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The factors influencing cancer susceptibility and why it varies across species

are major open questions in the field of cancer biology. One underexplored

source of variation in cancer susceptibility may arise from trade-offs between

reproductive competitiveness (e.g. sexually selected traits, earlier repro-

duction and higher fertility) and cancer defence. We build a model that

contrasts the probabilistic onset of cancer with other, extrinsic causes of mor-

tality and use it to predict that intense reproductive competition will lower

cancer defences and increase cancer incidence. We explore the trade-off

between cancer defences and intraspecific competition across different

extrinsic mortality conditions and different levels of trade-off intensity,

and find the largest effect of competition on cancer in species where low

extrinsic mortality combines with strong trade-offs. In such species, selection

to delay cancer and selection to outcompete conspecifics are both strong, and

the latter conflicts with the former. We discuss evidence for the assumed

trade-off between reproductive competitiveness and cancer susceptibility.

Sexually selected traits such as ornaments or large body size require high

levels of cell proliferation and appear to be associated with greater cancer

susceptibility. Similar associations exist for female traits such as continuous

egg-laying in domestic hens and earlier reproductive maturity. Trade-offs

between reproduction and cancer defences may be instantiated by a variety

of mechanisms, including higher levels of growth factors and hormones, less

efficient cell-cycle control and less DNA repair, or simply a larger number of

cell divisions (relevant when reproductive success requires large body size

or rapid reproductive cycles). These mechanisms can affect intra- and inter-

specific variation in cancer susceptibility arising from rapid cell proliferation

during reproductive maturation, intrasexual competition and reproduction.
1. Introduction
Cancer incidence across species varies widely. These differences in cancer sus-

ceptibility are due to both environmental exposures [1], and evolutionary

pressures shaping organism-level cancer susceptibility and cancer defences

[2–4]. Beneficial traits such as defence against disease are often costly, and

such trade-offs can maintain genes that contribute to disease susceptibility [5].

For example, trade-offs between reproduction and immune defence have been

observed in a number of species [6,7]. Similar trade-offs have been proposed to

underlie observed associations between reproductive competitiveness and

cancer [8], though as of yet there has been no formal model describing these

trade-offs and the factors affecting them.
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Accumulating genetic and molecular evidence suggests

that trade-offs between benefits early in life and disease suscep-

tibility later in life may be widespread across disease (as

reviewed in Carter & Nguyen [9] and Leroi et al. [10]). This

phenomenon may also significantly shape the susceptibility

to cancer [9]. Cancer suppressor genes such as P53 [11,12]

and BRCA [13] play important roles in fertility and may be

maintained owing to trade-offs between fertility enhancement

and cancer risk.

Trade-offs between reproductive competitiveness and

cancer risk can be expected for two main reasons: (i) selection

for mechanisms that enable rapid cell proliferation could

simultaneously enhance extreme trait expression as well as

tumour formation and (ii) selection for increased allocation of

energy to reproductive traits rather than to somatic maintenance

could elevate cancer risk by increasing somatic mutation rates.

The first type of trade-off may involve mutations or epigenetic

silencing of cancer suppression genes. The second type of

trade-off could be due to altered allocation of a finite energy

pool towards reproduction at the expense of somatic mainten-

ance, such as DNA repair or immune defences. Consequently,

mutations that increase cancer risk arise more easily if energy

must be diverted away from DNA repair to support develop-

ment or expression of reproductive traits. These two pathways

are distinct, but can potentially interact to produce trade-offs

between reproductive competitiveness and cancer suscepti-

bility. Even if somatic mutation rate per cell division did not

change, reproductive success might require a larger number of

cell divisions (e.g. when sexual selection favours large-bodied

males), and this again increases the total risk.

In this paper, we explore the effect of reproductive trade-offs

on the evolution of cancer defences, modelling reproductive

competitiveness as the extent to which the most competitive indi-

viduals dominate reproduction. Reproductive competitiveness is

an important force in the evolution of extreme morphologies

and life histories, and is often impacted by sexual selection [14].

Traits such as large bodysize, extreme morphology (i.e. weapons

or ornaments), larger and more frequent litter size, and

aggressiveness can all have positive effects on fitness through

preferential mating or differential fitness owing to higher repro-

ductive output, but they can also be costly in terms of increasing

mortality or morbidity. Large body size and extreme mor-

phologies often require greater levels of cell proliferation via an

increase in growth signalling mechanisms (including hormones

and growth factors). Additionally, factors that accelerate organis-

mal reproduction (e.g. growing fast, early maturation) or increase

the frequency of reproduction might enhance cancer risk

through the allocation of energy towards reproduction rather

than through somatic maintenance, potentially increasing the

likelihood of mutations in cancer suppressor genes.

