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Abstract: Objective: This study aimed to identify reliable risk factors for residual/recurrent cervical
intraepithelial lesions in patients with negative margins after cold-knife conization. Methods: A total
of 2352 women with HSILs (high-grade squamous intraepithelial lesions) with negative margins
who underwent cold-knife conization between January 2014 and December 2020 were included; in
total, 1411 women were assigned to the development cohort, and 941 women were assigned to the
validation cohort. Multivariate logistic regression was used to build four predictive models based on
the different combinations of follow-up data (Model A: preoperative factors; Model B: first-follow-up
data; Model C: second-follow-up data; Model D: data from both follow-ups). The accuracy, sensitivity,
specificity, false-positive rate (FPR), false-negative rate (FNR), and area under the receiver operating
characteristic curve (AUC) were evaluated on the validation cohort. The predictive power of risk
factors was further validated using six machine learning algorithms. Results: Model D demonstrated
the highest AUC of 0.91 (95% CI, 0.87 to 0.96) in the validation cohort, whereas Models A, B, and
C achieved AUCs of 0.69 (95% CI, 0.59 to 0.78), 0.88 (95% CI, 0.80 to 0.95), and 0.89 (95% CI, 0.81 to
0.97) respectively. The six machine learning methods achieved consistent results. Kaplan-Meier (KM)
survival curves demonstrated that our models could effectively stratify patients with all models
(p < 0.05 for all models). Conclusion: Our model, which is based on preoperative and follow-up
factors, can serve as a complementary screening procedure for the early detection or prediction of
recurrence after cold-knife conization in HSIL patients.

Keywords: cold-knife conization; residual/recurrent; practical model; machine learning

1. Introduction

Human papillomavirus (HPV) infection is a high-risk factor for cervical cancer. Infected
women may develop cervical cancer after several years or even more than ten years [1].
Cervical intraepithelial neoplasia (CIN) is a precancerous lesion of cervical cancer and
can be divided into low-grade squamous intraepithelial lesions (LSILs) and high-grade
squamous intraepithelial lesions (HSILs). An estimated 30% of HSIL cases may progress to
cervical cancer [2], and cervical cancer can be prevented by screening and treating HSILs.
Excisional therapy is commonly used to treat HSIL and includes loop electrosurgical excision
procedures (LEEPs or LLETZs), cold-knife conization, and laser cone biopsy [3]. The failure
rate of excisional treatment, defined as persistent or recurrent HSILs or worsening disease,
is reported to be between 4% and 18% [4], and the majority of these cases occur within
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two years of primary treatment [5]. The risk of developing cervical cancer after cervical
conization in HSIL patients is five times that of the general population [6]. Additionally,
women treated for HSILs may have an increased risk of recurrent CIN and cervical cancer
for up to 25 years [7,8].

Therefore, we need standardized management strategies for patients after surgery.
Postoperative follow-up should occur in women with HSIL according to the conization
margin status. Patients with negative margins typically undergo cytology or HPV testing
after 6, 12, and 24 months. If the test results are abnormal, they are referred for colposcopy.
Women with positive margins typically undergo colposcopy-guided biopsy and cytology
testing within 4–6 months [9,10]. The problem of treatment failure in HSILs has been
studied for decades, but uncertainty and debate remain as to which factor or combination
of factors is the most accurate predictor of treatment failure. Several factors are considered
to be a risk for treatment failure after excisional treatment, including age, smoking, size,
the severity of lesions, high-risk human papillomavirus (HR-HPV) type, and HR-HPV
persistence [11,12].

Regardless of the strategy used, follow-up outcomes are suboptimal due to poor
patient compliance. A study in Australia found that only 26.6% of women completed
a combined cytology and HPV test within 12 months of CIN resection treatment [10].
Overall, the assessment of postoperative recurrence in each patient is very difficult. In
addition, few studies have examined patients with negative surgical margins, and drawing
valuable conclusions is consequently challenging. This study retrospectively assessed
risk factors for residual/recurrent cervical intraepithelial lesions in women with negative
margins after cold-knife conization and established a predictive model. We aimed to
identify reliable risk factors for residual/recurrent cervical intraepithelial lesions in patients
with negative margins after cold-knife conization, thereby enabling risk management for
patients, reducing patient anxiety to a certain extent, and promoting timely treatment.

