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Abstract

Background: Streptomyces species produce a vast diversity of secondary metabolites of clinical and biotechnological
importance, in particular antibiotics. Recent developments in metabolic engineering, synthetic and systems biology
have opened new opportunities to exploit Streptomyces secondary metabolism, but achieving industry-level production
without time-consuming optimization has remained challenging. Genome-scale metabolic modelling has been shown
to be a powerful tool to guide metabolic engineering strategies for accelerated strain optimization, and several
generations of models of Streptomyces metabolism have been developed for this purpose.

Results: Here, we present the most recent update of a genome-scale stoichiometric constraint-based model of the
metabolism of Streptomyces coelicolor, the major model organism for the production of antibiotics in the genus. We
show that the updated model enables better metabolic flux and biomass predictions and facilitates the integrative
analysis of multi-omics data such as transcriptomics, proteomics and metabolomics.

Conclusions: The updated model presented here provides an enhanced basis for the next generation of metabolic
engineering attempts in Streptomyces.

Keywords: Genome-scale metabolic modelling, Streptomyces, Secondary metabolism, Omics, Synthetic biology, Natural
products

Background
Streptomyces species are usually soil-dwelling bacteria,
which have adapted to their competitive ecological
niches by developing a notably diverse secondary metab-
olism (e.g., antimicrobials). Currently, more than two
thirds of the antibiotics used have been derived from
natural products discovered in Streptomyces and related
species [1]; however, the antibiotic discovery pipeline is
drying up, while the antimicrobial resistance threat is
growing. Streptomyces coelicolor A3(2) is a well-studied
model organism for the production of antibiotics in this
genus. The genome of this soil-dwelling bacterium en-
codes more than 20 secondary metabolite biosynthetic

gene clusters (BGCs) [2], and the species is known to
produce multiple antibiotics such as Actinorhodin (Act),
Undecylprodigiosin (Red), Calcium-Dependant Anti-
biotic (CDA) and the yellow Coelicolor Polyketide, Coe-
limycin P1 (yCPK) [3]. Recent developments in
metabolic engineering, synthetic and systems biology
have opened new opportunities to exploit Streptomyces’
secondary metabolism diversity to discover novel antibi-
otics and natural product-derived drugs [4, 5]. However,
expensive and time-consuming strain optimization is usu-
ally required to achieve industrially competitive production
levels. A major issue faced in strain design is the ability to
integrate test data (e.g. metabolomics) to improve the design
[6], and many of the issues encountered are related to
metabolic optimization, such as metabolic bottlenecks to in-
crease production [7], heterologous biosynthetic pathway
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precursors production [8], or accurate predictions for
metabolic engineering [9].
Genome-scale metabolic models (GSMM) have been

shown to be a powerful tool to guide metabolic engineer-
ing strategies for accelerated strain optimization [10–12],
and several generations of models of Streptomyces metab-
olism have been developed for this purpose [13–17]. The
use of constraint-based modelling, in particular with flux
balance analysis (FBA), enables the reconstruction and
analysis of large metabolic networks from the genome se-
quence as well as predictions of growth associated pheno-
types (metabolic fluxes, growth rates, metabolic gene
essentiality) [18]. Informative models for this purpose can
be constructed even when enzyme kinetic data or metab-
olite concentrations are unknown in the target organism,
making this approach particularly attractive for less
well-studied organisms like Streptomyces strains. In 2005,
the first generation GSMM of S. coelicolor, iIB711, was
published [19], which was used to identify metabolic gene
knock-outs to drive the enhanced production of antibi-
otics in the strain [20]. In 2010, an updated model,
iMA789, was published [21], which introduced more de-
tailed antibiotics metabolic pathways and was used to in-
terpret time-course gene expression data, which was then
used to improve the model and update the genome anno-
tation of the organism in the area of secondary metabol-
ism. The most recent model update, iMK1208, was
published by Kim et al. [22]; this model significantly ex-
panded the number of reactions and genes, as well as up-
dating the biomass reaction. This model was then used in
a transcriptomics-based optimization for actinorhodin
overproduction in S. coelicolor [15].
Furthermore, several genome-scale metabolic models

