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Abstract
Colombia hosts the second highest amphibian species diversity on Earth, yet its fauna re-

mains poorly studied, especially using molecular genetic techniques. We present the results

of the first wide-scale DNA barcoding survey of anurans of Colombia, focusing on a transect

across the Eastern Cordillera. We surveyed 10 sites between the Magdalena Valley to the

west and the eastern foothills of the Eastern Cordillera, sequencing portions of the mito-

chondrial 16S ribosomal RNA and cytochrome oxidase subunit 1 (CO1) genes for 235 indi-

viduals from 52 nominal species. We applied two barcode algorithms, Automatic Barcode

Gap Discovery and Refined Single Linkage Analysis, to estimate the number of clusters or

“unconfirmed candidate species” supported by DNA barcode data. Our survey included

~7% of the anuran species known from Colombia. While barcoding algorithms differed

slightly in the number of clusters identified, between three and ten nominal species may be

obscuring candidate species (in some cases, more than one cryptic species per nominal

species). Our data suggest that the high elevations of the Eastern Cordillera and the low el-

evations of the Chicamocha canyon acted as geographic barriers in at least seven nominal

species, promoting strong genetic divergences between populations associated with the

Eastern Cordillera.

Introduction
The Northern Andes of South America have the highest diversity of species on Earth per unit
of surface area and host multiple hotspots of species richness and endemism for plants and ver-
tebrates [1–3]. In spite of its megadiversity, the number of described species in the Andes ap-
pears to be considerably underestimated [4–6]. The limited resources to study the Andean
biodiversity is unfortunate since the tropical Andes is among the most threatened biomes in
the world due to emergent pathogens [7], habitat deterioration [8], and global climate change
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[9–11]. Some evidence suggests that a major global wave of extinction has already begun
[12,13], implying that much of the Andean undiscovered diversity may disappear before it is
described by science.

Among vertebrates, tropical frogs have the highest species discovery rate over recent de-
cades [14–20]. Intrinsic characteristics of anurans, such as their permeable skin and small body
size [21–23], combined with their low dispersal abilities [24,25], and for some species, niche
conservatism [1,26], promote geographic isolation and speciation, especially in heterogeneous
topographies at middle elevations [1,27]. Unfortunately, tropical frogs are also among the most
threatened vertebrates of the tropics [28,29]. Some authors suggest that the same attributes
that make amphibians so diverse could also make them particularly susceptible to human-
induced threats such as habitat fragmentation, climate change, and pathogens [30,31]. For
these reasons, amphibian biodiversity surveys should be a priority in the Andes. The fast and
accurate description of novel diversity of amphibians in tropical mountains would help us not
only to understand why the Andes are so diverse, but also to design better conservation strate-
gies to reduce potential negative impacts of further habitat degradation.

In Colombia, the Andes are divided into three cordilleras. Among these, the Eastern Cordil-
lera is the widest in terms of area, and harbors higher species richness of vertebrates compared
with the other two cordilleras (excluding the coastal Pacific slope of the Western Cordillera,
also known as biogeographic Chocó [32]). The Eastern Cordillera lies between a humid low-
land savanna (with Amazonian influences) drained by the Orinoco and Amazon rivers on the
east side and the relatively arid Magdalena Valley on the west side. The two slopes of the East-
ern Andes are separated by the Eastern Andes ridge, an uninterrupted ridge at� 2500 m that
extends for 600 km, and are, therefore, potentially under different environmental conditions
that may promote alternative local adaptations. The species diversity of the eastern slope of the
Eastern Cordillera is higher for organisms such as butterflies, frogs, birds, rodents, and bats
[32], perhaps reflecting the fact that, A) the eastern slope receives high humidity from the
north-eastern trade winds, promoting an Amazonian-influenced fauna in its foothills, in con-
trast to the relatively arid western foothills [32], and B) the eastern slope faces the Colombian
and Venezuelan savannas in the north and the Amazonian lowlands in the south, facilitating
biological exchange between the Eastern Cordillera and these contrasting regions.

Several authors have provided important insights on the processes that may explain the tre-
mendous diversity of vertebrates of the Eastern Cordillera of Colombia [32–35]. These studies
agree that the dynamic and recent uplift history of the Eastern Cordillera [36] makes geological
history and topography a strong candidate to explain current diversity patterns. Lynch et al.
[37], for instance, suggested that the recently uplifted Andes promoted diversification in two
different ways: a) by fragmenting lowland populations on either side of the Eastern Andes
ridge, and b) by fragmenting populations by means of nonsynchronous uplifting of Andean
blocks that generate topographic complexity restricting gene flow. These authors observed that
several closely related frog species occur allopatrically in similar elevational bands, supporting
the idea that high summits and low valleys isolate populations and promote diversification.
Another perspective suggests that more recent climatic cycles during the Quaternary had a pro-
found effect of the demographic patterns of Andean species, alternately promoting or restrict-
ing migration during the glacial and interglacial periods [35].