2. Materials and Methods
2.1. Study Design

A summary of this retrospective study is shown in Figure 1. We searched for women
with a histological diagnosis of HSILs upon colposcopy biopsy who underwent cold-knife
conization or LEEP at Shandong University Qilu Hospital. The study obtained approval
from the Ethics Committee of Qilu Hospital of Shandong University (KYLL-202107-134)
and obtained a waiver for informed consent. Our study was a retrospective study; we
included patients who underwent cervical conization between January 2014 and December
2020, of whom 2352 patients underwent CKC surgery and 291 patients underwent LEEP
surgery. Patients were followed up until December 2021, with a maximum follow-up period
of 7 years. The exclusion criteria were as follows: diagnosis of other histological types;
patient received HPV vaccination; no follow-up data; positive margins after cold-knife
conization; and immunosuppression.

2.2. Follow-Up

Patients had their first follow-up 4–6 months after cold knife conization and their
second follow-up 10–12 months after surgery. Liquid-based cytology and HPV testing were
performed at each follow-up. A cervical biopsy was performed if women had abnormal
cytology results (e.g., atypical squamous cells of indeterminate significance or more severe
lesions), positive HPV results, or abnormal results from colposcopy. Specimens were
collected for HPV testing with a Digene kit (Digene, Gaithersburg, MD, USA) or Roche
Cobas 4800 kit (Roche Molecular, Branchburg, NJ, USA). Digene produces quantitative
results for 13 HR-HPV genotypes (HPV 16, 18, 31, 33, 35, 45, 51, 52, 56, 58, 59, and 68). A
relative light unit/cutoff (RLU/CO) ratio ≥1.0 indicated a positive result. The qualitative
results of Cobas 4800 detect HPV16, HPV18, and 12 other HR-HPV genotypes (HPV 31, 33,
35, 45, 51, 52, 56, 58, 59, 66, and 68).
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Figure 1. Flowchart of the study. (A) Overall dataset; (B) model development and validation;
(C) model training and validation based on six machine learning methods. HSIL, high-grade squa-
mous intraepithelial lesion; AUC, area under the curve; FNR, false-negative rate; FPR, false-positive
rate; SVM, support vector machine; RF, random forest; Ada, AdaBoost; DT, decision tree; KNN,
k-nearest neighbor; NB, naive Bayes.

2.3. Criteria for Residual/Recurrent Disease

The criteria for developing residual/recurrent disease were histological examination
based on colposcopy biopsy. Histological evidence of CIN (LSIL or HSIL) was considered a
residual/recurrent disease. Residual lesions were defined as those diagnosed within the
first year of cold-knife conization or LEEP. Cold-knife conization and LEEP were performed
in the operating room by experienced gynecologic oncologists. The cervix was exposed
and smeared with iodine solution. The cervix was excised in a conical shape 0.5 cm outside
the iodine-unstained area, and the height of the cone could reach 2–2.5 cm. Cervical lesions
detected after one year were considered recurrences. In this study, we analyze residual
disease and recurrence together.

2.4. Predictors and Endpoints

The following clinical characteristics were included: age; pregnancy; parity; types of
cervical transformation zones; preconization cytology; preconization HPV; endocervical
curettage (ECC); first follow-up HPV (F-HPV) after conization; first follow-up cytology
(F-TCT) after conization; second follow-up HPV (S-HPV) after conization; second follow-
up cytology (S-TCT) after conization; improved (conization histopathology lower than
colposcopy biopsy), severe (conization histopathology higher than colposcopy biopsy), and
residual disease/recurrence information. Residual disease/recurrence time was described
as the time interval from surgery to the first appearance of CIN. Residual disease/recurrence
was determined via colposcopy biopsy histology.

2.5. Model Construction and Validation

We randomly split all patients into development and validation cohorts in a 6:4 ra-
tio. For the development cohort, we first performed a univariate analysis to screen out
statistically significant features; we then constructed logistic regression models to explore
the role of clinical factors in prognosis. To demonstrate the importance of follow-up data,
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we constructed four models, namely, a model based on preoperative factors (Model A), a
model based on first-follow-up data and reoperative factors (Model B), a model based on
second-follow-up data and reoperative factors (Model C), and a model based on data from
these two follow-ups and reoperative factors (Model D).

Each model was built based on stratified 5-fold cross-validation to guarantee general-
ization ability. At each iteration, four folds of the development cohort were used for model
training, and the remaining one fold was used for validation. The role of cross-validation
was to select the optimal hyperparameters by maximizing the performance on the valida-
tion folds. After the cross-validation procedure, all models were retrained with the entire
development cohort and evaluated in the independent validation cohort.