for other biotechnologically relevant Streptomyces strains
have been reconstructed since the first S. coelicolor
model, iIB711. A model of the Streptomyces tenebrarius
metabolic network, which was derived from the iIB711
model of Borodina, Krabben & Nielsen has been used to
identify targets to optimize production of tobramycin
[23]. A model of Saccharopolyspora erythraea has been
reconstructed based on the iMA789 model of Alam et
al. to improve the production of erythromycin [24]. One
of the most recent model reconstructions derived from
Kim et al.’s S. coelicolor iMK1208 model was used for
model-guided engineering of ethylmalonyl-CoA path-
ways in Streptomyces hygroscopicus to increase produc-
tion of ascomycin [14]. A large collection of minimally
curated metabolic models of different Streptomyces
strains and other actinomycetes was used to evaluate po-
tential host strains for overproducing different chemical
classes of secondary metabolites using comparative
multi-objective modelling [25].
Based on recent advances in our understanding of

Streptomyces metabolism and technical progress in the

concepts of computational model building, we con-
structed and validated an updated GSMM of S. coelico-
lor, iAA1259, to provide a more precise metabolic flux
and biomass predictions and to facilitate the integration
of metabolomics, proteomics, and transcriptomics infor-
mation with the model predictions.

Results & Discussion
Genome-scale reconstruction and characteristics updated
The construction of the updated GSMM of S. coelicolor
A3(2), iAA1259, was based on all three previously pub-
lished iterative reconstructions of S. coelicolor metabolic
models [19, 21, 22], by updating and adding data in the
model based on new genetic (e.g., gene–protein–reaction
relationships) or biochemical knowledge. A summary of
the main updates and new features added is available in
the Additional file 1: Tables S3, S4, S5 and S6.
Multiple pathways were added or updated. 1) Polysac-

charide degradation pathways (e.g., for xylan, cellulose)
were introduced to enable simulated growth in complex
media containing these carbon sources. 2) The biosynthetic
pathway for the secondary metabolite yCPK [26–28] was
added to the model. This cryptic BGC is awakened under
phosphate-limited condition, in nitrogen and carbon
rich media [26, 29], such as in the minimal media
used for systems biology studies of S. coelicolor [30].
3) The biosynthetic pathways for the signalling mole-
cules gamma-butyrolactones (SCB1, 2 and 3) were
added [31, 32]; secondary metabolite production in
Streptomyces (e.g., yCPK) can be activated through
these small diffusible molecules, and they are an interest-
ing target for synthetic biology engineering [33, 34]. 4)
The futalosine pathway, an alternative menaquinone bio-
synthesis pathway, which was highlighted as incomplete in
the previous model [22], has now been updated following
recently published studies [35, 36]. 5) The oxidative phos-
phorylation associated reactions have been manually cu-
rated. 6) Following the above modifications, the biomass
reaction has also been updated to reflect more detailed
knowledge on biomass composition such as the presence
of 2-demethylmenaquinol in S. coelicolor (MetaCyc) [37],
and organic polyphosphate storage [38], as well as an
update in the stoichiometry of menaquinol based on
Mycobacterium tuberculosis data [39] (see details in
Additional file 2: Table S1).
In order to facilitate metabolomics data analysis, all

metabolites in the model have now been annotated
with standard identifiers for a variety of relevant data-
bases (PubChem and ChEBI) [40, 41], and chemical
and structural information about each metabolite has
been added (InChi and SMILES strings) to ensure un-
ambiguous metabolite identification [42, 43]. The model
capacity to facilitate metabolomics data analysis has been
tested by mapping metabolites annotated with mzMatch
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[44] from an untargeted metabolomics dataset of S. coeli-
color [45]; the metabolites were mapped automatically
onto the iAA1259 metabolic network (see details in
Additional file 1: Figure S1). In addition, to facilitate
transcriptomics data analysis and comparative model-
ling, gene annotation has been expanded to include
identifiers for multiple standard databases (Gene
Ontology, Ensembl, and RefSeq) [46–48]. Finally, to
integrate proteomics data analysis, standard database
identifiers (UniProt, Pfam, and Panther) [49–51] and key
reference data, such as protein sequence, length, and
mass, have been added. The final model, iAA1259, is fully
compliant with the current standards for high-quality
GSMMs [52–54], iAA1259 is available as a SBML file in
Additional file 3 and as an excel file in Additional file 4.

