in
the future.

(10) AKT1-Targeting SPRY4-IT1, LINC00312, and Cell Functions

SPRY4-IT1 and LINC00312 modulating cell functions are summarized in Table 2.
SPRY4-IT1 downregulation improves apoptosis of pancreatic cancer cells [110]. SPRY4-
IT1-expressing primary human melanocytes show gene expression changes along with
apoptosis and DNA damage responses [111]. SPRY4-IT1 enhances metastasis in nasopha-
ryngeal cancer cells [112]. LINC00312 suppresses proliferation and triggers apoptosis
of lung cancer cells [113]. LINC00312 suppresses DNA repair of nasopharyngeal cancer
cells by targeting DNA-PKcs [53]. LINC00312 suppresses the migration of bladder cancer
cells [114]. A detailed assessment of cell functions influenced by SPRY4-IT1 and LINC00312
is warranted to provide more evidence for their impacts on cancer cells in the future.

(11) AKT2-Targeting LncRNA-p3134 and Cell Functions

lncRNA-p3134 modulating cell functions are summarized in Table 2. For AKT2,
lncRNA-p3134 upregulation suppresses the β-cell apoptosis of pancreatic β-cells [115].
According to our literature survey, other cell functions related to AKT2 have not been
reported.

(12) AKT3-Targeting FEZF1-AS1 and Cell Functions

FEZF1-AS1 modulating cell functions are summarized in Table 2. For AKT3, FEZF1-
AS1 exhibits higher expression in ovarian cancer tissues and cells than normal controls [116].
Ovarian cancer patients with high FEZF1-AS1 show a poor prognosis. FEZF1-AS1 silencing
inhibits proliferation and induces apoptosis of ovarian cancer cells [116]. Similarly, FEZF1-
AS1 is overexpressed in gastric tumors. FEZF1-AS1 overexpression improves proliferation
and autophagy of gastric cancer cells, reverted by ATG5 silencing [117]. A detailed assess-
ment of cell functions influenced by FEZF1-AS1 is warranted to provide more evidence for
their impacts on cancer cells in the future.

2.2.2. Potential Future Directions

As described above, a literature survey connected AKT1-, AKT2-, and AKT3-targeting
database lncRNAs to several cell functions. However, most information was derived from
AKT1 in our survey (Table 2). AKT2 and AKT3 were rarely investigated. This warrants
a detailed assessment of the role of AKT2 and AKT3 targeting by lncRNAs in regulating
cancer cell functions in the future. Some lncRNAs reported in some cell functions but not
others are based on a literature survey. Their possible contributions to unreported cell
functions are not excluded and need further inspection.

2.3. Connecting AKT Effectors and LncRNAs to Cell Functions

AKT controls the expressions of several downstream effectors. In turn, AKT effectors
exert comprehensive cell functions [3,9–11]. Since AKT had a cross-relationship to lncRNAs
as described above, lncRNAs may exhibit the impact on most AKT effectors (FOXO, c-Myc,
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mTORC1, SREBP1, and HIF) (Table 3). The connection between lncRNAs to other AKT
effectors (S6K1, S6K2, and 4EBP1) was rarely reported. In the following, we summarize
evidence connecting some AKT effectors (FOXO, c-Myc, mTORC1, SREBP1, and HIF) and
lncRNAs to cancer cell functions (Sections 2.3.1–2.3.6).

Table 3. Connecting AKT effectors to lncRNA-regulated cell functions.

Cell Functions

A
poptosis

A
utophagy

ER
Stress

M
itochondrial

M
orphogenesis

Ferroptosis

N
ecroptosis

D
N

A
D

am
age

R
esponse

Senescence

M
igration

FOXO
c-Myc
mTORC1
mTORC2
SREBP1
HIF

c-Myc
mTORC1
SREBP1
HIF

c-Myc #
FOXO
c-Myc
HIF

c-Myc c-Myc
HIF

c-My
cmTORC1

FOXO
c-Myc
mTORC1

Different AKT effectors may regulate various cell functions. # Literature could not be found by searching Google
Scholar and PubMed (12 June 2022).

2.3.1. AKT Effector (FOXO)-Regulating LncRNAs and Cell Functions

The relationship between FOXO, lncRNA, and cell functions such as autophagy, ER stress,
necroptosis, DNA damage response, and senescence were rarely reported. Other functions,
such as apoptosis, ferroptosis, and migration were mentioned, as follows (Table 3).

(1) Apoptosis by FOXO-Regulating LncRNAs

Several lncRNA studies investigated apoptosis modulating effects involving FOXO
(Table 3). Under energy stress, FOXO upregulates FOXO-induced lncRNA 1 (FILNC1) to
suppress proliferation and induce apoptosis of renal cancer cells [118]. siRNA may induce
or suppress apoptosis involving FOXO. In contrast, LINC00899 silencing downregulates
FOXO expression and induces apoptosis of spinal ependymoma cells [119]. A detailed
assessment of apoptosis influenced by more FOXO-regulating lncRNAs is warranted to
provide more evidence for their impacts on cancer cells in the future.

(2) Ferroptosis by FOXO-Regulating LncRNAs

Several lncRNA studies investigated ferroptosis modulating effects involving FOXO
(Table 3). Seventeen ferroptosis-related lncRNAs were associated with gastric cancer [120]
and upregulated FOXO3. Some lncRNAs are risk for gastric cancer, such as VCAN-
AS1, OVAAL, PCDH10-DT, ENSG00000240661.1, RPH3AL-AS1, ITGB1-DT, LINC02915,
FLJ42969, NDST1-AS1, ENSG00000247134.5, and ENSG00000248362.1). Other lncRNAs
are protective for gastric cancer, such as FAM239A, LINC01210, ENSG00000265334.1,
LINC01775, ENSG00000273293.1, and ENSG00000230107.1) [120]. A detailed assessment of
ferroptosis influenced by more FOXO-regulating lncRNAs is warranted to provide more
evidence for their impacts on cancer cells in the future.

(3) Migration by FOXO-Regulating LncRNAs

Several lncRNA studies investigated migration-modulating effects involving FOXO
(Table 3). LINC00899 knockdown inhibits FOXO expression and migration of spinal ependy-
moma cells [119]. Oncogene E26 transformation-specific or E-twenty-six (ETS)-related gene
(ERG), an oncogenic transcription factor, upregulates LINC00920 to promote the prolifer-
ation and migration of prostate cancer cells by downregulating FOXO expression [121].
A detailed assessment of migration influenced by more FOXO-regulating lncRNAs is
warranted to provide more evidence for their impacts on cancer cells in the future.
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2.3.2. AKT Effector (c-Myc)-Regulating LncRNAs and Cell Functions

There is little information about the relationship between c-Myc, lncRNA, and cell
functions, such as mitochondrial morphogenesis. Other functions, such as apoptosis,
autophagy, ER stress, ferroptosis, necroptosis, DNA damage response, senescence, and
migration were mentioned as follows (Table 3).

(1) Apoptosis by c-Myc-Regulating LncRNAs

Several lncRNA studies investigated apoptosis-modulating effects involving c-Myc
(Table 3). In some cases, lncRNAs may regulate c-Myc by direct targeting. Lnc-EPIC1
silencing triggers apoptosis of colon cancer cells by directly binding to c-Myc and down-
regulating c-Myc downstream effectors [122]. However, most of the c-Myc-regulating
lncRNAs did not investigate their targeting potential. Inhibition of lncRNA MIR22HG
suppresses proliferation and induces apoptosis of esophageal cancer cells via downregu-
lating c-Myc expression [123]. LncRNA KCNQ1OT1 silencing causes apoptosis of acute
myeloid leukemia by decreasing c-Myc expression [124]. LINC01503 is downregulated
by c-Myc silencing to induce apoptosis of lung cancer cells [125], suggesting that c-Myc
may upregulate LINC01503 to inhibit the apoptosis of lung cancer cells [125]. A detailed
assessment of apoptosis influenced by more c-Myc-regulating lncRNAs is warranted to
provide more evidence for their impacts on cancer cells in the future.

(2) Autophagy by c-Myc-Regulating LncRNAs

Several lncRNA studies investigated autophagy-modulating effects involving c-Myc
(Table 3). LncRNA may induce or suppress autophagy connected to c-Myc. c-Myc-induced
lncRNA MEG3 activates mitophagy to alleviate kidney ischemia–reperfusion injury [126].
In contrast, MIR7-3HG, an Myc-dependent lncRNA, blocks the autophagy of cervical
cancer cells [127]. LncRNA NFYC-AS1 silencing activates autophagy of lung cancer cells
by downregulating c-Myc [128].A detailed assessment of autophagy influenced by more
c-Myc-regulating lncRNAs is warranted to provide more evidence for their impacts on
cancer cells in the future.

(3) ER Stress by c-Myc-Regulating LncRNAs

Several lncRNA studies investigated ER stress-modulating effects involving c-Myc
(Table 3). c-Myc improves adaptive ER stress [129]. Metformin upregulates the expressions
of lncRNA MALAT1 and ER stress genes, while MALAT1 knockdown in metformin-treated
breast cancer cells shows reduced phosphorylation of c-Myc [130]. Accordingly, MALAT1
is a potential upstream regulator to c-Myc for triggering ER stress. IA detailed assessment
of ER stress influenced by more c-Myc-regulating lncRNAs is warranted to provide more
evidence for their impacts on cancer cells in the future.