The discrimination power, defined as the agreement between the predicted and actual
residual/recurrent disease probability, was used to evaluate the performance of our models.
In this study, the discrimination power was estimated using metrics such as accuracy,
sensitivity, specificity, false-positive rate (FPR), false-negative rate (FNR), and area under a
curve (AUC). In addition, we drew a nomogram, a reliable tool for graphically representing
residual/recurrent disease probability. We then used calibration curves to intuitively
assess the agreement between the actual residual/recurrent disease and the predicted
residual/recurrent disease. Finally, we used decision curves to determine the clinical
usefulness of our models.

In recent years, an increasing number of studies have used a variety of machine
learning (ML) methods to construct clinical predictive models [13]. In some cases, ML
methods can perform better than traditional regression methods due to the complexity of
implicit patterns in the data. Therefore, we further used six ML algorithms to validate our
selected high-risk factors, including support vector machine (SVM) [14], random forest
(RF) [15], AdaBoost (Ada) [16], decision tree (DT) [17], k-nearest neighbor (KNN) [18], and
naive Bayes (NB) [19]. These methods are popular machine learning algorithms and have
been widely used in clinical prediction models [20–22].

Given the increasing number of younger patients choosing LEEP over CKC due
to their reproductive needs, we further developed a predictive model for patients who
underwent LEEP for HSILs to validate the generalizability of our proposed method. A
total of 291 women with HSILs treated with LEEP were included, including 205 patients
without residual disease/recurrence and 86 patients with residual disease/recurrence. The
model was also validated using various ML algorithms.

2.6. Statistical Analysis

The statistical analysis was conducted with R software (version 4.1.0) and Python (ver-
sion 3.8.8) ML library Scikit-Learn (version 0.24.1) [23]. The distributions of the potential
predictive factors were compared between residual disease/recurrence patients and con-
trols using the chi-squared test. The DeLong test was used to assess the differences between
ROCs. All tests were two-tailed, and statistical significance was defined as p < 0.05.

3. Results
3.1. Characteristics of Patients Who Underwent Cold-Knife Conization

We included 2352 women who underwent cold-knife conization, including 2259 con-
trols and 93 residual disease/recurrent patients. The median follow-up of patients was
30 months (range: 4–257 months), with 75% of patients being followed for more than
149 months. The median time to patient residual/recurrent disease was 11 months (range:
4–56 months). Patients had their first follow-up 4–6 months after cold-knife conization and
a second follow-up 10–12 months after surgery. Therefore, we defined HPV16, HPV18,
or HR-HPV RLU/CO > 1000 as positive before treatment. Unavailable TCT and HPV
results were defined as unknown. The patient characteristics are summarized in Table 1.
According to the chi-squared test results in the development cohort, factors with p < 0.05
were included in the modeling analysis.
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Table 1. Patients and corresponding clinical features.

Development Cohort (1411) Validation Cohort (941)

Patient Characteristic

No Residual/ Residual/
p-Value

No Residual/ Residual/
p-ValueRecurrent CIN

(1355)
Recurrent CIN

(56)
Recurrent CIN

(904)
Recurrent CIN

(37)