Validations of the metabolic model predictions
As the first step in model validation, chemostat data col-
lected by Melzoch et al. for S. coelicolor in a glucose-limited
minimal defined media [55] were used to compare biomass
predictions by the four generations of model: iIB711,
iMA789, iMK1208, and iAA1259. Specific growth rates for
each model were predicted in silico, using the known glu-
cose and O2 uptake rates as constraints on the model, along
with the production rates of CO2 and γ-actinorhodin, the
extracellular lactone form of actinorhodin [56]. Biomass
production was maximized to estimate the optimal

predicted growth rate. Then, the growth rate predicted in
silico was compared to the dilution rate that corresponds
to the observed growth rate at steady state (Fig. 1). Since
the first published model iIB711, there have been some sig-
nificant improvements in biomass predictions; iAA1259
shows a slight improvement in predictions compared to the
previous model update, iMK1208 (8.2% average error for
iMK1208 predictions versus 7.0% with iAA1259). This first
validation confirms that the predictive performances of the
updated model iAA1259 are at least as good as the previous
models generations. However, the next validation step
requires more complex and quantitative datasets. The
data used as constraints and the predicted growth
rates data for the different models are available in
Additional file 1: Table S7.
A more substantial improvement in prediction quality

is observed when comparing the dynamic growth predic-
tions of the metabolic models iAA1259, iMK1208, and
iMA789, to published experimental growth data (Fig. 2)
[57]. The dynamic growth was predicted by applying dy-
namic constraints from fermenter data (see Methods for
details). The comparison of the predicted and experi-
mental dynamic cell growth shows a significant im-
provement in quantitative and qualitative biomass
prediction using the updated model iAA1259 (moving
from an average absolute error of 37.6% with
iMK1208 predictions to 5.3% with iAA1259; Fig. 2,

Fig. 1 Initial model growth predictions validation. Comparison of the specific growth rate predicted in silico with different models to the measured
growth rates in chemostat data [55] with a glucose-limited minimal defined media. The published data on the rate of glucose uptake, oxygen
consumption, CO2 production and γ-actinorhodin production for seven different conditions were used as metabolic constraints in the different
models. Growth prediction by iAA1259 shows a slight improvement compared to its immediate predecessor, iMK1208 [22]
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and Additional file 1: Figure S2). This improvement
in biomass predictions is most likely due to the up-
date of the biomass reaction and in the oxidative
phosphorylation-related reactions updates (i.e., cyto-
chrome oxidases and/or menaquinone pathway), as these
are the main adjustments affecting biomass-related reac-
tions directly.
The next validation step involved individual metabolic

flux predictions across the model. For this purpose, the
models were constrained with time series fermenter data
for glucose and O2 uptake rates and the production rates
of γ-actinorhodin and CO2 for 32 time points from Nie-
selt et al. using the method introduced by Alam et al.
[21]. The metabolic flux predictions were compared to
time series of gene-and protein expression reported by
Lahtvee and colleagues [58], as proxies for the relative
metabolic flux across the time course. For the majority
of genes, the gene expression changes over time are
strongly correlated to the predicted metabolic fluxes
through the associated reactions (Fig. 3), and the correl-
ation is substantially improved in the updated model
presented here (median Spearman correlation coefficient
0.56, compared to 0.18 in the most recent predecessor,
iMK1208). When focusing only on the correlation for
genes that change at least 25% in expression across the
time course (Fig. 3d), i.e. those genes that should show
correlation, the quality of the correlation is even more

pronounced (the Pearson correlation coefficient increases
by 39% from 0.56 to 0.78), and it becomes clear that only
a very small number of genes show anti-correlated behav-
iour, i.e. a strong disagreement between gene expression
and predicted fluxes. A similar trend is observed when ap-
plied to the fluxes predicted with iMA789 and iMK1208
models, both showing an increase of overall Pearson cor-
relation from 0.13 to 0.38, and from 0.18 to 0.56, respect-
ively (Additional file 1: Figure S1). The trend of a
progressive increase in predictive power is still observed
from iMA789 to iMK1208 (47% increase in correlation),
and from iMK1208 to iAA1259 (42% increase in
correlation).
In the updated model, there are two major genetic fea-