(4) Ferroptosis by c-Myc-Regulating LncRNAs

Ferroptosis-modulating effects of lncRNAs involving c-Myc were reported (Table 3).
Transcription factor AP-2 gamma (TFAP2C) transcriptionally activates lncRNA PCAT1 to
suppress ferroptosis of prostate cancer cells by interacting with c-Myc [131]. A detailed
assessment of ferroptosis influenced by more c-Myc-regulating lncRNAs is warranted to
provide more evidence for their impacts on cancer cells in the future.

(5) Necroptosis by c-Myc-Regulating LncRNAs

Necroptosis-modulating effects of lncRNAs involving c-Myc were reported (Table 3).
Linc00176 is highly expressed in liver cancer cells, which is activated by c-Myc. Linc00176
knockdown promotes necroptosis of liver cancer cells [132]. Accordingly, c-Myc may
modulate linc00176 expression to control necroptosis. A detailed assessment of necroptosis
influenced by more c-Myc-regulating lncRNAs is warranted to provide more evidence for
their impacts on cancer cells in the future.

(6) DNA Damage Response by c-Myc-Regulating LncRNAs
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Several lncRNA studies investigated DNA damage response-modulating effects in-
volving c-Myc (Table 3). LncRNA may induce or suppress DNA repair connecting to c-Myc.
LncRNA PVT1 improves DNA repair and suppresses cell apoptosis of nasopharyngeal
cancer cells [133]. p53 activates PVT1b to reduce c-Myc transcription and suppress car-
cinogenesis [134]. A detailed investigation of the interaction between PVT1b and Myc in
modulating DNA repair is particularly needed here. Similarly, noncoding RNA activated
by DNA damage (NORAD) knockdown in neuroblastoma cells upregulates the poly [ADP-
ribose] polymerase 1 (PARP1), a DNA damage sensor for DNA repair [135]. In contrast, in
gene set enrichment analysis (GSEA), head neck cancer patients with low lncRNA NEAT1
expression exhibit upregulation of c-Myc and DNA repair signaling [136]. A detailed
assessment of DNA damage response influenced by more c-Myc-regulating lncRNAs is
warranted to provide more evidence for their impacts on cancer cells in the future.

(7) Senescence by c-Myc-Regulating LncRNAs

Several lncRNA studies investigated senescence-modulating effects involving c-Myc
(Table 3). Several lncRNA studies reported senescence-suppressing results connecting to
c-Myc. LncRNA PARROT, an upstream modulator of c-Myc, is downregulated in the senes-
cence of human mammary epithelial cells [137]. c-Myc may transcriptionally activate some
lncRNAs, such as USP2-AS1, to inhibit senescence and improve the proliferation of lung
cancer cells [138]. C1RL-AS1 knockdown promotes the senescence of gastric cancer cells by
decreasing c-Myc expression [139]. c-Myc upregulates ovarian adenocarcinoma-amplified
lncRNA (OVAAL) transcription to promote tumor growth and inhibit senescence [140].
A detailed assessment of senescence influenced by more c-Myc-regulating lncRNAs is
warranted to provide more evidence for their impacts on cancer cells in the future.

(8) Migration by c-Myc-Regulating LncRNAs

Several lncRNA studies investigated migration-modulating effects involving c-Myc
(Table 3). Several lncRNA studies reported migration-promoting results connecting to
c-Myc. LINC00665 promotes c-Myc transcriptional activity to enhance the migration of
lung cancer cells [141]. LncRNA AFAP1-AS1 [142] and MIR210HG [143] strengthen the
migration of lung and gastric cancer cells by upregulating c-Myc, respectively. c-Myc can
bind to the LINC01050 promoter to improve transcription of LINC01050 and enhances
metastasis of gastric cancer cells [144]. A detailed assessment of migration influenced by
more c-Myc-regulating lncRNAs is warranted to provide more evidence for their impacts
on cancer cells in the future.

2.3.3. AKT Effector (mTORC1)-Regulating LncRNAs and Cell Functions

There is little information about the relationship between mTORC1, lncRNA, and cell
functions. Other functions, such as apoptosis, autophagy, and migration, were mentioned
as follows (Table 3).

(1) Apoptosis by mTORC1-Regulating LncRNAs

There are studies on apoptosis modulating the effects of lncRNA involving mTORC1
(Table 3). LncRNA H19 suppresses mTORC1 expression of pituitary tumors [145]. Addi-
tionally, the apoptosis-promoting effects of lncRNA were reported. LINC00998 enhances
mTORC2 decay and apoptosis to suppress carcinogenesis, reverted by mTORC2 overex-
pression [146]. A detailed assessment of apoptosis influenced by more mTORC1-regulating
lncRNAs is warranted to provide more evidence for their impacts on cancer cells in the fu-
ture.

(2) Autophagy by mTORC1-Regulating LncRNAs

Several lncRNA studies investigated autophagy-modulating effects involving mTORC1
(Table 3). Autophagy-inducing or -suppressing lncRNAs connecting to mTORC1 were
reported. LncRNA ZNNT1 promotes autophagy of uveal melanoma cells by mTORC1 in-
hibitor [147]. In contrast, HAGLR opposite strand lncRNA (HAGLROS) binds to mTORC1
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components and activates mTORC1 signaling by mTOR phosphorylation to inhibit au-
tophagy, contributing to gastric carcinogenesis [148]. A detailed assessment of autophagy
influenced by more mTORC1-regulating lncRNAs is warranted to provide more evidence
for their impacts on cancer cells in the future.

(3) Senescence by mTORC1-Regulating LncRNAs

Senescence-modulating effects of lncRNAs involving mTORC1 were reported (Table 3).
Senescence-promoting effects of lncRNA connecting to mTORC1 were demonstrated. In
non-TGF-β-treated cells, silencing of the metastasis-associated in lung adenocarcinoma
transcript 1 (MALAT1) activates mTORC1 [149], associated with cell senescence in chronic
obstructive pulmonary disease (COPD). Accordingly, the senescence effects of mTORC1-
regulating lncRNAs were not well investigated in cancer cells. A careful examination for
senescence influenced by mTORC1-regulating lncRNAs on cancer cells is warranted.

(4) Migration by mTORC1-Regulating LncRNAs

Several lncRNA studies investigated migration-modulating effects involving mTORC1
(Table 3). In particular, migration-promoting effects of lncRNA connecting to mTORC1
were reported. RHPN1-AS1 silencing blocks the migration of nasopharyngeal cancer cells
by decreasing MMP 2/9 expression [150]. LINC00958 activates the mTORC1 to promote
the epithelial-mesenchymal transition (EMT) and migration of liver cancer cells [151]. A
detailed assessment of migration influenced by more mTORC1-regulating lncRNAs is
warranted to provide more evidence for their impacts on cancer cells in the future.

2.3.4. AKT Effector (SREBP1)-Regulating LncRNAs and Cell Functions

As mentioned above, the relationship between SREBP1, lncRNA, and cell functions
was rarely reported. Other functions, such as apoptosis and autophagy, were mentioned as
follows (Table 3).

(1) Apoptosis by SREBP1-Regulating LncRNAs

Several lncRNA studies investigated apoptosis modulating effects involving SREBP1
(Table 3). The apoptosis-promoting and -suppressing effects of lncRNA connecting to
SREBP1 were reported. SREBP1, SREBP2, and lncRNA ENST00000416361 were upregu-
lated in coronary artery disease patients, accompanied by apoptosis. Inhibition of lncRNA
ENST00000416361 downregulates SREBP1 and SREBP2 [152]. In contrast, free fatty acid
triggers apoptosis of liver LO2 cells associated with downregulating AC012668. Overex-
pression of AC012668, a lncRNA, downregulates SREBP1 expression [153]. Accordingly, the
relationship between SREBP1 and apoptosis warrants a detailed investigation, especially
for cancer cells.

(2) Autophagy by SREBP1-Regulating LncRNAs

Autophagy-modulating effects of lncRNAs involving SREBP1 were reported (Table 3).
HAGLROS knockdown downregulates SREBP1 and induces autophagy to reduce intra-
hepatic cholangiocarcinoma cell proliferation [154]. A detailed assessment of autophagy
influenced by more SREBP1-regulating lncRNAs is warranted to provide more evidence
for their impacts on cancer cells in the future.

2.3.5. AKT Effector (HIF)-Regulating LncRNAs and Cell Functions

The role of HIF in regulating lncRNA-associated ER stress, necroptosis, DNA damage
response, and senescence was rarely reported. Other functions involving HIF and lncRNA
are summarized in Table 3.

(1) Apoptosis by HIF-Regulating LncRNAs

Several lncRNA studies investigated apoptosis-modulating effects involving HIF
(Table 3). The apoptosis-promoting and -suppressing effects of lncRNA connecting to HIF
were reported. LncRNA TSLNC8 triggers apoptosis of lung cancer cells by regulating
HIF-1α (HIF1A) signaling [155]. lincRNA-p21 is a target of p53 and HIF1A mRNA [156].
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UVB upregulates lincRNA-p21 expression to induce apoptosis in keratinocytes [156]. It
raises the possibility that lincRNA-p21 triggers apoptosis by regulating HIF1A. LncRNA
nuclear factor of activated T cells (NFAT) silencing suppresses hypoxia-triggered apoptosis
of cardiomyocytes by enhancing HIF1A expression [157].

In contrast, JPX overexpression inhibits apoptosis of nucleus pulposus cells by up-
regulating HIF1A [158]. Similarly, UCA1 overexpression blocks apoptosis of breast cancer
cells by HIF1A inhibitor [159]. A detailed assessment of apoptosis influenced by more
HIF-regulating lncRNAs is warranted to provide more evidence for their impacts on cancer
cells in the future.