Age (years)
<45 1004 44 0.552 659 26 0.87
≥45 351 12 245 11

Pregnancy
<3 904 27 0.007 609 13 <0.001
≥3 451 29 295 24

Parity
<2 808 32 0.823 539 19 0.408
≥2 547 24 365 18

Menopause
Yes 1288 50 0.109 858 35 1
No 67 6 46 2

TCT
<ASCUS 307 11 0.544 226 14 0.222
≥ASCUS 922 43 580 22
Unknown 126 2 98 1

HPV16/18 or RLUs > 1000
Yes 625 38 0.024 341 13 0.477
No 512 15 421 22

Unknown 218 3 142 2
Transformation zone

Type I/II 632 29 0.492 409 22 0.882
Type III 102 7 75 5

Unknown 621 20 420 10

ECC
Positive 36 5 0.02 27 5 0.003

Negative 1319 51 877 32

Improved
Yes 565 14 0.019 369 14 0.849
No 790 42 535 23

Severe
No 1056 39 0.195 706 29 1
Yes 299 17 198 8

First follow-up after conization

HR-HPV negative 585 7
<0.001

382 7
<0.001HR-HPV positive 166 36 103 25

Unknown 604 13 419 5

TCT < ASCUS 611 27
<0.001

378 20
<0.001TCT >= ASCUS 16 13 6 9

Unknown 728 16 520 8

Second follow-up after conization

HR-HPV negative 384 4
<0.001

242 5
<0.001HR-HPV positive 114 32 53 20

Unknown 857 20

TCT < ASCUS 435 23
<0.001

261 15
<0.001TCT > ASCUS 13 7 7 10

Unknown 907 26 636 12

ASCUS, atypical squamous cells of undetermined significance; CIN, cervical intraepithelial neoplasia; ECC,
endocervical curettage; HR-HPV, high-risk human papillomavirus; RLUs, relative light units.
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Due to the different follow-up rates of patients after surgical treatment, we estab-
lished four predictive models based on preoperative and postoperative follow-up data.
Four preoperative risk factors were included in Model A, including pregnancy, ECC, im-
provement, and preoperative HPV results. At the first follow-up after cold-knife conization,
1311 (55.7%) hrHPV test results and 1080 (45.9%) cytology results were available. At the
second follow-up after cold-knife conization, 854 (36.3%) hrHPV test results and 771 (32.8%)
cytology test results were available. We combined the first- and second-follow-up data
(including HPV and cytology) with preoperative risk factors and established two predictive
models (Model B and Model C). Finally, we integrated the first- and second-follow-up data
for analysis. At least one positive HPV test and at least one positive cytology test were used
as postoperative risk factors and were combined with preoperative risk factors to construct
Model D.

3.2. Model Development and Validation

The ROC curves of the five-fold cross-validation of the development cohort and the
ROC curves of the validation cohort are shown in Figure 2. The mean cross-validation AUC
of Model A was 0.67. The mean cross-validation AUCs of Models B and C were 0.85 and
0.89, respectively. Model D had the highest mean cross-validation AUC, 0.91 (Figure 2A).
In the validation group, the AUC of Model A was 0.69. The AUCs of Models B and C were
0.88 and 0.89, respectively. Consistent with the results of the development group, Model D
had the highest AUC, at 92% (Figure 2B). Therefore, Model D had the best discriminative
power. In addition, other metrics, such as accuracy, sensitivity, specificity, FPR, and FNR,
are listed in Table 2. The five-fold cross-validation in the development cohort predicted
residual disease/recurrence with an accuracy of 0.58 ± 0.13 (AUC = 0.58 ± 0.13) for Model
A, 0.86 ± 0.08 (AUC = 0.85 ± 0.07) for Model B, 0.81 ± 0.08 (0.89 ± 0.07) for Model C, and
0.85 ± 0.05 (AUC = 0.92 ± 0.01) for Model D. In the validation cohort, the accuracy of Model
A was 0.72 (AUC = 0.69); the accuracy of Model B was 0.81 (AUC = 0.88); the accuracy of
Model C was 0.82 (AUC = 0.89); and the accuracy of Model D was 0.78 (AUC = 0.91).
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Four nomograms built based on the regression coefficients of the models are shown in
Figure 3. The calibration curves are shown in Figure 4A. The calibration curve demonstrated
satisfactory consistency between the predicted residual/recurrent disease and the actual
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observed residual/recurrent disease in both the development and validation cohorts,
especially for Model D. The decision curves of the nomograms are presented in Figure 4B.
Model D provided a higher net benefit than the other models in both the development and
validation cohorts.

Table 2. Diagnostic performance of the development and validation cohorts.

Threshold AUC Sensitivity Specificity FPR FNR Accuracy

Development-Cohort Cross-Validation
Model A 0.51 ± 0.12 0.58 ± 0.13 0.73 ± 0.24 0.58 ± 0.15 0.4 ± 0.15 0.2 ± 0.24 0.58 ± 0.13
Model B 0.65 ± 0.15 0.85 ± 0.07 0.88 ± 0.17 0.86 ± 0.09 0.14 ± 0.09 0.1 ± 0.17 0.86 ± 0.08
Model C 0.51 ± 0.24 0.89 ± 0.07 0.97 ± 0.07 0.80 ± 0.09 0.20 ± 0.09 0.0 ± 0.07 0.81 ± 0.08
Model D 0.59 ± 0.15 0.92 ± 0.01 0.94 ± 0.12 0.84 ± 0.06 0.1 ± 0.06 0.0 ± 0.12 0.85 ± 0.05