Our model does not explicitly distinguish between these

two types of trade-offs (cell-proliferation-related vulnerabilities

and energy allocation trade-offs). For simplicity and generality,

we base our model on the intensity of the trade-off be-

tween reproductive competitiveness and cancer defences. In

addition to varying the intensity of the trade-offs, we also

consider varying levels of extrinsic mortality. This allows us

to explore the evolutionary viability of cancer defences in

species under different reproductive, social and ecological con-

ditions. Mortality (and the consequent expected lifespan) is

important, because cancer defences can delay the onset of

cancer, but delays bring about little selective benefit at an

age where the organism is likely to have died of other causes.
We use this model to make predictions about the patterns of

cancer incidence across species and review a variety of mechan-

isms that might underlie trade-offs between reproductive

competitiveness and cancer defence.
2. Model
(a) Stronger intraspecific competition is predicted

to lead to higher cancer incidence
Can reproductive competition within a population lead to indi-

viduals adaptively ‘neglecting’, or never evolving, some of the

possible defences against cancer? Here, we derive an optimality

model to address this question, as well as whether populations

with particularly strong intraspecific competitive effort should

be expected to have an elevated risk of mortality owing to

cancer (as opposed to some other cause). In this model, the popu-

lation can refer to all individuals, regardless of their sex, but it is

also possible to make statements about a subset of the biological

population to the extent that competition occurs among ‘peers’.

For example, the population may be split into males and females,

which means that other males form the relevant peer group of

males, whereas females compete with other females. Conse-

quently, we also consider whether male defences against

cancer are expected to differ from those of females.

(b) Model assumptions and derivations
(i) Cancer defence
First, we assume that variation in the strength of defences

against cancer is present in the population. The model does

not specify how the defence acts to delay cancer onset. Instead,

we use an operational definition. Assuming that cancer takes

n steps to form, with each occurring at a rate ki per cell, where

i ¼ 1, 2, . . . , n, if n steps have occurred in a particular cell lineage,

then the whole organism has cancer. The organism possesses

defence levels di against each step i, where 0 � di � 1. Each di

denotes the reduction in the rate at which the corresponding

step occurs: if, for example, di ¼ 0.5, the ith step takes, on aver-

age, twice as long to happen than it would in the absence of

any defence; if di ¼ 0.75, it takes four times as long (only 25%

of the rate then remains, and 1/0.25 ¼ 4). One possible way to

achieve di ¼ 0.5 is to have DNA repair remove half of the critical

mutations, but less direct ways include efficient immuno-

competence that clears half of the infections before they

can heighten the organism’s cancer risk. Alternatively, the

organism may simply eliminate half of the precancerous cells.

For simplicity, our examples are built assuming that all limit-

ing steps occur at the same rate ki¼ k for all i, and that cancer

defence likewise is the same across steps, di¼ d for all i. Without

this assumption, the analysis would proceed as below but with

specific multiplications for each i separately. The general model

intends to make no statements about the relative efficiency of

particular defence types against specific rate-limiting steps.

(ii) Reproductive competition within the peer group
Next, we specify how intraspecific competition impacts

an individual’s reproductive success. As described in §1,

trade-offs between defence and investment in immediate

reproductive success may occur for multiple reasons. For

example, the latter may require fast growth, but this comes

at a cost to the former. We assume competitiveness, c, is a
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Figure 1. Higher cancer defence increases lifespan. The probability that
cancer has arisen by age t for three different defences d ¼ 0, d ¼ 0.5
and d ¼ 0.75. Note that for any probability level, d indicates the proportion
of the arrow that extends beyond the d ¼ 0 curve. Thus, e.g. with d ¼ 0.75,
three quarters of the delay from birth to cancer is due to the defence effort,
one quarter owing to the time that mutations take to occur even if there is
no cancer defence effort. Graphs are derived using parameters k ¼ 0.01,
n ¼ 3 and N ¼ 2000.
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function of two parameters a (the intensity of intraspecific

competition) and b (the strength of trade-offs): the rate of

fitness accumulation per time unit spent alive and cancer

free is assumed proportional to ca ¼ (1 – db)a.