(2) Autophagy by HIF-Regulating LncRNAs

Several lncRNA studies reported autophagy-modulating effects involving HIF (Table 3).
The autophagy-promoting effects of lncRNA connecting to HIF were reported. Hypoxia
upregulates lncRNA-MALAT1 and induces autophagy of endometrial stromal cells by up-
regulating HIF1A expression [160]. Hypoxia upregulates MALAT1 to trigger autophagy of
vascular endothelial cell injury by downregulating HIF1A [161]. PVT1 lncRNA knockdown
suppresses autophagy by downregulating HIF1A in pancreatic cancer cells [162]. A de-
tailed assessment of autophagy influenced by more HIF-regulating lncRNAs is warranted
to provide more evidence for their impacts on cancer cells in the future.

(3) Ferroptosis by HIF-Regulating LncRNAs

Ferroptosis-modulating effects of lncRNAs involving HIF were reported (Table 3).
The ferroptosis-suppressing effects of lncRNA connecting to HIF were reported. Hypoxia-
upregulated HIF1A/lncRNA-PMAN suppressed ferroptosis of gastric cancer cells [163]. A
detailed assessment of ferroptosis influenced by more HIF-regulating lncRNAs is warranted
to provide more evidence for their impacts on cancer cells in the future.

(4) DNA Damage Response by HIF-Regulating LncRNAs

DNA repair-modulating effects of lncRNA involving HIF were reported (Table 3). The
DNA repair-suppressing effects of lncRNA connecting to HIF were reported. LncRNA
HITT (HIF1A inhibitor at translation level) directly interacts with ataxia-telangiectasia
mutated (ATM) and suppresses homologous recombination repair in human colon cancer
tissues [164]. A detailed assessment of DNA damage response influenced by more HIF-
regulating lncRNAs is warranted to provide more evidence for their impacts on cancer
cells in the future.

(5) Migration by HIF-Regulating LncRNAs

Several lncRNA studies investigated migration-modulating effects involving HIF
(Table 3). The migration-promoting and -suppressing effects of lncRNA connecting to
HIF were reported. HIF1A and HIF-2α can transcriptionally activate hypoxia-responsive
lncRNA MALAT1 to enhance the migration of breast cancer cells [165]. LncRNA ZFPM2-
AS1 enhances the migration of liver cancer cells by upregulating HIF1A [166]. LINC00649
enhances metastasis of breast cancer cells by increasing HIF1A stability [167]. LncRNA
MIR17HG improves the migration of retinoblastoma cells by increasing HIF1A expres-
sion [168]. HIF1A upregulates TM4SF1-AS1 expression to enhance the migration of liver
cancer cells [169]. LncRNA FAM83A-AS1 enhances the migration of lung cancer cells by
upregulating HIF1A [170]. In contrast, lncRNA TSLNC8 suppresses migration effects on
lung cancer cells by regulating HIF1A signaling [155]. A detailed assessment of migration
influenced by more HIF-regulating lncRNAs is warranted to provide more evidence for
their impacts on cancer cells in the future.

2.3.6. Potential Future Directions

As described above, several lncRNAs were mentioned to regulate AKT effectors
and, in turn, control cell functions. Overexpressing or downregulating these AKT effector-
regulating lncRNAs may reverse the status of cancer cell functions to improve the anticancer
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effects. However, the cell function mechanism for the modulating impact of lncRNAs on
AKT effectors remains unclear, particularly for assessing the potential targeting to AKT
effectors by lncRNAs. More experiments are warranted to improve understanding of the
connection between AKT effectors and lncRNAs regulating cancer cell functions.

2.4. Connecting AKT Effectors and Database LncRNAs to Cell Functions

To further validate the relationship of AKT effectors and lncRNAs to cell functions,
more AKT effector-targeting lncRNAs are required. By choosing an lncRNA database
such as the LncTarD database [38], more AKT effector-targeting lncRNA candidates are
generated. By individual input target genes such as “FOXO, c-Myc, mTOR, RPTOR, MLST8,
AKT1S1, DEPTOR, RPS6KB1, RPS6KB2, 4EBP1, SREBF1, and HIF1A,” their respective pre-
dicted lncRNAs are generated and exported. However, these LncTarD-predicted lncRNAs
for AKT effectors did not provide potential cell functions. Subsequently, these candidates
were used for literature searches (Google Scholar and PubMed) to establish the connection
between AKT effector-targeting lncRNAs and cell functions (Figure 2).

In addition to Table 3, several database lncRNAs also target AKT effectors, but their
relationships to cell functions are not reported. Some lncRNA target information related to
AKT effectors was retrieved from the LncTarD database [38] and summarized in Table 4). c-
Myc upregulates several lncRNAs (PVT1, HOTTIP, CRNDE, CCAT2, HNF1A-AS1, SNHG1,
NEAT1H19, CERNA2, TUG1, PCAT1, LINC-ROR, FILNC1, and THORLNC) and downreg-
ulates some lncRNAs (HULC, PCAT1, lncRNA-BCAT1, and PCAT6). S6K1 upregulates sev-
eral lncRNAs (HOTAIR and PCGEM1) and downregulates some lncRNAs (RP11-708H21.4).
SREBP1 upregulates lncRNA (LNCARSR). HIF upregulates several lncRNAs (HOTAIR,
RAB4B-EGLN2, MEG3, and RPL13AP23) and downregulates some lncRNA (CPS1-IT1,
MIR31HG, and MALAT1) [38].

Table 4. AKT effector-targeting database lncRNAs.

AKT Effectors

LncRNAs c-Myc mTOR S6K1 SREBP1 HIF

U
pregulation

PVT1
HOTTIP
CRNDE
CCAT2
HNF1A-AS1
SNHG1
NEAT1H19

CERNA2
TUG1
PCAT1
LINC-ROR
FILNC1
THORLNC

MALAT1
ENST00113
HOTAIR
PVT1
H19

CRNDE
HULC
lncRNA-
p3134
UCA1

HOTAIR
PCGEM1 LNCARSR

HOTAIR
RAB4B-
EGLN2
MEG3
RPL13AP23

D
ow

nregulation

HULC
PCAT1
lncRNA-
BCAT1
PCAT6

UCA1
RP11-
708H21.4

GAS5
HOTAIR

RP11-
708H21.4

CPS1-IT1
MIR31HG
MALAT1

FOXO, mTORC1 (RPTOR, MLST8, AKT1S1, and DEPTOR), S6K2, and 4EBP1 targeted by lncRNAs were omitted
because they were not available after the retrieval of the LncTarD database (http://bio-bigdata.hrbmu.edu.cn/
LncTarD/ or https://lnctard.bio-database.com/) [38] (accessed on 13 June 2022).

mTORC1 consists of mTOR, regulatory-associated protein of mTOR (raptor; RPTOR),
mammalian lethal with SEC13 protein 8 (MLST8), proline-rich AKT substrate of 40 kDa
(PRAS40; AKT1S1), and DEP domain-containing mTOR-interacting protein (DEPTOR).
After retrieval from the LncTarD database, other AKT effectors, such as RPTOR, MLST8,
AKT1S1, DEPTOR, and S6K2, targeted by lncRNAs were not available and not shown
(Table 4).

Interestingly, most AKT effector-targeting lncRNAs do not overlap, but some AKT
effector-targeting lncRNAs overlap. The latter holds for PVT1, which can target the AKT

http://bio-bigdata.hrbmu.edu.cn/LncTarD/
http://bio-bigdata.hrbmu.edu.cn/LncTarD/
https://lnctard.bio-database.com/


Cells 2022, 11, 2940 16 of 41

effectors c-Myc and mTOR (Tables 4 and 5). HOTAIR can target the AKT effectors (mTOR,
S6K1, and HIF1A). Additionally, some lncRNAs may provide dual functions for different
cancer cells. For example, HOTAIR is upregulated in cervical cancer cells but downregu-
lated in oral cancer cells [38]. UCA1 is upregulated in bladder cancer cells but downregu-
lated in colon cancer cells. Although the respective lncRNAs of these AKT effectors were
reported, the cell functions were not connected to these AKT effector-associated lncRNAs.

Table 5. Connecting AKT effectors and database lncRNAs to cell functions.