Validation cohort
Model A 0.53 0.69 (0.59–0.78) 0.60 0.73 0.27 0.4 0.72
Model B 0.44 0.88 (0.80–0.95) 0.83 0.80 0.20 0.17 0.81
Model C 0.43 0.89 (0.81–0.97) 0.86 0.81 0.19 0.14 0.82
Model D 0.42 0.91 (0.87–0.96) 0.94 0.77 0.23 0.06 0.78

AUC, area under the curve; FPR, false-positive rate; FNR, false-negative rate.
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3.3. Model Training and Validation Based on ML Methods

We further validated our risk factors using six ML methods, and the performance
metrics of the validation cohort are listed in Table 3. For Model A, significant differences
were observed between the AUC of LR and those of DT, KNN, and NB (p < 0.05), but
not significantly different when compared with other ML methods. The mean AUC of all
methods was 0.63. For Model B, significant differences were observed between the AUCs of
LR and KNN (p < 0.05), but they were not significantly different when compared with other
ML methods. The mean AUC of all methods was 0.84. For Model C, significant differences
were observed between the AUC of LR and those of DT and KNN (p < 0.05), but they were
not significantly different when compared with other ML methods. The mean AUC of all
methods was 0.87. For Model D, significant differences were observed between the AUCs
of LR and KNN (p < 0.05), but they were not significantly different when compared with
other ML methods. The mean AUC of all methods was 0.90. The ROCs of all ML methods
for the development and validation cohorts are shown in Figure 5.

Table 3. The predictive performance of different ML methods in the validation cohort.

AUC Sensitivity Specificity FPR FNR Accuracy

Model A
SVM 0.66 (0.56–0.76) 0.51 0.80 0.20 0.49 0.79
RF 0.68 (0.58–0.77) 0.57 0.74 0.26 0.43 0.73
DT 0.60 (0.51–0.68) 0.69 0.52 0.48 0.31 0.53

KNN 0.51 (0.42–0.59) 0.46 0.56 0.44 0.54 0.56
NB 0.62 (0.51–0.73) 0.4 0.86 0.14 0.6 0.84
Ada 0.69 (0.59–0.78) 0.6 0.73 0.27 0.4 0.73

Model B
SVM 0.85 (0.79–0.91) 0.79 0.82 0.18 0.21 0.82
RF 0.83 (0.73–0.92) 0.79 0.82 0.18 0.21 0.82
DT 0.82 (0.72–0.91) 0.79 0.82 0.18 0.21 0.82

KNN 0.73 (0.62–0.83) 0.62 0.76 0.24 0.38 0.75
NB 0.88 (0.81–0.94) 0.83 0.80 0.21 0.17 0.80
Ada 0.88 (0.80–0.95) 0.83 0.80 0.20 0.17 0.81
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Table 3. Cont.

AUC Sensitivity Specificity FPR FNR Accuracy

Model C
SVM 0.89 (0.81–0.96) 0.86 0.80 0.20 0.14 0.81
RF 0.88 (0.80–0.95) 0.86 0.82 0.18 0.14 0.83
DT 0.83 (0.75–0.92) 0.86 0.80 0.20 0.14 0.81

KNN 0.81 (0.71–0.91) 0.72 0.88 0.12 0.27 0.86
NB 0.87 (0.80–0.95) 0.86 0.80 0.2 0.14 0.81
Ada 0.90 (0.82–0.97) 0.86 0.81 0.19 0.14 0.82

Model D
SVM 0.91 (0.87–0.96) 0.94 0.77 0.24 0.06 0.78
RF 0.92 (0.87–0.96) 0.94 0.77 0.23 0.06 0.78
DT 0.90 (0.85–0.95) 0.94 0.76 0.24 0.06 0.78

KNN 0.86 (0.79–0.93) 0.8 0.86 0.14 0.2 0.86
NB 0.92 (0.88–0.97) 0.94 0.77 0.23 0.06 0.78
Ada 0.91 (0.86–0.96) 0.94 0.77 0.23 0.06 0.78

The p-value was calculated using the DeLong test by comparing the AUC values between the LR model and other
ML models. AUC, area under the curve; SVM, support vector machines; RF random forests; DT, decision tree;
KNN, k-nearest neighbor; NB, naive Bayes; Ada, AdaBoost.
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3.4. Kaplan–Meier Estimates

To further demonstrate the effectiveness of our model for patient stratification, we
divided patients into high- and low-risk groups based on predicted outcomes and plotted
Kaplan–Meier (KM) survival curves. A log-rank test was used to assess the statistical
significance of the differences between the high- and low-risk groups. As shown in Figure 6,
all models were able to effectively stratify patients, and Model D had the best performance
(p < 0.0001).

