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INTRODUCTION: By linking cellular content andmolecular subtypes of colorectal cancer (CRC), we aim to uncover novel

features useful for targeted therapy. Our first goal was to evaluate gene expression alterations linked to

CRC pathogenesis, and then, we aimed to evaluate the cellular composition differences between

normal colon mucosa and tumor and between different colon cancer molecular subtypes.

METHODS: We collected microarray and RNA sequencing data of patients with CRC from the Genome Expression

Omnibus and The Cancer GenomeAtlas. We combined all cases and performed quantile normalization.

Genes with a fold change of >2 were further investigated. We used xCell for cellular decomposition and

CMScaller for molecular subtyping. For statistical analyses, the Kruskal-Wallis H test and Mann-

Whitney U tests were performed with Bonferroni correction.

RESULTS: We established an integrated database of normal colon and CRC using transcriptomic data of 1,082

samples. By using this data set, we identified genes showing the highest differential expression in colon

tumors. The top genes were linked to calcium signaling, matrix metalloproteinases, and transcription

factors. When compared with normal samples, CD41 memory T cells, CD81 naive T cells, CD81
T cells, Th1 cells, Th2 cells, and regulatory T cells were enriched in tumor tissues. The ImmuneScore

was decreased in tumor samples compared with normal samples. The CMS1 and CMS4 molecular

subtypes were the most immunogenic, with the highest ImmuneScore but also high infiltration by

CD81 T cells, Th1 cells, and Th2 cells in CMS1 and B-cell subtypes and CD81 T cells in CMS4.

DISCUSSION: Our analysis uncovers features enabling advanced treatment selection and the development of novel

therapies in CRC.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A878, http://links.lww.com/CTG/A879
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INTRODUCTION
Colon and rectal cancers were responsible for 147,950 new cases
in theUnited States in 2020—this is the second highest number of
any tumors after lung cancer (1). These tumor types are fre-
quently designated as colorectal cancer (CRC) because in many
cases, rectal cancer is classified as colon cancer. Because CRC has
led to more than 50,000 deaths, there is a considerable effort to
better understand and to uncover new therapy biomarkers useful
in the treatment of this malignant disease.

Transcriptome-wide analysis offers the possibility to simulta-
neously investigate the expression of all genes. When combined
with clinical data, this enables not only to identify genes

significantly correlated with CRC pathogenesis and progression
but also to compare and rank all significant genes as well. First
large-scale transcriptomic studies investigating CRC and normal
colon tissues were published almost 20 years ago (2). Studies using
gene arrays identified new genes and previously unknown path-
ways linked to CRC pathogenesis (3). Other studies were executed
to discriminate CRC from adenoma and inflammation (4). More
than 20 additional studies have been published comparing normal
colon tissues and CRCs, but with a major weakness: The sample
numbers in these were very low, generally between 10 and 50. Only
few studies have sample numbers close to 100 (5–7), and no study
was published with more than 150 cases.
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Multiple colon cancer molecular subtypes have been estab-
lished claiming the capacity to discriminate clinically relevant
cohorts of CRC—we have previously reviewed these and com-
pared their efficiency in predicting the duration of progression-
free survival after surgery (8). In recent years, the centroid-based
consensus molecular subtype (9) became the most widely used
classification of these. The consensus subtypes divide patients
into 4 cohorts termed CMS1 (microsatellite instability [MSI]-
immune), CMS2 (canonical), CMS3 (metabolic), and CMS4
(mesenchymal).When linking to patient outcome, CMS1 had the
worst survival, CMS3 and CMS4 were intermediate, and CMS2
was the best. Of note, the CMS classification was one of the few
retaining a significant correlation with survival even after cor-
rection for other available features such asMSI status, sex,MKI67
expression, and CDX2 expression (8). The presence of the mo-
lecular subtypes provides the possibility to allot patients into
clinically relevant treatment cohorts.