Cell Functions

AKT
Effectors lncRNAs

A
poptosis

A
utophagy

ER
Stress

M
itochondrial

M
orphogenesis

Ferroptosis

N
ecroptosis

D
N

A
D

am
age

R
esponse

Senescence

M
igration

c-Myc PVT1 [171,172] [173] # # [174] [175] [133] [176] [177]
HOTTIP [178] [179] # # # # [180] [181] [179,182]
CRNDE [183] [184] [185] # # # [186] # [185]
HULC [84,85] [86] # # # # [87] [88] [89,90]
CCAT2 [187] [188] # # # # # # [188]
HNF1A-AS1 [189] [190] # # # # # # [191]
PCAT1 [192] # # # [131] # [193] # [194]
SNHG1 [195] [196] [197] # # # # # [195]
lncRNA-BCAT1 # # # # # # # # [198]
NEAT1 [199,200] [199] [200] # [201] # [202] [203] [199,200]
H19 [103] [104] [105] [106] [107] [105] [108] [109] [104]
CERNA2 [204] # # # # # # # [205]
PCAT6 [206] [207] # [208]. # # [209] [209] [210]
TUG1 [211] [212] [213] # [214] # [215] [216] [217]
LINC-ROR [218] [218] # # # # [219] # [220]
FILNC1 [118] # # # # # # # #
THORLNC # # # # # # # # #

mTORC1/2 MALAT1 [64] [65] [66] [64] # # # [67] [68]
(mTOR) ENST00113 [62] [63] # # # # # # [62]

HOTAIR [221] [222,223] # # [224] # [225] [225] [223]
PVT1 [171,172] [173] # # [174] [175] [133] [176] [177]
UCA1 [226] [227] [228] [229] # # [230] [231] [232]
RP11-708H21.4 [95] # # # # # # # [95]
GAS5 [69,70] [71,72] [73] # [74] [75] [76] [77] [78]
H19 [103] [104] [105] [106] [107] [105] [108] [109] [104]
lncRNA-p3134 [115] # # # # # # # #

S6K1/2 HOTAIR [221] [222,223] # # [224] # [225] [225] [223]
RP11-708H21.4 [95] # # # # # # # [95]
PCGEM1 [233] [234] # # # # # # [235]

SREBP1 LNCARSR [236] # # # # # # # [237]

HIF HOTAIR [221] [222,223] # # [224] # [225] [225] [223]
CPS1-IT1 [238] [239] # # # # # # [240]
MIR31HG [241] # # # # # # [242] [243]
MEG3 [244] [245] [244] [246] [247] [248] [249] [250] [251]
RPL13AP23 # # # # # # # # #

FOXO, mTORC1 complex (including RPTOR, MLST8, AKT1S1, and DEPTOR), S6K2, and 4EBP1 targeted by
lncRNAs were omitted because they were not available after the retrieval of the LncTarD database [38] (13 June
2022). mTOR is one of the components of mTORC1. # Literature could not be found by searching Google Scholar
and PubMed (12 June 2022).

Here, we summarize the literature search (Google Scholar and PubMed) and provide
novel information for networking these AKT effector-associated lncRNAs and cell functions
(Table 5) (Sections 2.4.1–2.4.6). AKT effectors such as c-Myc, mTOR, S6K1, SREBP1, and
HIF were included. c-Myc was the target for lncRNAs (PVT1, HOTTIP, CRNDE, HULC,
CCAT2, HNF1A-AS1, PCAT1, SNHG1, lncRNA-BCAT1, NEAT1, H19, CERNA2, PCAT6,
TUG1, LINC-ROR, FILNC1, and THORLNC). Their respective cell functions are listed in
Table 5. Some AKT effector-targeting lncRNAs (Table 5), such as HULC, H19, MALAT1,
ENST00113, RP11-708H21.4, GAS5, and lncRNA-p3134, are not described here because
they are the same as AKT-targeting lncRNAs (Table 2). Therefore, detailed information on
cell functions for lncRNAs targeting mTOR, S6K1, SREBP1, and HIF are shown, especially
for cancer cells (Table 5).
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2.4.1. AKT Effector (c-Myc)-Targeting LncRNAs and Cell Functions

Several c-Myc-targeting lncRNAs and their respective cell functions (Table 5) were
mentioned in detail, as follows.

(1) c-Myc-Targeting PVT1 and Cell Functions

PVT1 modulating cell functions are summarized in Table 5. PVT1 inhibits apoptosis
of colon [171] and thyroid [172] cancer cells. PVT1 promotes the autophagy of liver cancer
cells [173]. PVT1 upregulation suppresses inflammation-induced mitochondrial fission
and enhances mitochondrial fusion of myoblasts [252]. PVT1 downregulation promotes
the ferroptosis of live cancer cells [174]. Additionally, PVT1 was reported as a necroptosis-
associated lncRNA of gastric cancer [175]. PVT1b, the p53-dependent PVT1 isoform, is
a modulator of senescence [176]. PVT1 silencing triggers apoptosis and suppresses the
radioresistance of nasopharyngeal cancer cells by inhibiting DNA repair [133]. PVT1
promotes the invasion of bladder cancer cells [177]. A careful examination of some cell
functions influenced by c-Myc-targeting PVT1 is warranted to provide more evidence for
their impacts on cancer cells in the future.

(2) c-Myc-Targeting HOTTIP and Cell Functions

HOTTIP modulating cell functions are summarized in Table 5. HOTTIP silencing
triggers apoptosis of human retinoblastoma cells, while HOTTIP overexpression suppresses
apoptosis [178]. HOTTIP knockdown suppresses proliferation and migration but causes
autophagy of renal cancer cells, reverted by autophagy inhibitor [179]. HOTTIP promotes
DNA repair of UV-irradiated spermatogenic cells by upregulating γH2AX and p53 ex-
pression [180]. HOTTIP is involved in regulating senescence [181]. HOTTIP enhances the
proliferation and migration of osteosarcoma cells [182]. A careful examination of some cell
functions influenced by c-Myc-targeting HOTTIP is warranted to provide more evidence
for their impacts on cancer cells in the future.

(3) c-Myc-Targeting CRNDE and Cell Functions

CRNDE modulating cell functions are summarized in Table 5. CRNDE knockdown
enhances apoptosis of colon cancer cells [183]. CRNDE enhances ATG4B-dependent au-
tophagy of liver cancer cells [184]. Additionally, CRNDE silencing suppresses ER stress and
the migration of endothelial cells [185]. Inhibition of CRNDE with oxaliplatin treatment en-
hances DNA damage and apoptosis of colon cancer cells, reverted by upregulating CRNDE
with OXA oxaliplatin [186]. A careful examination of some cell functions influenced by
c-Myc-targeting CRNDE is warranted to provide more evidence for their impacts on cancer
cells in the future.

(4) c-Myc-Targeting CCAT2 and HNF1A-AS1 and Cell Functions

CCAT2 and HNF1A-AS1 modulating cell functions are summarized in Table 5. CCAT2
inhibits apoptosis of colorectal cancer cells [187]. CCAT2 induces autophagy and migration
of liver cancer cells [188]. HNF1A-AS1 inhibits apoptosis of bladder cancer cells [189].
HNF1A-AS1 promotes the autophagy of liver cancer cells [190]. HNF1A-AS1 enhances the
invasion of lung cancer cells [191]. A careful examination of some cell functions influenced
by c-Myc-targeting CCAT2 and HNF1A-AS1 is warranted to provide more evidence for
their impacts on cancer cells in the future.

(5) c-Myc-Targeting PCAT1 and Cell Functions

PCAT1 modulating cell functions are summarized in Table 5. PCAT1 knockdown
triggers apoptosis of head and neck cancer cells [192]. Transcription factor AP-2 gamma
(TFAP2C)-dependent PCAT1 suppresses ferroptosis of prostate cancer cells [131]. PCAT1
silencing promotes radiation-induced DNA damage [193]. PCAT1 improves the migration
of laryngeal cancer cells [194]. A careful examination of some cell functions influenced by
c-Myc-targeting PCAT1 is warranted to provide more evidence for their impacts on cancer
cells in the future.
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(6) c-Myc-Targeting SNHG1 and LncRNA-BCAT1 and Cell Functions

SNHG1 and lncRNA-BCAT1 modulating cell functions are summarized in Table 5.
SNHG1 silencing triggers apoptosis and blocks the migration of liver cancer cells [195].
SNHG1 induces autophagy and invasion of bladder cancer cells [196]. Downregulation of
nonsense-mediated mRNA decay (NMD) effectors (SMG1 and SMG7) upregulate SNHG1
gene expression during ER stress [197]. lncRNA-BCAT1 upregulation decreases the prolifer-
ation and invasion of colon cancer cells [198]. A careful examination of some cell functions
influenced by c-Myc-targeting SNHG1 and lncRNA-BCAT1 is warranted to provide more
evidence for their impacts on cancer cells in the future.

(7) c-Myc-Targeting NEAT1 and Cell Functions

NEAT1 modulating cell functions are summarized in Table 5. NEAT1 inhibits prolifer-
ation and migration and induces apoptosis of cervical cancer cells [199]. NEAT1 promotes
autophagy of liver cancer cells to induce radioresistance [253]. NEAT1 overexpression
inhibits ER stress and migration and promotes apoptosis in gastric cancer cells [200]. Addi-
tionally, NEAT1 blocks the homologous recombination of the DNA repair pathway to inhibit
the proliferation of multiple myeloma [202]. NEAT1 inhibits the doxorubicin-triggered
senescence of cardiomyocytes [203]. Exosome-derived NEAT1 enhances ferroptosis to pro-
mote sepsis-induced encephalopathy [201]. A careful examination of some cell functions
influenced by c-Myc-targeting NEAT1 is warranted to provide more evidence for their
impacts on cancer cells in the future.

(8) c-Myc-Targeting CERNA2 and PCAT6 and Cell Functions

CERNA2 and PCAT6 modulating cell functions are summarized in Table 5. CERNA2
downregulation suppresses proliferation and triggers apoptosis of gastric cancer cells [204].
CERNA2 silencing suppresses the migration of cervical cancer cells [205]. PCAT6 sup-
presses apoptosis of colon cancer cells [206]. Additionally, PCAT6 induces autophagy
and improves the malignancy of colon cancer cells [207]. PCAT6 was reported to be a
ferroptosis-associated lncRNA for diagnosing liver cancer cells [208]. High PCAT6 levels
were linked to the worse overall survival of colon cancer, accompanied by changing base
excision repair and senescence [209]. PCAT6 silencing blocks the proliferation and invasion
of lung cancer cells [210]. A careful examination of some cell functions influenced by
c-Myc-targeting CERNA2 and PCAT6 is warranted to provide more evidence for their
impacts on cancer cells in the future.