3.5. Model for LEEP

A total of 291 women with HSILs treated with LEEP were included, including 205 pa-
tients without residual disease/recurrence and 86 patients with residual disease/recurrence.
All enrolled patients had a follow-up time of more than 2 years, and the clinical characteris-
tics are shown in Table S1. We randomly split all patients into development and validation
cohorts in a 6:4 ratio and analyzed these data using methods consistent with the analysis
of CKC patients. Preoperative HPV status, transformation-zone type, HPV status within
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one year after surgery, and TCT status within one year after surgery were identified as
risk factors. Figure S1 shows the ROC curves achieved using the traditional LR method
and the six machine learning methods for the development and validation cohorts. The
predictive performance of different methods in the validation cohort are listed in Table
S2. All methods achieved consistent results, with AUCs ranging from 0.84 to 0.91. The
nomograms built based on the regression coefficients of the model are shown in Figure S2.
The calibration curves and decision curves are shown in Figure S3. It can be seen that both
the LEEP-based model and the CKC-based model had excellent predictive performance.
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4. Discussion

This study compared potential residual/recurrent disease predictors between patients
with residual/recurrent HSILs and controls who displayed different characteristics. Fur-
thermore, we developed a practical identification model based on eight readily available
preoperative and postoperative factors to effectively identify residual/recurrent HSIL
patients. Benefiting from the advantages of feasibility and almost zero cost, this model
has the potential to compensate for the current deficiencies in cervical cancer screening,
especially in underdeveloped areas where screening facilities are lacking. ML technology
has emerged as an efficient computer algorithm for identifying patterns in large data sets
with many variables and facilitating data-driven predicting or categorical modeling [24].
We validated the model using ML algorithms. Our findings suggest that this excellent
prognostic risk assessment model can be used in clinical practice as a potential assessment
tool for patients with residual/recurrent HSILs after treatment. We believe that follow-up
testing at 6 and 12 months after cold-knife conization could better assess residual/recurrent
disease. However, in underdeveloped areas without follow-up conditions, preoperative
factors can also be used to predict the treatment effect in HSIL patients.

In our study, 4% of HSIL patients experienced “treatment failure”, consistent with
a prevalence of 3.5–12% recently reported by several authors [25–27]. Our study found
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that some pre-follow-up factors were associated with treatment failure, including HPV16,
HPV18, or HR-HPV RLU/CO > 1000, more than three pregnancies, positive ECC, and
improved lesions. HPV clearance usually occurs within three months from surgery, and
HPV16 and 18 did not clear rapidly [28,29]. The HPV genotype is a predictor of relapse,
with HPV16 causing more HSIL relapses than other high-risk HPV types [30,31]. The
high-risk HPV DNA load is highly correlated with the development of cervical lesions.
Higher viral loads increase the likelihood of viral DNA integration into host-cell DNA [32].
The viral load of HR-HPV is associated with extensive cervical lesions that are more likely
to recur [29]. Patients with a high pretreatment HR-HPV viral load should be considered at
risk of developing residual/recurrent disease and may require more rigorous follow-up.
In our study, 68.2% (60/88) of patients who failed HSIL surgery had HPV16, HPV18, or
HR-HPV RLU/CO > 1000.

The grade of CIN lesions directly correlated with the risk of developing invasive cervi-
cal cancer. However, the relationship between lesion grade and residual/recurrent disease
after conization was controversial. In our study, 26.9% (25/93) of patients had elevated
pathological grades after conization (p = 0.326; OR, 1.3; 95% CI, 0.82–2.08). However, we
found that decreased pathological grade after the conization of HSILs was a protective
factor for surgical failure (p = 0.04; OR, 0.61; 95% CI, 0.39–0.96).