tures showing anti-correlation (Fig. 4, row a), the genes
associated to Calcium Dependant Antibiotics (CDA) bio-
synthesis, and the nuo operon genes associated to an
NADH dehydrogenase (complex I). The CDA genes
(Fig. 4, row e) are anti-correlated because their gene ex-
pression unexpectedly increases during the transition
phase (Fig. 4, row c), whereas the model does not pro-
duce CDA. The metabolite production was not switched
on in the model, as there is no calcium in the media
conditions used by Nieselt et al. [57]. It has been shown
previously that CDA could not be detected at significant
levels if there was no calcium in the media [59]. Further-
more, production of the associated proteins is not

Fig. 2 Comparison of dynamic cell growth predictions. The quantitative in silico growth predictions are compared to measured biomass and
predictions with previously published models across time points. The models were constrained using phosphate, glucose, and glutamate
consumption, as well as production of the antibiotics actinorhodin and undecylprodigiosin measured in a fermenter experiment [57]. The
updated model’s predictions are closer to experimental observations than those of previous models, showing a significant improvement in
growth prediction with the iAA1259 model
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confirmed by the proteomics data [60] (Fig. 4, row b).
Thus, in this case, the model prediction (no flux increase
during the transition phase, Fig. 4 row d) appears to be
correct, and gene expression in this exceptional case
might not be correlating with metabolic flux. The Fig. 4
is available in high-definition as Additional file 5.
Regarding the second major anti-correlation, which is

seen for the genes encoding the 14 subunits of NADH
dehydrogenase I (NDH-I), the nuo complex, the dis-
agreement between gene expression and predicted flux
is due to a regulatory phenomenon, which in general is
difficult to capture in a constraint-based model: two iso-
enzyme complexes are present in S. coelicolor, the

relative expression of which is controlled by a regulatory
loop dependent on NADH/NAD+ ratio [61]. Of these, the
nuo genes are preferentially expressed during fumarate res-
piration (stationary phase, [62]). So, while fluxes through
the reaction catalysed by the NADH-dehydrogenase are re-
duced after the transition phase, nuo gene expression in-
creases and results in an anti-correlation of nuo gene
expression with the flux prediction (which does not distin-
guish between the isoenzyme complexes). The second
NADH dehydrogenase, NDH-II, encoded by three copies
of the ndh gene, is preferentially expressed during expo-
nential phase and switched off after the transition phase;
hence, the ndh genes show high correlation with the

Fig. 3 Correlation analysis between gene expression and predicted fluxes for the different models. The histograms show correlations between
gene expression and flux predicted for the metabolic genes present in the different published GSMMs of S. coelicolor. This approach has been
used first by Alam et al. [21], for the model iMA789. a Histogram of correlations for the model iMA789 by Alam et al. [21]. b Histogram of
correlations for the model iMK1208 by Kim et al. [22]. c Histogram of correlations for the new model, iAA1259. The histogram shows a strong
correlation between gene expression and predicted fluxes for metabolic genes present in the model iAA1259. Overall correlation is substantially
higher than for the previous models, with a median Spearman correlation of 0.56 compared to 0.13 for iMA789 and 0.18 for iMK1208. d
Histogram of correlations for the model iAA1259, but only taking into account genes with expression variation of more than 25% between the
minimal and maximal transcript level
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predicted flux. While regulatory phenomena like this are
not considered in this type of model, the misprediction
highlights an interesting phenomenon for future study, i.e.
the impact of the relative role of the two sources of redu-
cing co-factors on secondary metabolism in S. coelicolor.