(9) c-Myc-Targeting TUG1 and Cell Functions

TUG1 modulating cell functions are summarized in Table 5. TUG1 suppresses apopto-
sis of cervical cancer cells [211]. TUG1 suppresses ER stress and apoptosis of renal tubular
epithelial cells [213]. TUG1 inhibits ferroptosis of hypoxia/reoxygenation treated proximal
tubular epithelial cells [214]. Additionally, TUG1 silencing suppresses bupivacaine-induced
DNA damage for neurotoxicity [215]. TUG1 upregulation improves the senescence of lung
cancer cells [216]. TUG1 improves the autophagy of colorectal cancer cells to enhance
cisplatin resistance [212]. TUG1 enhances the proliferation and invasion of osteosarcoma
cells [217]. A careful examination of some cell functions influenced by c-Myc-targeting
TUG1 is warranted to provide more evidence for their impacts on cancer cells in the future.

(10) c-Myc-Targeting LINC-ROR and FILNC1 and Cell Functions

LINC-ROR and FILNC1 modulating cell functions are summarized in Table 5. Breast
cancer cells highly express LINC-ROR, suppressing gemcitabine-induced autophagy and
apoptosis [218]. Arsenite enhances LINC-ROR expression involved in DNA repair [219].
LINC-ROR enhances the migration of pancreatic cancer cells [220]. FILNC1 knockdown
suppresses apoptosis of renal cancer cells [118]. A careful examination of some cell functions
influenced by c-Myc-targeting LINC-ROR and FILNC1 is warranted to provide more
evidence for their impacts on cancer cells in the future.
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2.4.2. AKT Effector (mTOR)-Targeting LncRNAs and Cell Functions

Several mTOR-targeting lncRNAs and their respective cell functions (Table 5) were
mentioned in detail.

(1) mTOR-Targeting HOTAIR and Cell Functions

HOTAIR modulating cell functions are summarized in Table 5. Propofol suppresses
HOTAIR to trigger apoptosis of cervical cancer cells [221]. HOTAIR promotes the au-
tophagy of gastrointestinal stromal cancer cells to enhance their resistance to imatinib [222].
HOTAIR upregulation suppresses the paeonol-inhibiting ferroptosis of neuronal cells [224].
Additionally, DNA damage promotes HOTAIR expression in ovarian cancer cells. HOTAIR
overexpression enhances DNA damage response [225]. HOTAIR improves interleukin
6 secretion after DNA damage associated with senescence [254]. Furthermore, HOTAIR
knockdown inhibits autophagy and migration of cervical cancer cells [223]. A careful
examination of some cell functions influenced by mTOR-targeting HOTAIR is warranted to
provide more evidence for their impacts on cancer cells in the future.

(2) mTOR-Targeting UCA1 and Cell Functions

UCA1 modulating cell functions are summarized in Table 5. Curcumin suppresses
proliferation and promotes apoptosis of lung cancer cells by inhibiting UCA1 [226]. UCA1
induces autophagy of leukemia cells [227]. UCA1 inhibits ER stress to suppress ischemia/
reperfusion-triggered apoptosis of cardiomyocytes [228]. UCA1 silencing upregulates
dynamin-related protein 1 (DRP1) and FIS1 expression leading to mitochondria fission
of pancreatic cancer cells [229]. Additionally, UCA1 silencing promotes temozolomide-
induced apoptosis and DNA damage to glioma cells [230]. Coactivators of activator protein
1 (AP1) and estrogen receptor α (CAPERα) cooperate with UCA1 to induce senescence
of human foreskin fibroblasts [231]. UCA1 knockdown suppresses EMT expression and
migration of pulmonary fibrosis [232]. A careful examination of some cell functions influ-
enced by mTOR-targeting UCA1 is warranted to provide more evidence for their impacts
on cancer cells in the future.

2.4.3. AKT Effector (S6K1/2)-Targeting LncRNAs and Cell Functions

Several S6K1/2-targeting lncRNAs, such as RP11-708H21.4 and PCGEM1, and their
respective cell functions (Table 5) were mentioned in detail. RP11-708H21.4 upregulation
decreases proliferation and migration and induces apoptosis of colon cancer cells [95].
Additionally, exosomal PCGEM1 enhances interleukin-1β-induced apoptosis of chondro-
cytes [233]. LV3-shRNA-PCGEM1 promotes baicalein-induced autophagy of prostate
cancer cells [234]. PCGEM1 enhances the proliferation and migration of cervical cancer
cells [235]. A careful examination of some cell functions influenced by S6K1/2-targeting
RP11-708H21.4 and PCGEM1 is warranted to provide more evidence for their impacts on
cancer cells in the future.

2.4.4. AKT Effector (SREBP1)-Targeting LncRNAs and Cell Functions

The SREBP1-targeting lncRNA LNCARSR and its respective cell functions (Table 5)
were mentioned in detail. LNCARSR silencing triggers apoptosis of osteosarcoma cells [236].
LNCARSR improves the proliferation and invasion of ovarian cancer cells [237]. A careful
examination of some cell functions influenced by SREBP1-targeting LNCARSR is warranted
to provide more evidence for their impacts on cancer cells in the future.

2.4.5. AKT Effector (HIF)-Targeting LncRNAs and Cell Functions

Several HIF-targeting lncRNAs and their respective cell functions (Table 5) were
mentioned in detail.

(1) HIF1A-Targeting CPS1-IT1 and Cell Functions

CPS1-IT1 modulating cell functions are summarized in Table 5. CPS1-IT1 overex-
pression triggers apoptosis of colon cancer cells, reverted by CPS1-IT1 silencing [238].
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LncRNA CPS1-IT1 inhibits EMT and migration of colon cancer cells by downregulating
hypoxia-induced autophagy [239]. CPS1-IT1 overexpression inhibits the proliferation and
migration of glioma cells [240]. A careful examination of some cell functions influenced by
HIF-targeting CPS1-IT1 is warranted to provide more evidence for their impacts on cancer
cells in the future.

(2) HIF1A-Targeting MIR31HG and Cell Functions

MIR31HG modulating cell functions are summarized in Table 5. MIR31HG improves
proliferation and suppresses head and neck cancer cell apoptosis [241]. Additionally,
MIR31HG silencing improves the senescence phenotype of fibroblasts [242]. MIR31HG
silencing suppresses the migration of neuroblastoma cells [243]. A careful examination of
some cell functions influenced by HIF1A-targeting MIR31HG is warranted to provide more
evidence for their impacts on cancer cells in the future.

(3) HIF1A-Targeting MEG3 and Cell Functions

MEG3 modulating cell functions are summarized in Table 5. MEG3 upregulation pro-
motes ER stress-associated protein expressions and triggers apoptosis of esophageal cancer
cells [244]. MEG3 overexpression triggers autophagy of ovarian cancer cells [245]. MEG3
silencing inhibits DRP1 expression and mitochondrial fission of podocytes, reverted by
MEG3 overexpression [246]. Additionally, MEG3 silencing suppresses the ferroptosis of rat
brain microvascular endothelial cells [247]. MEG3 triggers necroptosis of neuron cells [248].
MEG3 maintains endothelial function by modulating the DNA damage response [249].
MEG3 suppresses the senescence of vascular endothelial cells [250]. MEG3 decreases the
proliferation and invasion of colon cancer cells [251]. A careful examination of more cell
functions influenced by HIF1A-targeting MEG3 on cancer cells is warranted.

2.4.6. Relationship between AKT- and AKT Effector-Targeting LncRNAs

Some AKT- and AKT effector-targeting lncRNAs do not overlap, but some overlap
(Tables 2 and 4). ENST00113 and GAS5 target AKT1 and mTOR. MALAT1 targets AKT1,
mTOR, and HIFA. HULC and H19 target AKT1, c-Myc, and mTOR. RP11-708H21.4 targets
AKT1, mTOR, and S6K1. LncRNA-p3134 can target AKT2 and mTOR. These results provide
indirect evidence that these lncRNAs may modulate AKT to regulate some AKT effectors,
such as mTOR, c-Myc, and S6K1.

Some studies provide direct evidence that these lncRNAs may modulate AKT to
regulate some AKT effectors. AKT and mTOR induce macrophage autophagy, as evidenced
by their inhibitors [63]. ENST00113 silencing blocks the migration of HUVEC cells, ac-
companied by dephosphorylation of AKT and mTOR [62]. H19 upregulation improves
AKT and mTOR phosphorylation to induce invasion and autophagy of trophoblast cells,
reverted by H19 knockdown [104]. Consequently, some lncRNAs can modulate AKT and
AKT effectors to regulate cell functions, as shown in Figure 1.

As described above, we provided comprehensive information for connecting AKT/AKT
effectors with lncRNAs regulating cell functions. AKT1, AKT2, and AKT3 can control
several AKT effectors. AKT stimulates mTORC1 through mTOR phosphorylation [255]
and, in turn, suppresses 4EBP1 expression, a c-Myc negative regulator [256]. mTOR also
phosphorylates and activates S6K1/2 [255] to upregulate SREBP1 expression [4]. mTOR up-
regulates HIF1A expression. Meanwhile, AKT inhibits FOXO expression [4,257]. However,
the information for AKT- and its effector-targeting lncRNAs were arranged in different
sections and tables, lacking a schematic summary. Therefore, we provide a schematic
overview (Figure 3), including the AKT, its effectors, and all database lncRNAs mentioned,
and show the points of the AKT pathway that they are involved in.
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Figure 3. Schematic overview. AKT, its effectors, and all database lncRNAs mentioned were shown
at the points of the AKT pathway that they were involved in, as shown in Tables 1 and 4. No
FOXO-targeting lncRNA was available by LncTarD searching (13 June 2022).