While the fundamental insights above were reached through abundant morphology-based
taxonomic studies on the vertebrates of Colombia’s Eastern Cordillera, the region is remark-
ably unexplored in terms of molecular systematic and phylogeographic analyses. While the
number of molecular studies of vertebrates in this region has been increasing in recent years
[38–45], the total number of studies is still very low relative to the remarkable species diversity.
Tropical biodiversity studies at the molecular genetic level tend to reveal many undescribed or
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‘cryptic’ species because speciation is not always accompanied by obvious morphological evo-
lution [46]. Thus, we expect that genetic surveys of the Eastern Cordillera of Colombia should
reveal further cryptic diversity, and therefore, novel insights on the patterns and processes as-
sociated with diversification.

DNA barcoding is a methodology that can be used for “specimen identification”, i.e., to as-
sign unidentified specimens to named species, or “species discovery”, i.e., to assign novel speci-
mens to unnamed genealogical clusters that may correspond to species [47]. In general,
barcode algorithms for specimen identification compare individual DNA sequences against a
reference library of homologous sequences from known samples whose identification is sup-
ported by curated voucher specimens. If genetic distances between the unknown sample and
any known species in the reference library are smaller than a pre-established threshold, the un-
known specimen likely corresponds to the closest species in the reference collection. Alterna-
tively, if genetic distances are larger than the threshold, the unknown specimen may
correspond to a species not in the reference library or possibly to an as yet undescribed new
species [48]. This threshold is known as the barcode gap [49]. This technique is controversial
because thresholds may vary among taxonomic groups, they may not be agreed upon by taxon-
omist, or they may not exist at all, i.e., there may be substantial overlap between intra- and in-
terspecific pairwise genetic distances within one taxonomic group [49,50]. In response to this
potential drawback several algorithms have been designed to try to optimize the threshold se-
lection, or compare multiple thresholds in one barcode analysis [51–53].

DNA barcode analyses for species discovery are proficient at organizing unknown speci-
mens into groups or clusters based on genetic distance or genealogical information. No algo-
rithm, however, can confirm if these divergent clusters are indeed species, given that DNA
sequence data from a single gene may not provide enough information for species delimitation
[54]. Thus, while DNA barcodes cannot identify new species, they can help greatly in flagging
unusual specimens that merit more careful revision using taxonomic characters appropriate
for the group in question [55]. Under a program of integrative taxonomy, for example, candi-
date species are lineages that show divergent DNA sequence data as well as distinctiveness in
one other source of character information, such as morphology, while ‘unconfirmed candidate
species’ is a provisional designation based on DNA data or alternative characters [55].

Another potential drawback that might appear in DNA barcode analyses is the lack of con-
sideration for geographic variation [53,56]. If sampling individuals from single localities, the
potentially increasing variation in genetic distance over increasing geographical distance within
species [57] may not be considered and the distinctiveness of species barcodes may be overesti-
mated [53]. In other words, new sequences that originate from outside of the sampled range
are easily misinterpreted as coming from other species [58]. Recent studies have shown, how-
ever, that adding samples from a greater proportion of the species range, even the addition of a
single sample from a different population, leads to a higher number of accurate DNA barcode
identifications [51,58].

We performed the first DNA barcoding survey of anurans of Colombia that includes multi-
ple species, genera and families, along with multiple localities per species (when possible), fo-
cusing on a transect passing through the Eastern Cordillera of the Colombian Andes, starting
in the foothills of the savannah, or Llanos region, in the east and ending in the lowlands of the
Magdalena Valley on the western side. Our main questions were: A) compared with external
morphology, what is the performance of DNA barcoding of anurans in terms of specimen
identification and species discovery in the Eastern Cordillera of the Colombian Andes? And B)
is there genetic evidence that the Eastern Cordillera ridge has acted as a geographic barrier sep-
arating eastern and western populations? Our study provides the first molecular sampling and
analysis of anurans along a geographical transect across both slopes of the eastern Cordillera of
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Colombia. Our results shed light on the effectiveness of the DNA barcode methodology in ac-
complishing in a short period of time specimen identification and species discovery in a high-
diversity tropical region.