This is specified as ‘proportional to’ rather than as ‘equal to’

to take into account the fact that fitness is relative to conspeci-

fics. Thus, if surrounded by many other competitive

individuals, fitness of the focal individual may remain low,

but for the subsequent analysis contrasting alternative life his-

tories of a focal individual the effect of others stays constant

and does not have to be included [15]. Here, c ¼ 1 – db

describes the individual’s competitiveness assuming it does

not yet have cancer. Cancerous individuals are assumed to

be non-competitive and thus gain zero reproductive success

while alive with cancer.

Competitiveness, as defined above, is a declining function

of cancer defences, which reflects the assumption that defences

are costly. The parameter a describes the intensity of intraspe-

cific competition (in many cases, limited to competition within

a sex, i.e. intrasexual competition) such that resources obtained

scale with competitiveness according to a power function ca

(see parameter u in an analogous treatment in [15]). Thus, if

a ¼ 1, an individual whose competitiveness c exceeds that of

its peer group by a certain percentage (say, 10%) will have an

equivalently better (in this example 10%) access to resources.

If a , 1, the benefits of increased competitiveness are lower:

a 10% increase in c would, then, lead to lower than 10%

improvement in reproductive gains. Conversely, a . 1 will

make the resource–competitiveness relationship steeper, so

that if a� 1, competition is of a ‘winner-takes-all’ nature: a

higher competitiveness, c, compared with the rest of the peer

group will then lead to the focal individual reaping almost

all the reproductive benefits.

The parameter b changes the shape of trade-offs: if b is

small, then competitiveness declines in response to investing in

other life-history components (here, cancer defence) even if the

defence is not intensive; ifb is large, then individuals can retain

their competitiveness intact up to high (d � 1) defence levels.

Individuals are assumed to gain reproductive payoffs (of

magnitude ca) at a constant rate as long as they are cancer-free

and have also avoided other sources of mortality.

(iii) Cancer-free lifespan
There are two ways in which an individual can end its repro-

ductive career. The first is death owing to a source of

mortality other than cancer, which we assume occurs at a con-

stant rate, m. A(t) is the probability that this type of death has

happened by time t. The second way an individual can die is

by cancer, that is, when one of the N cell lineages has passed

through all the rate-limiting steps, denoted by B(t), the prob-

ability that this has happened by time t. The overall

probability that the individual is alive is

P(t) ¼ (1� A(t))(1� B(t)), ð2:1Þ

where

A(t) ¼ e�mt ð2:2Þ

and

B(t) ¼ 1� (1� (1� e�(1�d)kt)n)N ð2:3Þ

B(t) is formed in the following way: 1 2 e– (12 d)kt is the prob-

ability that a single rate-limiting step has already happened

by time t. When we assume that n steps are required before
oncogenesis can end an individual’s reproductively active

life, (1 2 e2(12d )kt)n is the probability that all of them have hap-

pened in the same focal cell lineage. The complementary

probability 1 2 (1 2 e2(12d )kt)n consequently gives the prob-

ability that the focal lineage is healthy at time t. If there are N
such lineages in an organism, (1 2 (1 2 e2(12d )kt)n)N (which

raises the above to the power N) is the probability that all cell

lineages are healthy at time t. The complement of this quantity

is the probability B(t) of cancer having already emerged in at

least one cell lineage as indicated above.

In the absence of any defences against cancer, the prob-

ability that the individual has cancer by time t rises from

zero to unity as time passes (figure 1). The effect of defence

is to delay this increase in a very specific manner: for each

value of d, the cumulative probability curves of cancer

having ended the individual’s cancer-free lifespan are shifted

to the right such that any horizontal time line drawn from t ¼
0 to the probability curve has exactly the proportion d spent

in the state of ‘cancer-free life prolonged due to defences’.

Thus, if, for example, d ¼ 0.75, one-quarter of the age that

the organism managed to spend cancer-free was caused by

‘luck’, whereas three-quarters can be attributed to defences

delaying the eventual inevitability of cancer.

To sum up the effect of d on realized lifespan, however, it is

not sufficient to stop at the information contained in figure 1,

because other sources of mortality can make it unlikely that

the organism is alive to reap the probabilistic benefits of the

longest delays at the upper end of figure 1. In this context, it

is insightful to use equation (2.3) to derive the time, denoted

t(P, d), that it takes cancer incidence to reach any pre-specified

value P, for a given level of defences d

t(P, d) ¼ � ln(1� (1� (1� P)1=N)
1=n

)