2.4.7. Potential Future Directions

As described above, a literature survey connected AKT effector-targeting database
lncRNAs to several cell functions. A careful inspection is still needed before performing
more experiments to validate the targeting because they are the predicted candidates.
It A deeper assessment for exploring the role of AKT effectors targeted by lncRNAs in
regulating cancer cell functions is warranted.

3. Connecting AKT/AKT Effectors and CircRNAs to Cell Functions

In the following, the literature survey evidence to connect AKT and circRNAs to AKT
signal-modulating cell functions (Figure 1) is described later (Section 3.1).

Notably, some circRNAs were reported to modulate the expressions of AKT1 [258],
AKT2 [259], and AKT3 [260]. However, their potential mechanisms still warrant a detailed
exploration, particularly for the possible targeting to AKT by circRNAs. Subsequently,
the potential targeting to AKT1, AKT2, and AKT3 by circRNAs and their associated cell
functions are discussed in Section 3.2. By choosing the circRNA database (circBase [61]),
the target information of respective circRNAs was predicted, and their impacts on cell
functions were evaluated, as described later.

Some circRNAs were reported to modulate the expressions of AKT effectors [61].
However, their connection to cell functions has never been investigated, especially for
cancer cells. Hence, the evidence that connects the AKT effectors and circRNAs to their
modulating cell functions (Figure 1) was evaluated by literature retrieval (Section 3.3).
However, their potential mechanisms still warrant a detailed exploration, particularly
for the possible targeting to AKT effectors by circRNAs. Subsequently, the potential
targeting to AKT effectors by circRNAs and their associated cell functions are discussed
in Section 3.4. By choosing the circRNA database (circBase [61]), the target information of
respective circRNAs was predicted, and their impacts on cell functions were evaluated, as
described later.
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3.1. Connecting AKT and CircRNAs to Cell Functions

AKT signaling and circRNAs have a cross-relationship regulating carcinogenesis [261–263].
AKT-regulating circRNAs are essential in controlling apoptosis, autophagy, ER stress, senes-
cence, and migration. The connections between mitochondrial morphogenesis, ferroptosis,
necroptosis, DNA damage response, and circRNAs are rarely reported. Therefore, these
cell functions with regard to apoptosis, autophagy, ER stress, senescence, and migration
connecting to circRNAs are described in Sections 3.1.1–3.1.6, especially for cancer cells.

3.1.1. Apoptosis by AKT-Regulating CircRNAs

Apoptosis-modulating effects of circRNAs involving AKT have been reported. Several
AKT-regulating circRNAs can regulate the apoptosis of cancer cells. Circ_AKT3 knockdown
induces apoptosis of gastric cancer cells [264]. CircPIP5K1A overexpression suppresses
apoptosis of glioma cells by phosphorylating PI3K/AKT [265]. Baicalein causes apoptosis
and upregulates circHIAT1 of cervical cancer cells by dephosphorylating AKT/mTOR [266].
CircRNA_100395 overexpression induces apoptosis of gastric cancer cells by downregu-
lating PI3K/AKT [267]. CircHIPK3 overexpression suppresses apoptosis of oral cancer
cells [268]. CircRNA_0001400 knockdown triggers apoptosis of cervical cancer cells [269].
Similarly, AKT-regulating circRNAs also regulate apoptosis of noncancerous cells. Cir-
cRNA_0040414 knockdown blocks apoptosis of cardiomyocytes by downregulating PTEN
and upregulating AKT [270]. Notably, some circRNA studies reported the bifunctional
effects on cell functions. Circ_PRKDC knockdown induces apoptosis and autophagy in
leukemia cells via dephosphorylating PI3K/AKT/mTOR [271]. Surveying more AKT-
regulating circRNAs that regulate apoptosis is warranted.

3.1.2. Autophagy by AKT-Regulating CircRNAs

Some circRNAs promoting and suppressing autophagy involving AKT have been re-
ported. Several AKT-regulating circRNAs regulate the autophagy of cancer cells. CircCDR1as
induces autophagy of oral cancer cells via phosphorylating AKT and ERK1/2 [272]. RNA-
binding protein FUS, overexpressed in pancreatic cancer cells, upregulates circRHOBTB3 and
induces autophagy by dephosphorylating AKT [273]. Similarly, AKT-regulating circRNAs
also regulate the autophagy of noncancerous cells. CircRNA_103124 overexpression in
Crohn’s disease triggers autophagy by dephosphorylating AKT2 [274]. In contrast, ciRS-7
suppresses starvation-triggered autophagy of esophageal cancer cells by phosphorylating
AKT [275]. CircPARD3 suppresses the autophagy of laryngeal cancer cells by phospho-
rylating AKT [276]. Surveying more AKT-regulating circRNAs that regulate autophagy
is warranted.

3.1.3. ER Stress by AKT-Regulating CircRNAs

ER stress-modulating effects of circRNAs involving AKT have been reported in cancer
cells. Overexpression of circCDR1as causes ER stress of oral cancer cells under a hypoxic
microenvironment, accompanied by phosphorylating AKT [272]. A careful examination of
ER stress influenced by more AKT-regulating circRNAs on cancer cells is warranted.

3.1.4. Senescence by AKT-Regulating CircRNAs

Senescence-modulating effects of circRNAs involving AKT have been reported. AKT-
regulating circRNAs may regulate the senescence of noncancerous cells. Circ_FOXO3 over-
expression induces cardiac senescence, and circ_FOXO3 knockdown suppresses senescence
of mouse embryonic fibroblasts [277]. By contrast, the role of AKT-regulating circRNAs in
regulating the senescence of cancer cells was rarely reported. Notably, AKT phosphory-
lating downregulates FOXO3 during cancer development [278], and therefore the role of
FOXO3 in the regulation of senescence involving AKT-regulating circ_FOXO3 needs to be
examined in cancer cells. This warrants a detailed assessment of senescence influenced by
more AKT-regulating circRNAs on cancer cells in the future.
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3.1.5. Migration by AKT-Regulating CircRNAs

Migration-modulating effects of circRNAs involving AKT have been reported in
cancer cells. The migration-promoting and -suppressing effects of circRNAs connecting to
AKT have been investigated. S100A4 promotes the migration of esophageal cancer cells
by phosphorylating AKT [279]. ZNF139/circZNF139 enhances the migration of bladder
cancer cells by phosphorylating AKT [280]. Circ_0010882 stimulates the migration of
gastric cancer cells by phosphorylating AKT [261]. Similarly, circ_0002984 promotes the
migration of vascular smooth muscle cells by phosphorylating AKT [281]. In contrast,
circ_100395 overexpression reduced the migration of papillary thyroid cancer cells by
dephosphorylating AKT [282]. This warrants surveying more AKT-regulating circRNAs
that regulate migration in the future.

3.1.6. Potential Future Directions

As described above, several circRNAs were mentioned to regulate AKT phospho-
rylation or dephosphorylation for its activation and inactivation, thereby regulating cell
functions. Overexpressing or downregulating these AKT-regulating circRNAs may reverse
the status of cancer cell functions to improve the anticancer effects.

However, the cell function mechanism for the modulating effects of circRNAs on
AKT remains unclear, particularly for the assessment of the potential targeting to AKT
by circRNAs. More experiments are warranted to improve the connection between AKT-
circRNAs regulating cancer cell functions.

3.2. Connecting AKT1/AKT2/AKT3 and Database CircRNAs to Cell Functions

Similarly to the database for lncRNA strategy (Figure 2), AKT-targeting circRNAs
were retrieved from circBase [61] by individual input target genes, such as AKT1, AKT2,
and AKT3, and processed through literature search by Google Scholar and PubMed to
connect their respective cell functions. Since AKT1, AKT2, and AKT3 are encoded by
different genes, their related modulating circRNAs are different (Table 6). The human
circRNA target information for AKT1, AKT2, and AKT3 was retrieved from circBase [61].

Table 6. AKT1/AKT2/AKT3-targeting database circRNAs.

AKT1-, AKT2-, AKT3-Targeting CircRNAs

AKT1 circ_0101403 circ_0101404 circ_0033555 circ_0033560 circ_0033559 circ_0033546
circ_0033552 circ_0033558 circ_0033557 circ_0033553 circ_0033547 circ_0033551
circ_0033548 circ_0033556 circ_0033549 circ_0033554 circ_0033550

AKT2 circ_0051068 circ_0051082 circ_0051074 circ_0051077 circ_0051071 circ_0051081
circ_0051073 circ_0051080 circ_0051070 circ_0051075 circ_0051069 circ_0051072
circ_0051078 circ_0051079 circ_0051076 circ_0008719 circ_0005812

AKT3 circ_0017242 circ_0112774 circ_0017251 circ_0112785 circ_0017249 circ_0112773
circ_0006696 circ_0017252 circ_0017243 circ_0112797 circ_0112778 circ_0112800
circ_0004649 circ_0112777 circ_0017254 circ_0017246 circ_0112788 circ_0112798
circ_0017250 circ_0000199 circ_0112770 circ_0112782 circ_0112787 circ_0017247
circ_0017244 circ_0112767 circ_0112775 circ_0017253 circ_0112799 circ_0112776
circ_0002240 circ_0112801 circ_0112802 circ_0112772 circ_0112780 circ_0112771
circ_0112791 circ_0112766 circ_0112783 circ_0017245 circ_0112790 circ_0112786
circ_0112792 circ_0112768 circ_0112784 circ_0017248 circ_0112779 circ_0112796
circ_0112769 circ_0112789 circ_0112781 circ_0112794 circ_0112793 circ_0112795

Data were available in the circBase database (http://www.circbase.org/) (accessed on 13 June 2022). CircRNAs in
bold font were reported in the literature, as described below.