A major recent development in the treatment of CRC was the
approval of immune checkpoint inhibitors. Currently, 2 PD-1
inhibitors (pembrolizumab and nivolumab) and a CTLA-4 in-
hibitor (ipilimumab) can be used to boost the immune system by
disabling the capabilities of cancer cells to escape immune de-
struction. Generally, patients eligible for immune checkpoint
inhibition include people who suffer a relapse after treatment,
whose cancer cannot be removed with surgery, and cases where
metastases have been confirmed. Biomarkers designated to select
patients eligible for checkpoint inhibitor treatment include MSI
(MSI-high) (10) and changes in one of the mismatch repair
(MMR) genes (11). The success of immune checkpoint inhibition
in CRC is highlighted by the results of a recent phase 3 trial where
the length of progression-free survival had more than doubled in
pembrolizumab-treated patients suffering from metastatic CRC
compared with chemotherapy-treated patients (12). However,
despite these achievements, more than one-third of patients with
MSI-high tumors fail to show any benefit of pembrolizumab
treatment (13). Thus, the need for new features capable to fine-
tune the selection of patients most likely to benefit from immune
checkpoint inhibition remains significant.

In this study, ourfirst goalwas to establish a sizeable integrated
database using normal and CRC samples from multiple in-
dependent data sets. Second, by using this cohort, we evaluated
gene expression alterations linked to CRC pathogenesis and
identified the genes with the highest discriminatory power. Fi-
nally, by using this data set, we aimed to evaluate the correlation
between cellular composition and immune cell content in dif-
ferent colon cancer molecular subtypes and in normal colon
tissue. Our analysis uncovers features enabling advanced treat-
ment selection and the development of novel therapies in CRC.

METHODS
Data collection

Wecollected data from 2public repositories, theGene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). In the
Gene Expression Omnibus, we filtered all available platforms by
sample number and selected the most abundant platforms as
those having the highest sample number available. By this fil-
tering, we selected the high-throughput sequencing platform
GPL16791 (Illumina HiSeq 2500) and the most abundant
microarray platformGPL570 (Affymetrix HumanGenomeU133
Plus 2.0 Array).

Then, we performed a search using the keywords “platform id
(accession) 1 colorectal cancer 1 normal 1 tumor” and nar-
rowed the results by selecting “Entry type: Series.”After this, each
series was checked whether it actually comprised CRC samples.
The results were further filtered to include those where either raw
data or seriesmatrix tables were available andwhether the sample
type was adequate for our analysis (e.g., samples from biopsies,
laser microdissection or surgical resection, either or both normal
and tumor included, cell lines excluded).

In the TCGA repository, we searched for samples with a pri-
mary site in the colon or rectum or having a sample type as solid
tissue normal. From the file repository, we downloaded the
htseq.counts files for each sample.

Preprocessing

A flowchart of the preprocessing used to generate a combined
table containing all samples is depicted in Figure 1. All GPL570
series matrices were joined into 1 table, and we filtered the probe
sets in the combined series matrix table to include only the JetSet
best probe for each gene (14).

When using fragments per kilobase of transcript per million
mapped fragments and reads per kilobase of transcript per mil-
lion reads mapped files from the GPL16791 platform, we per-
formed an inner join by gene symbols after selecting the columns
containing relevant data. The expression in the htseq.counts files
from the TCGA cases were first mapped by gene symbols by the
Ensembl IDs found in those files.

Normalization of the sequencing data was executed by using the
count numbers normalized to gene length and then, an inner join by
symbol in all the htseq.counts files to generate a combined table.
These led us to having 3 tables, 1 for GPL570 data, 1 for GPL16791
data, and 1 for the relevant TCGA cases.Our last step to acquire the
combined table containing all the samples was to join these 3 tables
into 1. For this operation, we used the gene symbols. Rows where
more than half of the samples had anNA value were removed. This
resulted in a table containing all samples (columns) with genes
(rows). Using this combined table, a final quantile normalization of
all the samples was performed. The entire normalized table for all
samples is presented in Supplementary Table 1 (https://drive.goo-
gle.com/drive/folders/1XOZa2ESlkoStdb_TBEyMljIQHT9dcdt2?
usp5sharing). Clinical annotations were added manually based on
available sample information.

Statistical analyses

The cellular decomposition of the samples was determined using
xCell (15). To classify samples into the CMS subtypes (9), we used
the publicly available R packageCMScaller (16). CMScaller works
by using gene expression values from a set of subtype-specific
markers. If the classifier cannot confidently assign a sample to a
subtype, in other words, its false discovery rate-adjusted P value
for prediction is higher than 0.05, then the result will not be
assigned (NA). We did not use these unclassified samples in our
cellular decomposition analysis.