Conclusions
Here, we have presented an updated computational
model of S. coelicolor primary and secondary metabol-
ism, iAA1259; this model shows improved predictive
abilities compared to previous model generations for
metabolic changes at different scales, from overall bio-
mass dynamics to fluxes through individual reactions.
Another important improvement is that the model has

been also updated to enable integrative multi-omics data
analysis, to be used for designing and debugging of engi-
neered Streptomyces strains using a synthetic biology ap-
proach [6], and is now fully compliant with current
modelling standards [52, 54].
The model presented here will be a good basis for the

next round of computer-aided design of metabolically
enhanced Streptomyces strains. The principled construc-
tion of the model using standard identifiers will facilitate
the transfer of information to related strains beyond S.
coelicolor (e.g., recently emerging popular biotechno-
logical hosts, such as Streptomyces albus and Streptomy-
ces venezuelae [63, 64]). It will also serve as a solid
starting point for the next generation of updated meta-
bolic models, which will address the challenge of includ-
ing kinetic and regulatory constraints, in a similar way
as the recently published genome-scale metabolic

models for the well-studied microorganisms Escherichia
coli [65] and Saccharomyces cerevisiae [66].

Methods
Metabolic model reconstruction
The model reconstruction was initiated by updating the
iMK1208 S. coelicolor model. The standard protocol for
reconstruction of high-quality constraint-based GSMMs
was followed when adding new genes, reactions, and
metabolites [53].
In summary, the initial stoichiometric matrix was gen-

erated by comparing and using the iMK1208 model [22],
KEGG [67], ScoCyc [37], and two automated reconstruc-
tions using RAST annotations and SEED reconstructions
[68, 69]. The resulting matrix was manually curated for
specific pathways (e.g., secondary metabolites biosyn-
thesis, oxidative phosphorylation), to add or correct
missing reactions, metabolites, genes associated, or re-
versibility constraints; this was supported by extensive
literature survey to identify new knowledge or gaps in the
previous model. Comparative analysis of transcriptomics
data with iMK1208 helped to identify gene mis-annotations
to be corrected [21, 57]. The biomass reaction was updated,
as multiple reactions impacting biomass have been added
(e.g., demethylmenaquinone, cytochrome oxidases or
NADH dehydrogenase reactions). This was followed by a
recalculation of the ATP fluxes for growth-associated and
non-growth-associated maintenance using chemostat data
[55], following the Varma & Palsson protocol [70]; the
resulting values were very similar to those used in iMK1208
(with a GAM of 75.7 ATP in iMK1208 versus 75.79 ATP in

a
b

c

d

e

Fig. 4 Validation by integrated transcriptomics and proteomics analysis. Gene expression and proteomics data were mapped to metabolic enzyme-
coding genes and the associated metabolic fluxes predicted over time. Overall, the predicted flux trends are strongly correlated (green colour in the
top bar) to the observed gene expression trend across the metabolic switch event (around between 35 and 36 h). Two highly anti-correlated gene
clusters are highlighted (red colour in the top bar). a Correlation: Pearson (P) and Spearman (S) correlation coefficient between the experimental gene
expression level and the predicted fluxes through the corresponding reaction for each individual metabolic gene (green: good correlation; yellow: no
correlation; red: anti-correlation. b Proteome: Protein abundance observed in experimental time course data: red: high: green: low abundance, black:
missing data (only a small subset of enzymes was quantified). Proteomics data from Thomas, et al. [60]. c Gene expression: Gene expression levels
observed in the same experimental time course (red: high, blue: low expression). A much larger number of time course were studied than in the
proteomics analysis. Gene expression data from Nieselt et al. [57]. d Predicted flux: Flux predicted during a simulated time course (green: high; red: low
predicted flux). e Genome features: Selected genomic regions discussed in the text are annotated. The data is ordered based on the position of
analysed genes in the reference genome (from left to right, from 161,237 bp to 8,468,158 bp). Genome sequence from Bentley et al. [2]
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iAA1259, and an NGAM of 2.65 in iMK1208 versus 2.64 in
iAA1259). The detailed modifications on the biomass are
available in the Additional file 2: Table S1.
Finally, multiple database identifiers were added either