Interestingly, the predicted human circRNA targets for AKT1, AKT2, and AKT3 are
not overlapping based on circBase retrieval (Table 6). Notably, the investigation for AKT
should be concerned with transcriptional regulation regarding their respective circRNAs.

Although respective circRNAs of AKT1, AKT2, and AKT3 genes were reported, the
cell functions were not connected to the AKT1-, AKT2-, or AKT3-associated circRNAs in
circBase [61]. Accordingly, we searched the literature via Google Scholar and PubMed

http://www.circbase.org/
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and found novel information for networking the AKT1-, AKT2-, and AKT3-associated
circRNAs and cell functions, especially for cancer cells.

Although many circRNAs were shown to target AKT1, AKT2, and AKT3, only some
were capable of modulating cell functions (apoptosis and migration) in cancer cells based
on the literature search. Several cell functions were not reported in AKT1, AKT2, and AKT3,
such as autophagy, ER stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA
damage response, and senescence.

Several kinds of AKT1-, AKT2-, and AKT3-regulating circRNAs are overexpressed in
many cancer cells. For example, circAKT1 (circ_0033550) is highly expressed in cervical
cancer cells (Table 6) [283]. Circ_0033550 enhances cervical tumor growth. Transforming
growth factor beta (TGF-β) can upregulate circ_0033550 to promote AKT1 and EMT expres-
sion in cervical cancer cells [283]. Accordingly, circAKT1 is a potential target to slow the
progression of cervical cancer development.

In addition, circAKT2 (circ_0051079) is overexpressed in osteosarcoma tissues and cell
lines and enhances their proliferation and metastasis (Table 6) [284]. In contrast, circAKT2
knockdown inhibits tumor growth of osteosarcoma.

Several kinds of circAKT3 show an impact on cell functions (Table 6). CircAKT3
(circ_0017252) upregulation suppresses tumor growth and metastasis of renal cancer cells
by inhibiting E-cadherin degradation [285]. CircAKT3 (circ_0017247) enhances migration
and invasion of melanoma cells, reverted by circ_0017247 knockdown [286]. Similarly,
circ_0017247 enhances the migration of lung cancer cells by upregulating EMT [287]. Cir-
cAKT3 (circ_0000199) upregulation increases proliferation and blocks apoptosis of oral
cancer cells, reverted by silencing circ_0000199 [288].

Although the database provides many AKT-targeting circRNA candidates, most of
them have rarely been investigated. A careful examination of more cell functions influ-
enced by more AKT1-, AKT2-, and AKT3-targeting circRNAs on cancer cells is warranted.
Overexpressing or downregulating these AKT-regulating database circRNAs may reverse
the status of cancer cell functions to modulate their anticancer effects.

3.3. Connecting AKT Effectors and CircRNAs to Cell Functions

Since AKT had a cross-relationship to circRNAs as described above, the circRNAs
may exhibit the impact on AKT effectors. In the following, we summarize the evidence
connecting AKT effectors to circRNAs. Only some circRNAs were reported to regulate some
AKT effectors (c-Myc, mTORC1, and HIF), and other AKT effectors (FOXO, S6K1, S6K2,
4EBP1, and SREBP1) were not reported. According to our literature survey (Google Scholar
and PubMed), only some circRNAs could modulate cell functions (apoptosis, autophagy,
and migration) (Sections 3.3.1–3.3.4), especially for cancer cells. Several cell functions were
not reported in AKT effectors, such as ER stress, mitochondrial morphogenesis, ferroptosis,
necroptosis, DNA damage response, and senescence, which were not listed.

3.3.1. Apoptosis and Migration by AKT Effector (c-Myc)-Regulating CircRNAs

As mentioned above, the relationship between c-Myc, circRNAs, and cell functions
was rarely reported, except for apoptosis and migration. Some circRNAs can regulate
apoptosis of cancer cells involving c-Myc. CircPVT1 silencing enhances apoptosis of acute
lymphoblastic leukemia cells by downregulating c-Myc [289]. CircRHOT1 knockdown
triggers apoptosis of lung cancer cells by decreasing c-Myc expression [290].

Additionally, some circRNAs can regulate migration involving c-Myc. The migration-
promoting and -suppressing effects of circRNA connecting to c-Myc were reported in cancer
cells. Several kinds of c-Myc-regulating circRNAs are overexpressed in many cancer cells.
Modulating circRNAs may improve the anticancer effects by suppressing migration. For
example, circZFR is overexpressed in liver cancer cells [291]. CircZFR knockdown inhibits
the migration of liver cancer cells by downregulating c-Myc expression [291]. Similarly,
circRNA_010763 is highly expressed in lung cancer cells. CircRNA_010763 improves the
invasion of lung cancer cells by upregulating c-Myc expression [292]. Circ_NOTCH1
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is overexpressed in nasopharyngeal [293] and gastric [294] cancer cells. Circ_NOTCH1
silencing inhibits the migration of nasopharyngeal cancer cells, where c-Myc can bind
to the NOTCH1 promoter to transcriptionally activate circ_NOTCH1 [293]. Similarly,
circ_NOTCH1 enhances metastasis of gastric cancer cells [294]. CircCCDC66 silencing
decreases the migration of gastric cancer cells by downregulating c-Myc expression [295].
In contrast, circCDYL overexpression by plasmids blocks the migration of bladder cancer
cells by reducing c-Myc expression [296]. Surveying more c-Myc-regulating circRNAs that
control apoptosis and migration is warranted.

3.3.2. Apoptosis, Autophagy, and Migration by AKT Effector (mTORC1)-
Regulating CircRNAs

As mentioned above, the relationship between mTORC1, circRNAs, and cell functions
was rarely reported, except for apoptosis, autophagy, and migration. Several kinds of
mTORC1-regulating circRNAs are overexpressed in many cancer cells. Some circRNAs
can regulate apoptosis involving mTORC1. Circ_ZNF512 knockdown inhibits apoptosis to
reduce myocardial tissue injury by downregulating mTORC1 [297].

Some circRNAs can regulate autophagy involving mTORC1 [297,298]. The autophagy-
promoting and -suppressing effects of circRNAs connecting to mTORC1 were reported.
Circ_FOXO3 enhances autophagy of brain microvascular endothelial cells by inhibiting
mTORC1 [298]. In contrast, circ_ZNF512 knockdown enhances autophagy of cardiomy-
ocytes by downregulating mTORC1 expression [297].

Some circRNAs can regulate migration involving mTORC1. LDLRAD3 silencing
decreases the migration of lung cancer cells by dephosphorylating mTOR for mTORC1
inactivation [299]. A connection between migration, mTORC2, and cicrRNAs has not been
published as yet. Surveying more mTORC1-regulating circRNAs that control apoptosis is
warranted.

3.3.3. Apoptosis and Migration by AKT Effector (HIF)-Regulating CircRNAs

Some circRNAs can regulate apoptosis involving HIF. The apoptosis-promoting
and -suppressing effects of circRNA connecting to HIF were reported. CircVEGFC im-
proves high glucose-promoted apoptosis of vascular endothelial cells by downregulating
HIF1A [300]. Circ_0010729 suppresses apoptosis of vascular endothelial cells by upregulat-
ing HIF1A [301]. In contrast, circRNA_100859 is overexpressed in colon cancer tissues and
suppresses apoptosis by downregulating HIF1A [302].

Some circRNAs can regulate migration involving HIF. The migration-promoting and
suppressing effects of circRNA connecting to HIF were reported. Several kinds of HIF-
regulating circRNAs, such as circAGFG1, circASXL1, circ-0046600, and circPVT1, are
overexpressed in many cancer cells [303–306]. Modulating HIF1A can regulate the levels
of certain circRNAs. For example, circAGFG1 is highly expressed in lung cancer cells.
CircAGFG1 enhances the migration of lung cancer cells by upregulating HIF1A [303].
Inhibition of circASXL1 blocks migration and HIF1A expression of lung cancer cells [304].
Circ-0046600 knockdown suppresses the migration of liver cancer cells by upregulating
HIF1A [305]. Overexpressed circPVT1 enhances the migration of breast cancer cells by
overexpressing HIF1A [306]. In contrast, HIF1A-regulating circRNA such as circ_EPHB4
is downregulated in cancer cells. Overexpression of circ_EPHB4, exhibiting low levels in
liver cancer cells, suppressed the migration by downregulating HIF1A [307]. Surveying
more HIF-regulating circRNAs that control apoptosis is warranted.

3.3.4. Potential Future Directions

As described above, several circRNAs were mentioned to regulate AKT effectors and,
in turn, control cell functions. Overexpressing or downregulating these AKT effector-
regulating circRNAs may reverse the status of cancer cell functions to improve anticancer
effects.
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However, the cell function mechanism for the modulating effects of circRNAs on AKT
effectors remains unclear, particularly for the assessment of the potential targeting to AKT
effectors by circRNAs. More experiments are warranted to improve the connection between
AKT effectors and circRNAs regulating cancer cell functions.