The normalized table containing the expression levels, sample
names, and classification (either normal or tumor) was used to
perform the nonparametric Mann-Whitney U test. In this, we
compared the normalized expression levels of the normal samples
to the normalized expression levels of tumor samples. The mean
fold changes (FCs) for each gene were also calculated. We iden-
tified genes with significantly increased differential expression
with a cutoff value of FC$ 2.
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We generated receiver-operating characteristic (ROC) curves
and calculated the area under the curve (AUC) values for genes
with the highest FC differences. An ROC analysis is useful for the

visualization of classification performance when the effect of a
continuous variable on a dichotomous outcome is assessed. The
AUC value of an ROC plot can range between 0.5 (no correlation

Figure 1. Overview of the data acquisition (a) and processing of the transcriptomic data (b). GEO, Gene Expression Omnibus; TCGA, The Cancer Genome
Atlas.
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between the variables) and 1 (perfect separation with high sen-
sitivity and specificity). The significance cutoffwas set ata5 0.05
for interpreting the results of all statistical tests, and Bonferroni
correction for multiple hypotheses was performed as needed.

RESULTS

Database setup

When using the GPL570 platform, of the 56 series identified by
the search, we uncovered 26 as those related to CRC, and 16 of
these were eligible for further analysis. These series provided data
from 492 tumor and 227 normal samples.

On the GPL16791 platform, of the 40 search hits, 8 series were
related to CRC and 2 met our criteria. These 2 data sets had 97
tumor and 89 normal samples.

In the TCGA database, we found 114 patients, of which 112
patients had available htseq.counts files in the repository, pro-
viding us 177 samples (127 tumor and 50 normal). Figure 1 shows
the data collection process, and Table 1 lists the data sets and the
corresponding sample numbers.

Establishing differential expression between normal and

tumor samples

When combining all available samples, we established a nor-
malized gene expression data set comprising 106 adenomas, 366
normal colon mucosa samples, and 716 samples from colorectal
tumors. After excluding those genes which had missing values in
more than half of the samples, the combined merged data set

contains the normalized expression level of 12,098 genes. The
adenoma samples were not included in the statistical analyses.
Supplemental Table 1 includes the normalized expression values
for all genes in all samples.

When comparing normal and tumor samples, we identified
624 differentially increased genes with FC .2. Supplemental
Table 2 (see Supplementary Digital Content 2, http://links.lww.
com/CTG/A878) lists all the significant genes with FC and P
values of the Wilcoxon test and the mean expression in both the
tumor and normal samples.

Of the 624 genes with expression higher in tumors, ROC plots
showing the discriminatory potential andmean plots showing the
differential expression for the 9 genes with the highest FC are
depicted in Figure 2. In these, the AUC values were over 0.8 for
FOXQ1 (FC5 22.99, P, 1e-30), CXCL5 (FC5 20.34, P, 1e-
30), TACSTD2 (FC5 16.21, P, 1e-30), SLC35D3 (FC5 14.97,
P, 1e-30), MMP1 (FC5 12.31, P, 1e-30), and MMP3 (FC5
11.54, P , 1e-30), showing an exceptional discriminatory po-
tential for these genes. Two of the remaining top genes were
between 0.7 and 0.8 (PPBP, FC 5 28.289, P , 1e-30, and
IGF2BP3, FC5 10.31, P, 1e-30), and 1 was below 0.7 (CALB1,
FC5 13.28, P 5 8.71e-9).

Annotation for molecular subtype and cellular content

The cellular decomposition and molecular subtyping were de-
termined using xCell and CMScaller, respectively. Tumor and
normal samples were processed separately. When assigning

Table 1. Data sets included in the analysis

Accession no. Source CRC sample no. Normal sample no. Reference

GSE110225 Biopsy samples 17 17 (36)

GSE23194 Surgical resection specimen 5 12 NA

GSE37364 Biopsy samples 27 38 (37)

GSE41328 Biopsy samples 10 10 (38)

GSE30292 Surgical resection specimen 3 3 (39)

GSE33114 Surgical resection specimen 90 6 (6)

GSE21510 Surgical resection specimen 123 25 (7)

GSE18462 Surgical resection specimen 2 2 NA

GSE23878 Surgical resection specimen 35 24 (40)

GSE22242 Surgical resection specimen 3 1 (41)

GSE20916 Biopsy samples 46 44 (42)