(1� d)k
ð2:4Þ

Expected lifespan then is an integral

L(d) ¼
ð1

P¼0

1� A(t(P, d))dP ð2:5Þ

Numerical integration of L(d ) leads to a crucial insight. If

extrinsic mortality (m) is high (right side of figure 2), investing
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Figure 2. The effects of cancer defences on lifespan are strongest when extrin-
sic mortality is low. Model predictions for the expected duration of cancer-free
life, which can be ended by either cancer or through other sources of mortality,
as a function of extrinsic mortality m, plotted for different values for defence
effort d as indicated on the graph (lowest curve: d ¼ 0, then d ¼ 0.1, fol-
lowed by d ¼ 0.5 and d ¼ 0.9). The dotted line gives the expected
lifespan assuming no cancer ever occurs (d ¼ 1). The impact of defence on
lifespan varies from strong when extrinsic mortality is low, to negligible
when lifespans are short owing to causes other than cancer. Parameters as
in figure 1. Note that neither a nor b impact the graphs in figure 1 or in
this figure.
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in defence, d, does not prolong lifespan. Even in the absence

of defences, cancer remains an insignificant cause of death as

it does not ‘have the time’ to develop before the organism has

already been killed by predators or any other factors categor-

ized as extrinsic mortality (m). Only when these other sources

of mortality are low (left side of figure 2), does investing in

defence, d, have a substantial impact on lifespan. This high-

lights that in our aim to derive how optimal cancer

defences depend on intraspecific competition (parameters a

and b), we also must consider scenarios with a variety of

extrinsic mortalities (m).

To derive how optimal cancer defences depend on intraspe-

cific competition, while considering scenarios with a variety of

extrinsic mortalities (m), we compute lifetime fitness, i.e. the

quantity (1 – db)aL(d), for different extrinsic mortalities and

intraspecific competition (a) and trade-off (b) values and find

the maximum. The results (figure 3) show that in all the mortality

scenarios (m ¼ 0.01, 0.1 and 1) and whether we assume weak or

strong trade-offs (b) between cancer defences and reproductive

success, the optimal defence always declines with increasing

intraspecific competition (a), unless defence is already low to

begin with (top right figure). The results remain similar across

all values of n and N that we tested, though for simplicity only

one set of parameters is shown. Lastly, we present alternative

extrinsic mortality (m) scenarios and illustrate how often life is

actually ended by cancer, as opposed to all other causes. More

intense intraspecific competition (a) increases mortality risk by

cancer unless trade-offs (b) are low (figure 4).
3. Predictions from the model
(a) High intraspecific competition lowers cancer

defences
Our model predicts that individuals may evolve traits that

increase reproductive success even if this increases their
cancer risk, but the extent to which this applies depends on

the intensity of intraspecific (often intrasexual) competition as a

determinant of reproductive success, and also other parameter

values. In an environment with low extrinsic mortality (m ¼

0.01), we expect more cancer in species where intraspecific

competition (a) is very strong (at the extreme, of a winner-

takes-all nature; figure 3 top left). Species in high extrinsic

mortality environments (m ¼ 1), on the other hand, are expected

to die from other causes than cancer, regardless of the intensity

of intraspecific competition (a) (figure 4c). If extrinsic mortality

is lower, then cancer incidence can depend strongly on the role

that intraspecific competition (a) plays in shaping life histories

(figure 4a,b). Intraspecific competition can vary between males

and females, and thus we will discuss our predictions and

review of the literature separately for each sex.
(i) Sexually selected traits may increase cancer risk
in highly competitive males

Males often invest more energy in obtaining a mate than

females and this can lead to high competition among individ-

uals to reproduce. For example, males with high reproductive

competitiveness participate in male–male competition

and dominant males gain more opportunities to mate. This

competition can favour the evolution of secondary sexual

characteristics (e.g. extreme traits) [14,16], and it is well

known that a shorter lifespan may be an ‘acceptable’ cost of

such traits in the sense that net selection favours their exagger-

ation, whereas male lifespan is shortened. According to our

model, we predict sexually dimorphic species, such as individ-

uals with extreme ornaments and weapons or larger body size,

to be subject to increased cancer risk (figure 5); similarly, we

expect more cancer in species with strong sperm competition

(particularly in the relevant tissues such as the testes). These

trade-offs may be a result of vulnerabilities arising from

increased cell proliferation (e.g. growth promoting signals to

produce large body size or weapons; more of the continually

dividing cells in larger testes) or as a result of allocation of

energy towards reproductive competition at the expense of

somatic maintenance (e.g. DNA repair, immune defences).

However, it is clearly difficult to obtain cancer incidence for

species in the wild, especially when male–male competition

is intense: poor performance of an individual after the onset

of cancer can lead to a death (e.g. taken by a predator) that is

not easy to trace back to cancer.