ECC is an effective pathological examination method that has attracted increasing
attention in recent years. Cuello et al. [33] believe that ECC has irreplaceable value in
the diagnosis of cervical lesions. In addition, a positive ECC result is a predictor of
persistent/recurrent disease after LEEP treatment. Our study found that ECC positivity
indicated a residual disease/recurrence risk (OR = 4.2). Regarding selection bias in ECC
patients, clear expert consensus or guidelines are lacking at home or abroad for reference.
Age and transition-zone category were the main factors affecting the detection rate of
ECC [3]. In our study, age was not a risk factor for residual disease/recurrence of cervical
lesions. However, postmenopausal and type III transformation zones accounted for a higher
proportion of residual/recurrent cases (5% vs. 7.5% and 14.5 vs. 19.0%, respectively).

Our study found that having undergone more than three pregnancies was a risk
factor for residual/recurrent disease. In previous studies, low pregnancy was found to
be a preventive factor for recurrence in patients with positive margins [34]. The high
concentrations of estrogen and progesterone during pregnancy can lead to the eversion of
the columnar epithelium, which results in HPV infection at the squamocolumnar junction.

Most women treated with hrHPV clear it within six months. These women have a
lower risk of developing CIN of grade 2 or higher after treatment than women who have
not cleared the virus [29,35]. Studies have shown that the sensitivity of persistent HPV
infection at six months after surgery to predict persistent/recurrent lesions is 81–97% [29,36].
Cytology plays an important role in follow-up, and women with three consecutive negative
cytology results at 6, 12, and 24 months after treatment have a lower risk of developing CIN3
or higher-risk disease than women with at least one abnormal cytology result [5]. At the 6-
and 12-month follow-up after cold-knife conization, any positive HPV test result or cytology
test result can be used as a risk factor for predicting residual/recurrent cervical lesions.

Given that more and more young patients choose LEEP instead of CKC due to their
reproductive needs, we collected HSIL patients who underwent LEEP and analyzed the
prognostic factors affecting recovery. We found that the prognostic factors affecting patients
with LEEP surgery were different from those who underwent CKC surgery, mainly in
the ECC and transformation zone. This is because of individual differences in patients’
choice of surgical approach. We tend to recommend CKC for more complete resection
of the diseased tissue for ECC-positive patients. Therefore, in patients undergoing LEEP
surgery, the proportion of patients undergoing ECC is much smaller than that of CKC. In
addition, the type III transformation zone is a risk factor affecting patients after LEEP. The
transformation zone is the leading site of cervical precancerous lesions. The more visible
the parts of the transformation zone are, the greater the chance of exposed lesions and
the higher the diagnostic accuracy of biopsy are [37]. The biopsy accuracy of the type III
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transformation zone is significantly lower than that of type I/II. I In addition, patients with
type III transformation zone or ECC-positive patients have a greater chance of residual
disease/recurrence after LEEP. Therefore, the type of transformation zone and the extent
of the lesions should be considered when choosing surgical methods for HSIL patients to
achieve no residual disease.

The strength of our study is the development of four prognostic assessment models
for HSIL patients through a unique combination of preoperative and postoperative follow-
up factors. For some underdeveloped areas that lack follow-up conditions, preoperative
factors can be used to screen patients with residual disease/recurrence tendencies, but
the performance of our preoperative prediction model needs to be improved. Our model
does not replace co-testing screening and colposcopy after surgery, but our model can
advise patients based on their individual differences. According to the model’s prediction
results, we recommend the regular follow-up of patients with combined cytology and HPV
detection after surgery. In particular, patients with positive results for co-testing screening 6
and 12 months after surgery would benefit from regular screening. Based on the weighted
risk factors in the nomogram lists, these models can provide individualized predictions
for each patient. Next, we selected the ML algorithm to verify the model’s predictive
ability through five-fold cross-validation. For patients with a high-risk factor predicted
in the model, we tell the patient to follow up closely and get treated in time. Our study
is meaningful in countries without rigorous screening programs. However, our study is
subject to some limitations. First, we only collected follow-up data 6 months and 12 months
after cold-knife conization; we then expanded the collection of follow-up data according to
follow-up rules. Second, our study was a retrospective study, and we only collected less
than 50% of the follow-up data, which caused research bias. Third, the predictive models
we built lack independent external validation.

5. Conclusions

Based on the analysis of preoperative and postoperative factors, this study established
four accurate and practical identification models for predicting residual/recurrent disease
after cold-knife conization and revealed the risk factors associated with residual/recurrent
disease. The identification model can serve as a complementary screening procedure for
the early detection or prediction of recurrence after cold-knife conization in HSIL patients,
which is especially useful in underdeveloped and remote areas.
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