3.4. Connecting AKT Effectors and Database-CircRNAs to Cell Functions

Similarly to the database lncRNA strategy (Figure 2), AKT effector-targeting circRNAs
were retrieved from circBase [61]. For the input target genes FOXO, c-Myc, mTOR, RPTOR,
MLST8, AKT1S1, DEPTOR, RPS6KB1, RPS6KB2, 4EBP1, SREBF1, and HIF1A, their respec-
tive predicted circRNAs were generated and exported. Subsequently, they were processed
through the literature search (Google Scholar and PubMed) to connect their respective
cell functions.

In addition to Section 3.3, several circRNAs also target AKT effectors, but their rela-
tionship to cell function is not reported. Some circRNA target information to AKT effectors
was retrieved from circBase [61] (Table 7).

Table 7. AKT effector-targeting database circRNAs.

AKT
Effectors AKT Effector-Targeting CircRNAs

FOXO #
c-Myc circ_0085535 circ_0085533 circ_0085534
mTOR circ_0110437 circ_0009803 circ_0009829 circ_0110441 circ_0009793 circ_0009810 circ_0110442 circ_0009787

circ_0009779 circ_0009834 circ_0009801 circ_0009795 circ_0009813 circ_0009809 circ_0110447 circ_0110418
circ_0009837 circ_0009820 circ_0009822 circ_0009831 circ_0009844 circ_0009825 circ_0009776 circ_0009835
circ_0009845 circ_0009847 circ_0009782 circ_0009842 circ_0009788 circ_0009819 circ_0110416 circ_0110435
circ_0009823 circ_0009832 circ_0009839 circ_0009785 circ_0009830 circ_0009840 circ_0009808 circ_0110438
circ_0009815 circ_0009804 circ_0009799 circ_0009800 circ_0009811 circ_0009784 circ_0009778 circ_0009821
circ_0009786 circ_0110414 circ_0110424 circ_0009789 circ_0009828 circ_0009838 circ_0009833 circ_0110440
circ_0009780 circ_0009777 circ_0009802 circ_0009806 circ_0009796 circ_0009798 circ_0009794 circ_0009791
circ_0110417 circ_0006576 circ_0009826 circ_0110420 circ_0110439 circ_0009797 circ_0009805 circ_0009790
circ_0009846 circ_0009807 circ_0009792 circ_0009814 circ_0009824 circ_0009843 circ_0009818 circ_0009841
circ_0110415 circ_0009817 circ_0009783 circ_0110443 circ_0009812 circ_0009781 circ_0110419 circ_0009827
circ_0009816 circ_0009836

RPTOR #
MLST8 circ_0105204 circ_0037498
AKT1S1 circ_0051983 circ_0000950 circ_0051984
DEPTOR circ_0135616 circ_0085412 circ_0135615 circ_0135617

S6K1
circ_0008625 circ_0044904 circ_0044907 circ_0044900 circ_0044903 circ_0107292 circ_0107290 circ_0044902
circ_0044905 circ_0044899 circ_0044906 circ_0107291 circ_0044901

S6K2 circ_0023096 circ_0023090 circ_0023094 circ_0023095 circ_0023091 circ_0023092 circ_0023093 circ_0023089
SREBP1 #

HIF

circ_0102309 circ_0102321 circ_0102322 circ_0102317 circ_0004817 circ_0102315 circ_0004623 circ_0102323
circ_0102313 circ_0006326 circ_0005205 circ_0032132 circ_0032139 circ_0102310 circ_0102327 circ_0032136
circ_0102326 circ_0102311 circ_0102314 circ_0032135 circ_0102318 circ_0032137 circ_0032140 circ_0032138
circ_0007976 circ_0032133 circ_0102325 circ_0032134 circ_0102312 circ_0102320 circ_0102316 circ_0006393
circ_0102319 circ_0102324

mTORC1 consists of the mTOR, RPTOR, MLST8, AKT1S1, and DEPTOR. Bold circRNAs were reported in the
literature, as described later. # indicates not available in the circBase database (accessed on 13 June 2022).
CircRNAs in bold were reported in the literature, as described later.

Interestingly, the AKT effector-targeting circRNAs do not overlap (Table 7). Although
the respective circRNAs of these AKT effectors were reported, the cell functions were not
connected to these AKT effector-associated circRNAs.

Here, we summarize the literature search on Google Scholar and PubMed, which
provided novel information for networking these AKT effector-associated circRNAs and
cell functions (Table 8). Several cell functions were not reported in AKT effectors, such as
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autophagy, ER stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage
response, and senescence, which were not listed (Table 8).

Table 8. Connecting AKT effectors and database circRNAs to cell functions.

Cell Functions

AKT Effectors circRNAs Apoptosis Migration

c-Myc circ_0085533 [308] downregulate #
mTORC1/2 (mTOR) circ_0009805 [309], circ_0009792 [310] # #
mTORC1/2 (AKT1S1) circ_0000950 [311,312] upregulate #
HIF circ_0032138 [313], circ_0006393 [314] # upregulate

mTOR and AKT1S1 are two of the components for mTORC1. Only circRNAs for c-Myc, mTOR, AKT1S1, and HIF
were available in the circBase database (accessed on 13 June 2022). # indicates no available after a Google Scholar
and PubMed search (accessed on 13 June 2022).

For example, circMYC (circ_0085533) is more expressed in melanoma tissues than in
normal tissues [308]. CircMYC knockdown suppresses cell proliferation and apoptosis of
melanoma cells, reverted by circMYC overexpression [308] (Table 8).

circmTOR (circ_0009805) is overexpressed in severe preeclamptic placentas [309].
CircmTOR (circ_0009792) is upregulated in the proliferation of vascular smooth muscle
cells [310] (Table 8). Other cell functions were rarely reported for this circmTOR. This
warrants a detailed investigation of more cell functions involving circmTOR.

circAKT1S1 (circ_0000950) is highly expressed in the cell models of Alzheimer’s dis-
ease. CircAKT1S1 induces apoptosis of neuron cells [311]. CircAKT1S1 silencing promotes
proliferation and suppresses apoptosis of neurons [312] (Table 8). Accordingly, it is a
potential target to slow down the progression of Alzheimer’s disease.

circHIF1A (circ_0032138) upregulation enhances proliferation and metastasis of breast
cancer cells and tissue, reverted by circHIF1A silencing [313] (Table 8). CircHIF1A (circ_0006393)
is downregulated in glucocorticoid-induced osteoporosis [314]. In contrast, circ_0006393
overexpression upregulates osteogenesis-associated gene expression [314].

Although the database provides many AKT-targeting circRNA candidates, most of
them were rarely investigated. Only a few AKT effector-targeting circRNAs were reported
to connect to some functions of cancer and noncancer cells. This warrants a detailed
evaluation of more cancer cell functions in AKT effector-targeting circRNAs in the future.
Overexpressing or downregulating these AKT effector-regulating database circRNAs may
reverse the status of cancer cell function to improve anticancer effects.

4. Conclusions

Several lncRNAs and circRNAs may regulate numerous pathways and control diverse
cell functions, which are not unique to AKT and AKT effectors. For the sake of their
critical regulations, as mentioned above, this review focused on AKT and AKT effectors
modulating by lncRNAs and circRNAs; however, the impact of lncRNAs and circRNAs on
AKT and AKT effectors in modulating cell function remains unclear. This systematic review
aimed to organize the current knowledge for connecting AKT and AKT effectors to lncRNAs
and circRNAs. The collected literature herein suggests that these AKT-lncRNA, AKT-
effector lncRNA, AKT circRNA, and AKT-effector circRNA connections are responsible for
regulating several cancer cell functions.

Databases for lncRNAs and circRNAs, such as LincTarD and circBase, provide compre-
hensive AKT- and AKT effector-targeting candidates for lncRNAs and circRNAs. However,
their impacts on cell functions were not provided in these databases. Accordingly, the
potential regulation of cell functions for more AKT- and AKT effector-targeting lncRNAs
and circRNAs warrants a detailed investigation. Our literature survey shows that these
AKT- and AKT effector-targeting database lncRNAs and circRNAs are organized and
connected to cancer cell functions. Notably, database-predicted AKT- and AKT effector-
targeting lncRNAs and circRNAs may be derived from the literature on some cancer cell
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lines. Since the genetic profiles of different cancer cells are different, the database-predicted
lncRNAs and circRNAs candidates for AKT and AKT effectors may be limited to some
cancer cell types but not others. Similarly, the organized cell functions for the AKT- and
AKT effector-regulating or -targeting lncRNAs and circRNAs were also reported from
different cancer cells or specific environments. Careful assessment is still required where
the targeting mechanisms are concerned.

Two gaps are still present in the present review. Several lncRNAs that regulate AKT
and AKT effectors were surveyed and provided a reliable connection between each other.
Although the emerging evidence was collected to provide updated information, these
literature-survey lncRNAs still lack the potential targeting information. Another gap is
the systemic update for the databases. It is possible that some new findings or data were
not immediately updated in LncTarD or circBase. Hence, more experiments to provide
validated information for mechanisms regulating AKT, AKT effectors, lncRNAs, and
circRNAs are required in order to fill these gaps. Consequently, the validated information
can provide the resource for updating the databases for lncRNAs and circRNAs.

In conclusion, this review provides relevant information for relating lncRNAs and
circRNAs to AKT and its effectors in modulating several cancer cell functions. With the help
of bioinformatics and a literature survey, the detailed mechanism of targeting information
to AKT and AKT effectors was well connected to lncRNAs and circRNAs and organized to
regulate cell functions. This work also sheds light on AKT-signaling studies investigating
potential impacts on lncRNAs and circRNAs for regulating cancer cell functions.
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