There is some evidence to suggest that selection for large

body size in males can lead to higher cancer susceptibility.

For example, Xiphophorus maculatus, a freshwater fish called

the Southern platyfish, carries a dominant oncogene (Xipho-

phorus melanoma receptor kinase, Xmrk) that is normally

suppressed but can result in the formation of male-biased

malignant melanomas in hybrids [17–20]. Body size can

strongly predict reproductive success in this species, and

the Xmrk genotype is positively correlated with a larger

body size in both males and females. Females prefer to

mate with males carrying a larger black spot [17,18], and

males with melanoma and Xmrk were significantly longer

than both males with Xmrk and no melanoma and males

without Xmrk [17]. Xmrk is derived from a gene duplication

event of an epidermal growth factor receptor that controls

cell proliferation [21], and it may be involved in binding to

growth factor ligands that increase both body size and

melanoma formation in several Xiphophorus species [22].
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Another intriguing example of a trait that can enhance

reproductive competitiveness of males, but also may increase

cancer risk is the production of sexually selected weapons,

such as antlers. In most deer species, only males grow antlers,

and growth is initiated at puberty [23,24]. New antler growth

and casting is seasonal, and thought to be controlled by levels

of circulating testosterone [25,26]. It has been hypothesized

that there is also a period of androgen-independent growth

during antler formation [23], where circulating levels of

insulin-like growth factor-1 (IGF-1) were significantly increa-

sed in male deer growing their antlers [27]. Male–male

competition can lead to strong selection for growth to produce

such elaborate traits, but this comes with a risk: disregulation in

the system can lead to uncontrolled cellular growth. Species

with antlers are accordingly susceptible to antleromas, which

are massive growths found on the antlers of free ranging

deer [28–35]. Antleromas can be artificially produced when

androgen production is disrupted (e.g. castration) and circulat-

ing testosterone does not cycle [32], suggesting that interactions

between hormone levels and growth factors underlie the

mechanisms creating susceptibility to antleromas.

(ii) Factors that enhance female fertility may lead
to elevated cancer risk

In many species, females invest typically more heavily in other

components of reproductive effort rather than mating effort.

Determinants of reproductive success for females often include

components such as fertility timing and frequency, as well as

size of the litter and investment in individual offspring. Our

model is not sex-specific per se: although intraspecific compe-

tition (a) is probably lower for most females compared with
males (reproduction is not of a ‘winner-takes-all’ nature), it

still predicts that investment in traits that elevate reproductive

competitiveness can elevate susceptibility to cancer, especially

if very high reproductive output requires rapid cell prolifer-

ation (figure 4). Given that early reproductive maturity and

rapid offspring production both require rapid cell proliferation,

and may also involve the allocation of energy towards repro-

duction at the expense of DNA repair, we consider it possible

that selection for improved reproductive success can lead to

higher cancer risk in females, too.

Once again, detecting cases in the wild remains challen-

ging: natural selection can yield life histories where most

deaths occur before the expected onset of cancer (figure 4).

Artificial breeding, however, offers instructive examples for

revealing underlying trade-offs: intense selection for reproduc-

tive traits can heighten cancer risk considerably (figure 5). The

domesticated Jungle fowl hen (Gallus gallus domesticus) has

been artificially selected for daily ovulation and continuous

egg-laying. This hen is the only known non-human animal

with a high incidence of spontaneous ovarian cancer [36].

Ovarian cancer is observed in hens as young as 2 years of

age, and 30–35% develop the highly malignant disease by

3.5 years of age [36,37].
4. Discussion
(a) Life-history trade-offs between cancer defences

and reproduction
One way reproductive competition may be lowering cancer

defences is through energy allocation trade-offs [38]. Organisms
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for any value of intraspecific competition (a).
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have limited energy to divide between soma maintenance and

reproduction, with allocations dependent on life history (see

‘disposable soma theory’ [39]). Short-lived organisms allocate

more resources towards reproduction in order to reproduce suc-

cessfully within their lifespan, whereas investment in somatic

maintenance (among them cancer defences) has allowed

species to extend their lifespans [40,41]. When all else is equal,

short-lived rodents are more prone to cancer [42,43] than are

long-lived species, such as elephants and whales [3]. Indicative

of lower defences, cells of shorter-lived organisms overcome

intrinsic growth limitations more easily (i.e. transformation in

cell culture) [44], allocate less time to DNA repair (short-lived

species have more unresolved DNA damage in the form of

micronuclei) [45] and proliferate rapidly in vitro [46]. Our results

suggest that large-bodied animals must invest more in somatic

maintenance, including tumour suppression, to build and

maintain a large body for a sufficiently long time for reproduc-

tion to occur [3,47]. It has also been demonstrated that DNA
break recognition is better in mammals with long lifespans

[48]. Increasing lifespan may thus select for new tumour sup-

pressor mechanisms or a shift in energy allocation towards

more prolonged somatic tissue maintenance [49].