GSE15960 Biopsy samples 6 6 (43)

GSE18105 Surgical resection specimen 94 17 (5), p. 12

GSE13471 Surgical resection specimen 4 4 (44)

GSE4183 Biopsy samples 15 8 (45)

GSE4107 Surgical resection specimen 12 10 (46)

GSE163974 Surgical resection specimen 6 4 NA

GSE146889 Surgical resection specimen 91 85 NA

TCGA Surgical resection specimen 127 50 (47)

Sum 716 366

The data sets were identified as described in Figure 1.
CRC, colorectal cancer; NA, not assigned.
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Figure 2.Meanplots and receiver-operating characteristic (ROC) plots for 7 geneswith the highest discriminatory potential when comparing normal colonmucosa
andcolorectal cancersamples includingPPBP(a), FOXQ1(b),CXCL5(c), TACSTD2(d), SLC35D3(e), CALB1(f),MMP1(g),MMP3(h), and IGF2BP3(i).Asterisks
represent statistical significance (*P, 0.05, **P, 0.01, ***P, 0.001). In addition to the area under the curve (AUC) values, the ROC plots also show
sensitivity 5 TP/(TP 1 FN) and specificity5 TN/(TN 1 FP), where TP5 true-positives, TN5 true-negatives, FN5 false-negatives, and FP 5 false-
positives.
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molecular subtypes, 86 tumor samples were classified as CMS1,
217 as CMS2, 129 as CMS3, and 139 as CMS4. Of the entire set,
206 samples could not be classified (predicted subtype was NA).
When determining cellular content, we used xCell’s default 64-
signature and calculated a score for each feature (including the
different cell types, the immune score, and themicroenvironment
score). The determined subtypes and cellular scores are provided
for each sample in Supplemental Table 3 (see Supplementary
Digital Content 3, http://links.lww.com/CTG/A879).

Differential immune cell content in tumor tissues

We performed the Mann-Whitney U test to compare each of
the lymphocyte cell scores between tumor and normal samples. In
tumors, we obtained significantly higher scores implying lymphocyte
infiltration regarding CD41memory T cells (FC5 1.47, P, 4.21e-
15), CD81 naive T cells (FC 5 1.55, P , 9.1e-15), CD81 T cells
(FC5 1.75, P5 0.008), Th1 cells (FC5 1.97, P, 1e-30), Th2 cells
(FC5 2.23,P, 1e-30), and regulatory T cells (FC5 1.26,P5 0.01).

Contrarily, a significant decrease in cell scores suggesting
depletion was found for CD41 effector memory T cells (FC 5
0.452, P 5 0.009), class-switched memory B cells (FC 5 0.365,
P, 1e-30),memory B cells (FC5 0.24,P5 1.22e-6), plasma cells
(FC5 0.52, P, 4.4e-16), B cells (FC5 0.37, P5 1.2e-9), and the
derived overall ImmuneScore (FC 5 0.58, P , 1e-30). Figure 3

shows the corresponding mean plots for the cellular content
scores with 95% confidence intervals as error bars.

Cellular content among the molecular subtypes

We used the Kruskal-Wallis H test to compare the xCell scores
for lymphocytes between the CMS subtypes. In this analysis, we
excluded those samples where the CMS subtype determination
failed. CMS1 had an ImmuneScore of 0.12; CMS2, 3, and 4 had
0.035, 0.08, and 0.15, respectively (P, 1e-30). CMS1 and CMS4
were themost lymphocyte-infiltrated subtypes, with an increased
abundance of CD81T cells (P5 0.01), Th1 cells (P, 1e-30), and
Th2 cells (P5 2.72e-19) in CMS1 and B cells (P5 8.3e-10), CSM
B cells (P 5 2.29e-5), memory B cells (P 5 0.001), naive B cells
(P 5 5e-4), and CD81 T cells (P 5 0.01) in CMS4. CMS2 and
CMS3 have generally lower mean scores, with CMS2 having in-
creased CD81 naive T-cell scores (P 5 1.14e-6) and CMS3 in-
creased plasma cell scores (P 5 7.93e-13). Figure 4 shows the
corresponding mean plots with 95% confidence intervals.