by automatic matching or by manual curation when ne-
cessary. The metabolites were annotated with multiple
database identifiers; BiGG and KEGG identifications
were already present in iMK1208, and other databases
relevant to metabolomics data analysis were added:
ChEBI, HMDB, CAS, IUPAC, ChemSpider, Metlin and
PubChem identifications, wherever available. Chemical
structure-related annotations (SMILES or InChi) were
also introduced for all metabolites. Furthermore, when
available, all reactions were annotated with EC code and
CAS registry number, in addition to the BiGG annota-
tion used in iMK1208. Additional gene annotations have
been included to facilitate transcriptomics data integra-
tion with identifiers for Gene Ontology (GO), RefSeq,
EMBL-ENA and Ensembl. For integrated proteomics
analysis, annotations have been expanded to include
identifiers for UniProt, Pfam and Panther, as well as data
on protein length, mass, and amino acid sequence to
support the direct mapping of mass-spectrometry-based
proteomics data in the future. The expansion of these
annotations also aims at helping fast reconstruction of
metabolic models for other Streptomyces strains using
comparative reconstruction and modelling methods. The
final model has been named iAA1259 and is compliant
with current metabolic model standards [52, 54]. The
final model is available in SBML format and Excel for-
mat in Additional files 3 and 4.

Constraint-based modelling
The model was analysed by using Flux Balance Analysis
(FBA) and parsimonious FBA (pFBA) to predict optimal
in silico growth and metabolic flux using the COBRA
toolbox in Matlab and Python [71, 72] and further
evaluated using OptFlux and Sybil [73, 74]. To apply
condition-specific constraints corresponding to the
media composition, the uptake fluxes for exometabo-
lites not available in the medium were set to zero,
while all metabolic by-products were always allowed
to leave the metabolic system. The measured nutrient
uptake rates from the fermenter datasets are used to de-
fine constraints of the nutrient uptake for the model. The
objective function maximized in the modelling was the
growth rate (steady-state flux towards biomass).
Despite the fact that FBA is not a dynamic modelling

approach (its basic assumption being a steady-state flux
distribution), using dynamic constraints on CO2, O2,
glucose, phosphate, and glutamate uptake based on fer-
menter time-course data [57] enabled simulation of the
growth and metabolic dynamics across time. In order to
simulate the production of the main antibiotics, the

biomass composition was varied dynamically depending
on the observed concentration of γ-Act and Red second-
ary metabolites in the cultures [21].

Transcriptomics and proteomics data analysis
Multiple omics data types have been used to validate the
model; the proteomics data [60] have been acquired from
the same time-series experiment samples as the flux con-
straints data and the transcriptomics data [57]. The tran-
scriptomics and proteomics data were matched to
corresponding metabolic genes associated with reactions
by matching the StrepDB gene annotations. The matching
procedure was similar to the one used for iMA789 [21].
Gene expression levels and predicted fluxes were com-
pared using Pearson and Spearman correlations. The data
used are available in the Additional file 6: Table S2.

Additional files

Additional file 1: Containing the Table S3. Summary table of the updates
and new features added to the iAA1259 model compared to the previous
generations. Table S4. Table of the new reactions added to the iAA1259
model. Table S5. Table of the new metabolites added to the iAA1259
model. Table S6. Table of the new genes added to the iAA1259 model.
Figure S1. Correlation analysis between gene expression and predicted
fluxes for iMA789 and iMK1208 (gene expression showing a variation
superior to 25%). Figure S2. Mapping of observed metabolites in an
untargeted metabolomics dataset onto the metabolic network. Table S7.
Constraints used and predicted growth rates of the different models from
the Fig. 1. Figure S3. Comparison of the normalized growth prediction of
the metabolic models to the experimental data. (DOC 4121 kb)

Additional file 2: Table S1. Biomass modifications and recalculation of
ATP consumption. (XLS 81 kb)

Additional file 3: iAA1259 metabolic model in SBML format. (XML 4249 kb)

Additional file 4: Excel file specifying metabolites, reactions, genes
contained, and databases IDs present in the iAA1259 metabolic model.
(XLS 2531 kb)

Additional file 5 High-resolution version of Fig. 4. Validation by
integrated transcriptomics and proteomics analysis. (PDF 1881 kb)

Additional file 6 Table S2. Full detailed data used for the Fig. 4.
(XLS 1690 kb)
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