Some of the genetic and molecular mechanisms that

mediate trade-offs between cancer defences and reproduction

are becoming better understood. For example, the cancer

suppressor genes P53 [11,12] and BRCA [13] are likely candi-

dates given that mutations in these genes appear to be

associated with enhanced fertility in some cases. Current evi-

dence suggests that the P53 family of tumour suppressors

(which includes also p63 and p73) may be involved in fertility

and reproduction as well as cell cycle regulation [50]. Mouse

models have demonstrated that p63 may have effects on the

quality and survival of the oocyte pool [51], p73 plays a

role in early blastocyst division [52], and p53 may help regu-

late the implantation of the fertilized egg as well as litter size

in knockout mice [53].



reproduction

cancer defense

reproduction

cancer defense

Figure 5. Increased reproductive effort through mating effort or fertility may lower cancer defences. An illustration of our hypothesis – selection to enhance repro-
ductive competition decreases cancer defences. Traits selected to increase reproductive effort include body size, ornaments or weapons in males, or fertility frequency
and productivity in females. Hypothetical trade-offs are illustrated above depicting examples of reproductive competition. For example, the smaller antler on the deer
illustrates less reproductive competitiveness, but better protection against cancer. Similarly, increased reproductive output in domesticated chickens may trade off
with lower cancer defences.
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DNA repair is a critical mechanism for cancer suppression

and somatic maintenance [54,55]. BRCA1 and BRCA2 (breast

cancer susceptibility genes 1 and 2) genes encode for tumour

suppressor proteins important in DNA repair pathways [56].

Mutations in these genes increase the risk for breast and ovar-

ian cancers [57]. Interestingly, one study demonstrated that

women with BRCA1 and BRCA2 mutations have greater sus-

ceptibility to breast cancer, but also higher fertility. Women

with BRCA mutations had significantly more children, shorter

birth intervals and end childbearing later than the controls [13].

However, the mechanism for increased fertility among women

with BRCA mutations is unknown and murine models of

BRCA mutations do not support these findings [58].

Another potential example of an association between fertil-

ity and cancer risk involves the Kisspeptin (KISS1) gene in

humans. Kisspeptin is a G protein coupled receptor ligand

that is required for normal maturation and puberty. Defects

in KISS1 lead to the absence of sexual maturation, indicating

a critical role in the timing of puberty [59,60]. Kisspeptin also

induces production of luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) and is required for menstruation.

Interestingly, KISS1 was first discovered as a metastasis sup-

pressor gene and thought to play a role in suppression of

metastasis of breast cancers and melanomas [61]. Recently,

KISS1 has been also implicated in the inhibition of trophoblast

invasion and angiogenesis in the placenta [62,63]. Although

the exact mechanisms are yet to be determined, it may be

that the capacity to suppress trophoblast invasion might also

confer capacities to suppress cell invasion more generally and

thus reduce the risk of invasive/metastatic cancer.

Similarities in the underlying biological mechanisms of

cancer invasion and deep placentation, such as degradation

of the extracellular matrix and angiogenesis, suggest an evo-

lutionary link between these processes [64]. Effective

placental invasion may increase fertility at the cost of higher

cancer risk. Given that eutherian mammals vary in the

degree of placental invasiveness, cancer risk would be

expected to covary, and some evidence supports this predic-

tion. Equines and bovines have the least invasive placenta

type (epitheliochorial placentation) and were shown to have

lower rates of metastatic cancer than felines and canines, who

have characteristics of deeper placentation (endotheliochorial
placentation) [65]. Shallower placentation has evolved numer-

ous times across eutherian mammals [66], suggesting that

females of those species have also evolved mechanisms to

suppress trophoblast invasion, and these may be the same

underlying mechanisms that suppress metastatic disease.

Additional studies, linking metastatic cancer risk and placenta-

tion penetration using species with all placental types,

including those with the most invasive haemochorial placentas,

are needed to confirm this relationship.