DISCUSSION
First, we established an integrated database of normal colon and
CRC using transcriptomic data from 3 independent repositories.
By using this data set, we identified the genes showing the highest
differential expression in colon tumors. Among the strongest

Figure 3. Differences in cellular decomposition of normal and colorectal cancer samples inferred from transcriptomic data using the ImmuneScore (a),
B cells (b), CD41 T cells (c), and B and CD81 T cells (d). Asterisks represent statistical significance (*P, 0.05, **P, 0.01, ***P, 0.001).
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genes, we identified FOXQ1, TACSTD2 (TROP-2), CALB1,
SLC35D3, MMP1, MMP3, and CXCL5.

FOXQ1, a member of a forkhead box transcription factor
family, showed an almost 23-fold elevated expression level in
tumors compared with normal samples. Overexpression of
FOXQ1 increases p21 expression, which is a cyclin-dependent
kinase inhibitor and plays an important role in cell cycle arrest
and also has an antiapoptotic effect (17). Overexpression of
FOXQ1 was described previously in CRC and was linked to en-
hanced tumor growth (17). The metastasis-promoting potential
of FOXQ1 by regulation of the PI3K/AKT signaling was also
described in CRC (18). The overexpression of TACSTD2, a cal-
cium signal transducer, was previously reported in several epi-
thelial tumors (19). Higher expression of TACSTD2 (TROP-2)
led to proportionally increased tumor growth, which was then
inhibited by the somatic knockdown of TACSTD2 (20). CALB1, a
member of the same calcium-binding family as troponin C and
calmodulin, may indicate a role of calcium signaling in the de-
velopment of CRC. CALB1 was also one of the few genes sig-
nificantly linked to overall survival in CRC (21). SLC35D3 is a
member of the solute carrier transporter family with a currently
unknown substrate (22). It was proposed that some members of
the SLC35 family act as modulators of cellular activity, that is,
activation of autophagy in dopaminergic neurons (22). MMP1
and MMP3 are both members of the matrix metalloproteinase

family, proteins of which are responsible for the degradation of
extracellular matrix components. Overexpression of these genes
may facilitate the interaction with and remodeling of the micro-
environment of cancer cells andmaypromote angiogenesis and the
formation of metastases (23). The protein coded by CXCL5 is a
chemokine having known chemotactic and activating function on
neutrophil granulocytes (24). In summary, the top genes were
linked to calcium signaling, matrix metalloproteinases, and tran-
scription factors.Our study enhancesprevious results becausehere,
we use a patient cohort sufficiently robust to enable the comparison
and ranking of the significant genes. The complete list of all genes is
provided as a supplemental material and can be used as a reference
when assessing the relative difference between normal tissues and
CRC in future studies.

The second goal of our study was to evaluate the immuno-
logical composition of these tumors. The xCell-based Immune-
Score (25) is a computed value taking the abundance of B cells,
CD41 T cells, CD81 T cells, dendritic cells, eosinophils, mac-
rophages, monocytes, mast cells, neutrophils, and natural killer
cells into account. When compared with normal samples, CD41
memory T cells, CD81 naive T cells, Th1 cells, Th2 cells, and
regulatory T cells were enriched in tumor tissues. CD41 T cells,
including Th1, Th2, regulatory, and CD41 memory T cells,
support the function of other immune cells through the secretion
of cytokines. Th1 and Th2 cells are associated with the removal of

Figure4.Differences in cellular decomposition of different colorectal cancermolecular subtypes. Inferred from transcriptomicdatausing the ImmuneScore
(a), B cells (b), CD41 Tcm and CD81 T cells (c), and helper T cells (d).

American College of Gastroenterology Clinical and Translational Gastroenterology

C
O
LO

N

Transcriptomic and Cellular Content Analysis 7



intracellular and extracellular pathogens, respectively, while
regulatory T cells play a key role in immunologic tolerance (26).
Regulatory T cells were also associated with the progression of
CRC through the suppression of antitumor immunity (27).
CD81 naive T cells respond to previously unencountered antigens
and then initiate a significant proliferation (28). The in silico
ImmuneScore was decreased in tumor samples compared with
normal samples, suggesting an ongoing evasive action of tumor tis-
sues. Recently, immunohistochemistry-based mucosal lymphocyte
infiltration of tumor tissues was compared with distant normal tis-
sues. In this study, tumormucosahadanoverall decreasednumberof
CD451 lymphocytes, with an increased number of CD41 T cells
and decreased number of CD81T cells, leading to an increase in the
CD41/CD81 ratio (29). An immunohistochemistry-based quanti-
ficationmethod called ImmuneScore, basedon theCD3-staining and
CD8-staining of formalin-fixed, paraffin-embedded tissue slides (30)
evaluating thenumberof tumor-infiltratingTcells,was found tohave
a better prognostic value concerning overall survival, disease-free
survival, and disease-specific survival than the traditional TNM
classification (31).