Methods

Sampling
Specimens were sampled from 10 sites along an elevation transect across the Eastern Cordillera
of Colombia (Fig 1, Table 1). Between 3 and 4 people worked during each fieldtrip to each lo-
cality, providing a mean sampling effort of 80 person-hours per site. Sampled individuals were
preliminary identified and allocated to nominal species using external morphology. We collect-
ed a maximum of five individuals of the same nominal species at each locality. Sampled indi-
viduals were euthanized by topical application of benzocaine gel (i.e., tooth ache medicine).
Tissue samples for DNA barcode analyses were obtained from the liver or skeletal muscle tissue
and stored in an NaCl-saturated 0.25 M EDTA buffer containing 20% DMSO [59]. Vouchers
were fixed in 10% formalin or 85% ethanol, stored in 70% ethanol and then deposited in the
Museo de Historia Natural ANDES at the Universidad de los Andes. The species names, field
collection numbers, museum numbers, localities, Barcode of Life Data Systems (BoLD) Process
ID [60] for each specimen, and GenBank accession numbers for each sequence used in the
present study are provided in the S1 Table.

PCR and sequencing methods
Genomic DNA was extracted using the DNeasy Blood & Tissue kit (Qiagen, Valencia, CA,
USA) following the manufacturer’s protocol. We amplified two mitochondrial gene fragments,
including the 5’ end of the faster evolving cytochrome oxidase subunit I (CO1) gene, also
known as the DNA Barcode of Life for animals [61], and the more slowly evolving ribosomal
16S gene fragment which still boasts greater representation of amphibians in GenBank [62].

Fig 1. Geographic distribution of the ten localities surveyed for anurans. Left: Map codes refer to the localities listed in Table 1. Right: Three-
dimensional map with vertical exaggeration (the vertical scale is larger than the horizontal scale) that displays the topographic complexity of the terrain. Black
dots and numbers indicate the same localities shown on the left.

doi:10.1371/journal.pone.0127312.g001
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Two primer pairs were used to amplify and Sanger-sequence the CO1-5’ gene: dgLCO1490
(5’–GGTCAACAAATCATAAAGAYATYGG–3’) plus dgHCO2198 (5’–TAAACTTCAGGGT
GACCAAARAAYCA–3’) [63], and Chmf4 (5’–TYTCWACWAAYCAYAAAGAYATCGG–3’)
plus Chmr4 (5’—ACYTCRGGRTGRCCRAARAATCA–3’) [64]. The 16S gene fragment was
amplified and sequenced with the primers 16Sar (5'–CGCCTGTTTATCAAAAACAT–3') and
16Sbr (5'–CCGGTCTGAACTCAGATCACGT–3') and standard reaction conditions [65]. PCR
products were cleaned using Exonuclease I and Shrimp Alkaline Phosphatase enzymes [66].
Both genes were sequenced bi-directionally to confirm base calls. Assembly and editing of
chromatograms were performed with SEQUENCHER software version 4.7 (GeneCodes Corp.,
Ann Arbor, MI, USA). The sequences of each gene were aligned independently using MUSCLE
[67] and reviewed by eye. Our alignments are available from the Dryad data repository: doi:10.
5061/dryad.k4q1q.

DNA barcoding methods
Species identity and species discovery were implemented using two algorithms designed to sta-
tistically detect barcode gaps and identify distinct clusters of DNA sequences. First, we used the
Automated Barcode Gap Discovery or ABGDmethod (available at http://wwwabi.snv.jussieu.
fr/public/abgd/). ABGD first estimates the distribution of pairwise genetic distances between
the aligned sequences and then it statistically infers multiple potential barcode gaps as minima
in the distribution of pairwise distances, thereby partitioning the sequences such that the dis-
tance between two sequences taken from distinct clusters will be larger than the barcode gap
[52]. The software also recursively applies this procedure to the previously obtained groups of
sequences to get finer partitions. Since the analysis identifies similar DNA sequences first, with-
out removing gapped sites in the alignment, ABGD (and RESL, below) is not affected by gaps
caused by the inclusion of divergent samples such as additional taxonomic genera or families.
The ABGD algorithm has been shown to provide good performance in terms of species

Table 1. Description of localities and individuals used in the barcode analyses. For map codes see Fig 1. Localities are ordered from north to south.

Locality Map
code

Lat N, Long
W

Elevation
(m)

Slope of the Eastern
Cordillera

Number of individuals
collected

Number of individuals
sequenced (gene)