(b) Environmental and ecological factors affect
the strength of trade-offs

The strength of a trade-off between cancer defence and

reproduction may be dramatically affected by ecological con-

ditions, especially available resources (when the trade-off is

due to energy allocation). Low resource levels have been

found to increase the intensity of trade-offs between reproduc-

tion and immune function in a number of species [6], including

the immunosuppressive effect of testosterone [67]. Differences

in the intensity of trade-offs between reproduction and survi-

val have been found in human populations with varying

levels of socio-economic status, with more intense trade-offs

between reproduction and longevity occurring in lower

socio-economic status groups [68–70]. This suggests that

environmental and ecological conditions are likely to play

important roles in modulating the intensity of trade-offs

between reproduction and cancer defence, especially when

this trade-off is mediated by energy allocations.

In our model, we explored the implications of varying the

intensity of the trade-off (b; figure 3). We found that in con-

ditions with higher trade-offs owing to decreased resource

availability (upper panels), elevated levels of cancer defence

result in very low fitness, especially when extrinsic mortality

is high. In contrast, in conditions with less intense trade-offs,

corresponding to more plentiful resources, high levels of

cancer defence result in extended lifespan and higher fitness.

The importance of both resource levels and extrinsic mor-

tality (which for non-humans may be caused by predation

or other ecological factors) in determining the fitness of vary-

ing levels of cancer defence suggests that future work should

consider these trade-offs in their ecological context.



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140220

8
(c) Selection for rapid growth may mediate sexually
selected traits and cancer risk

Rapid growth may not only enhance within-species repro-

ductive competitiveness, but also lead to greater cancer

risk because of vulnerabilities associated with rapid cell pro-

liferation. The development and expression of many key

aspects of morphology and physiology influenced by sexual

selection and reproduction are mediated by growth factors,

including steroid hormones. Growth factors stimulate cell

proliferation and play a pivotal role in increasing growth

during development [71,72]. Growth factors are synthesized

in most tissues in the body and their action is modulated

by a network of molecules that promote cell cycle progres-

sion and inhibition of apoptosis [73]. Insulin signalling has

been proposed as the mechanism by which a variety of

organisms, from beetles to mammals, developmentally regu-

late expression of exaggerated structures, such as horns and

antlers [74]. IGF has also been implicated in numerous

cancer phenotypes [73,75,76]. Low levels of IGF-1 may

extend the time to malignant proliferation [77]. IGF-1

mutant mouse models live longer and are resistant to

cancer [78]. Increased levels of IGF may exacerbate cancer

phenotypes through a reduction in apoptosis, an increase in

cell turnover or an amplification of effects owing to DNA

damage. In humans, mutations in growth hormone receptor

genes have been found to be associated with lower cancer

risk [79]. Serum from these individuals was found to

reduce DNA breaks and increase apoptosis of human

epithelial mammary cells in culture [79].

Hormones control many of the physiological processes

involved in reproduction from development of sex organs

to the timing and frequency of reproduction. Growth factors,

and specifically steroid hormones, have been implicated

in the growth and progression of many cancers [80–84].

Steroid hormones bind to nuclear receptors within cells and

stimulate a complex signalling cascade involved in many cel-

lular actions, including proliferation. Larger body size and

larger ornaments or weapons can increase reproductive suc-

cess; however, this may lead to sexual antagonism and

favour reproductive competition over long-term survival

[85,86]. One important component of tumour suppression is

likely the suppression and slowing of somatic evolution.

However, organismal-level selection for growth may relax

constraints on somatic evolution within the body. Rapid pro-

liferation may be instantiated through a shorter generation

time, which could lead to a faster rate of somatic evolution.

A consequence of this may be greater susceptibility to

cancer in organisms selected for rapid growth.

(d) Does reproductive competition influence cancer risk
in humans?

Although cancer in the wild is poorly studied, predictions

from our model as well as a literature review find examples

where sexually selected traits—e.g. body size in fish and

antlers in deer—appear to influence cancer susceptibility in

these species. Do we see similar trends in humans, a much

better studied species with respect to cancer? Our model

suggests that differences in overall cancer risk between men

and women [87,88] might be partially explained by higher

reproductive competition in men than women. Within

sexes, reproductive competitiveness appears to be associated
with cancer risk for a number of traits. Taller men are repro-

ductively more successful than shorter men, indicating that

there is active selection for stature in some human popu-

lations [89–91]. In general, taller humans have an increased

risk for cancer susceptibility, including melanoma [92] and

testicular cancer [93]. Rapid growth prior to reproductive

maturity (i.e. becoming bigger faster) is also associated with

cancer in humans. Early growth in adolescents and the rate

of this growth can influence the risk of prostate cancer in

men [94] and breast cancer in women [95]. Outcome of

height in an individual depends on many growth factors,

including IGF [96]. As noted in §4c, low levels of IGF-1

have been associated with a decreased incidence to several

forms of cancer in animals and humans [76,97].