Colorectal tumors can be classified into 4 consensusmolecular
subtypes (CMS1-4) based on their gene transcriptional activity
(9). According to our in silico results, CMS1, which consists of
microsatellite instable, hypermutated tumors, and CMS4, which
is themesenchymal subtype, were the most immunogenic. CMS1
consists of MSI-H, CpG island methylator phenotype-high, and
hypermutated tumors (9). In this context, the increased number
of somatic mutations may provide new epitopes, which can be
recognized by the immune system as immunogenic, thus
promoting lymphocyte infiltration. Our analysis is consistent
with previous works presenting cytotoxic CD81 T-cell in-
filtration of MSI-H CRC and the overall CD31 (common T-cell
marker) intraepithelial infiltration in MSI1 tumors (32).

The currently available immune checkpoint inhibitors target
inhibitory receptors of T cells freeing them from the negative
regulationmechanisms of CTLA-4 and PD-1, both of which can
be expressed on tumor cells inhibiting T-cell-mediated cancer
cell death. A study published in 2016 following 53 patients with
checkpoint inhibitor treatment, 28 patients in the dMMR group
(deficient mismatch repair, also can be categorized into CMS1)
and 25 patients in the pMMR group (proficient mismatch re-
pair), concluded that the response rates and disease control rates
were 50% and 89% in the dMMR group and 0% and 14% in the
pMMR group, respectively (33). The increased level of Th1 cells
in MSI-H (CMS1) tumors may provide an explanation to why
these tumors respond well to checkpoint inhibitor therapy (34).
Owing to the high scores for CD41 lymphocytes and the overall
immunogenic properties of CMS1, this subtype may be a can-
didate for more effective immune therapies in the future. We
have also checked the expression of PD-L1 (CD274) and found
significant overexpression in tumor samples compared with
normal samples (FC 5 1.29, P 5 1.6e-6). Unfortunately, we
could not investigate PD-1 (PDCD1) because more than half of
the samples had a missing value for this gene, and these genes
were filtered before normalization.

A limitation of our study is the use of solely mRNA-level data
while the link betweenmRNA expression and protein presence is
not always guaranteed (35). Unfortunately, there are no suitable
data sets with proteome-wide levels of protein abundance. At the
same time, the simplicity in determining protein expression by
immunohistochemistry ensures the highest clinical utility for

protein-based biomarkers. A future extension of this study with
proteomic data can cover this gap.

In summary, here we provide a comprehensive evaluation of
CRC using multiple large-scale transcriptomic data sets. We
identified the genes showing the highest differential expression in
colon tumors. The top genes were linked to calcium signaling,
matrix metalloproteinases, and transcription factors. Further-
more, we show that the CMS1 and CMS4 molecular subtypes
were themost immunogenic, with the highest ImmuneScores but
also exhibited high infiltration by CD81 T cells, Th1 cells, and
Th2 cells in CMS1 and B-cell subtypes and CD81 T cells in
CMS4. Our results help to link immunotherapy and molecular
subtypes.
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Study Highlights

WHAT IS KNOWN

3 We established an integrated database of normal colon and
colorectal cancer using transcriptomic data of 1,082
samples.

WHAT IS NEW HERE

3 By using this dataset, we identified the genes showing the
highest differential expression in colon tumors. The top genes
were linked to calcium signaling, matrix metalloproteinases
and transcription factors.

3 When analyzing cellular content of the tumor samples, CD41
memory Tcells, CD81 naı̈ve Tcells, CD81 Tcells, Th1 cells,
Th2 cells and regulatory T cells were enriched in tumor
compared to normal tissues. Tumor samples show a lower
ImmuneScore compared to normal.

3 The CMS1 and CMS4 molecular subtypes were the most
immunogenic, with the highest ImmuneScores but also high
infiltration by CD81 Tcells, Th1 cells and Th2 cells in CMS1
and B cell subtypes and CD81 T cells in CMS4.
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