High testosterone levels are associated with increased

aggressiveness, high reproductive effort and mating success

[85,98–100]. Lifetime exposure to androgens, such as testos-

terone, appears to be associated with risk of prostate cancer

in human males [101]. However, this relationship has been

difficult to confirm, as prostate cancer typically has a late

age of onset, and testosterone diminishes with age [102].

Additionally, expression levels of androgen receptor, which

binds testosterone, may influence fertility in males [85,103]

and are associated with an increased risk of prostate cancer

[104]. There are open questions whether humans and other

species can facultatively trade off between cancer suppression

and reproductive competitiveness. Future work on adaptive

calibration of physiology based on physical and social

environmental inputs during development [105] could

provide insights into these open questions.

Within humans, energy budgets can affect the strength of

trade-offs between reproduction and somatic maintenance, as

seen in figure 3. Forager–horticulturalists, Tsimane, of the Bo-

livian Amazon live in a resource-limited environment

compared with those of industrialized societies. Tsimane

men are therefore likely to have stronger trade-offs between

reproduction (i.e. testosterone levels) and somatic maintenance

(i.e. immune function). Tsimane men, who live in caloric

restricted environments with high parasite load, have signifi-

cantly lower baseline levels of salivary testosterone when

compared with age-matched US males [106]. Further, infections,

through exposures to pathogens and parasites dramatically

decrease testosterone levels [107]. Together, these results

suggest that with lower energy budgets there may be a stronger

trade-off between somatic maintenance (in the form of immune

function) and reproductive competitiveness (as measured by

circulating testosterone).

Reproductive competitiveness, including fertility timing,

frequency and attractiveness, may influence cancer suscepti-

bility in human females. High oestrogen levels are

associated with attractiveness in human females [108–110],

and oestrogen is an important component of follicle matur-

ation and oocyte quality [111]. However, the relationship

between reproduction and cancer risk in human females is

complex and differs for different types of cancer. Even

within breast cancer, a recent meta-analysis showed hormone

positive breast cancer has been associated with greater

exposure to cyclical hormones through earlier menarche,

later reproduction and lower parity, whereas hormone nega-

tive breast cancer is associated only with early menarche

[112]. These findings suggest that hormone positive breast

cancer risk may be explained by a mismatch between ances-

tral reproductive conditions and modern ones, with the result
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that present-day women experience higher exposure to hor-

mones and suboptimally high rates of cell proliferation,

resulting in increased vulnerability to cancer. Hormone nega-

tive breast cancer risk, on the other hand, might be mediated

by other factors, including perhaps energetic trade-offs

favouring reproduction over somatic maintenance.

Other factors that may influence a women’s risk for cancer

include effects on fertility and pregnancy. As stated earlier,

women with BRCA1/2 mutations were shown to have

significantly different reproductive profiles than age-matched

controls. While BRCA1/2 mutations increase the risk for

breast cancer, these women had significantly more children

and shorter interbirth intervals [13], suggesting that there

may be a fertility advantage for BRCA mutations, possibly

accounting for the frequency of BRCA mutations in certain

human populations [113]. Additionally, physiological pro-

cesses involved in gestation, including placentation (as noted

in §4a) could influence disease risk. Humans have the most

invasive placental type, haemochorial. According to the posi-

tive pleiotropy hypothesis, which claims that placental

invasiveness should be correlated with susceptibility to meta-

static disease [65], a women’s cancer risk may be higher with

greater depth of placentation. Interestingly, a negative correl-

ation has been found between pre-eclampsia, characterized

by abnormally shallow placentation during pregnancy, and

breast cancer risk [114,115]. However, this does not hold true

for all populations studied [116], and there are likely additional

factors influencing cancer susceptibility.
5. Conclusion
The role of reproductive investment as a determinant of cancer

susceptibility is only beginning to be understood. Here, we

contribute to this emerging understanding by presenting a

model in which investment in reproductive competitiveness

occurs in the presence of a trade-off with investment in

cancer defence. We use this model to make predictions about

cancer incidence within and across species in various ecologi-

cal circumstances. Review of relevant literature reveals

several examples that are consistent with the model assump-

tions and predictions. Future comparative oncology and

genomic studies will be needed from species with diverse life

histories to tease apart the molecular underpinnings that may

influence both reproduction and cancer.
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