Sabana de
Torres

A 7.3496,
-73.4981

159 Western 21 21 (16S), 18 (CO1)

El Rasgón B 7.0416,
-72.9588

2849 Western 10 10 (16S), 10 (CO1)

Piedecuesta C 6.9923,
-73.0528

1000 Western 6 6 (16S), 6 (CO1)

San Vicente D 6.8988,
-73.4305

474 Western 23 23 (16S), 21 (CO1)

Puente Nacional E 5.9028,
-73.6949

1702 Western 24 24 (16S), 22 (CO1)

Pajarito F 5.4108,
-72.6710

2351 Eastern 13 13 (16S), 13 (CO1)

Miraflores G 5.1953,
-73.1462

1532 Eastern 27 27 (16S), 25 (CO1)

Orocué H 4.7969,
-71.3512

134 Eastern 15 15 (16S), 14 (CO1)

Sabanalarga I 4.7729,
-73.3737

313 Eastern 51 50 (16S), 41 (CO1)

San Juan de
Arama

J 3.3765,
-73.8790

448 Eastern 47 47 (16S), 40 (CO1)

doi:10.1371/journal.pone.0127312.t001
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identification compared with other DNA barcode algorithms [51]. The CO1, 16S, and
concatenated alignments were processed in ABGD using the complete sequence data, the
Kimura two-parameter (K2P) nucleotide substitution model [68], and the following settings:
prior for the maximum value of intraspecific divergence between 0.001 and 0.1, 10 recursive
steps within the primary partitions defined by the first estimated gap, and a gap width of 1.0.
K2P is the standard model of DNA substitution for barcode studies, and performs as well as
more complex models in identifying specimens [69].

In order to contrast the results obtained by the ABGD algorithm we used the Barcode Index
Number discordance analysis available in BoLD [70], a public DNA sequence database devoted
to aiding in the acquisition, storage, analysis, and publication of DNA barcode records includ-
ing chromatograms, images, collection data, and additional DNA sequences (http://www.
boldsystems.org). The method uses a Refined Single Linkage (RESL) Analysis algorithm, which
follows two main steps: First, it employs single linkage clustering as a tool for the preliminary
assignment of the CO1 sequences to a cluster (using genetic distances between every pair of se-
quences), and second, it uses Markov clustering, a method that groups together CO1 sequences
with high sequence similarity and connectivity, and separates those with lower similarity and
sparse connectivity. Such connectivity is explored through random walks of the genetic dis-
tance similarity network [70]. Finally, RESL defines the boundaries of each cluster selected by
generating clusters using a range of values for the inflation parameter in the Markov clustering
and then selects that which maximizes the Silhouette Index [65]. Since the RESL algorithm was
designed to deal with large quantities of sequences, it does not need prior information on the
barcode gap, as with ABGD.

The RESL assignment is only performed for specimens with CO1 sequences of more than
300 base pairs (bp), and thus we applied this method to 213 specimens (see below). In order to
be able to compare ABGD and RESL in terms of the number of clusters inferred, we performed
an additional analysis using the same CO1 alignment in both algorithms. We did not included
more algorithms in our analysis since our main focus was to contrast how different clusters of
individuals are formed using either external morphology or DNA, rather than comparing the
performance of several different DNA barcode algorithms, as previous studies have already
done [51,71–73].

In addition to the distance-based analyses mentioned above, we also evaluated a character-
based phylogenetic approach. We estimated maximum likelihood (ML) gene genealogies for
each gene and the combined dataset using RAxML-VI-HPC [74] with a GTRGAMMAmodel
of evolution. We conducted 100 independent ML tree searches and used the—f a option imple-
menting 1000 rapid bootstrap replicates. Our intention in estimating the ML tree was to obtain
the bootstrap support for derived nodes that may represent species, rather than attempting to
estimate phylogenetic relationships among genera or families.

Colombian Eastern Andes as a geographic barrier
To test if the Eastern Andes ridge affected the local genetic differentiation of the species sam-
pled across both sides of the Eastern Cordillera we used the program LocalDiff [75]. This pro-
gram uses a Bayesian approach to characterize non-stationary patterns of isolation by distance,
in other words, when genetic differentiation between individuals increases at different rates in
different regions of the habitat [75]. Non-stationary patterns of isolation by distance may arise
in the presence of barriers to gene flow because genetic differentiation accumulates faster with
distance around the barrier [75].

Since local genetic differentiation (among populations over small geographical scales)
should be larger in regions of abrupt genetic changes, we estimated a similarity matrix 1 –
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(observed genetic distance/maximum genetic distance) as a measure of intraspecific local dif-
ferentiation. Genetic distances were normalized dividing them by the maximum genetic dis-
tance found within each lineage, so they would rank between 0 (the site with the lowest local
differentiation) and 1 (the site with the highest local differentiation), facilitating its comparison
with other studies. Local genetic differentiation was estimated with kriging [76], a method that
interpolates genetic distances in unsampled neighboring sites based on genetic distances mea-
sured at the sampling sites, such that local genetic differentiation can be estimated continu-
ously across space. The interpolation is dependent on a weighted average of the values
measured at the sampling sites, and the weights rely on a parametric function that provides the
decay of the similarity matrix with geographic distance. The output of the program LocalDiff
generates a minimum convex polygon that encompasses all sampling sites within a species,
where warmer colors represent areas with stronger local genetic differentiation. The local dif-
ferentiation at each sampled location corresponds to the average (over neighbors) pairwise ge-
netic distance between the individual at the sampled location and a putative neighboring site at
a pre-specified geographic distance [76].

Genetic distances between all 16S haplotype pairs were estimated assuming the K2P model
in MEGA 4.0 [77], using the pairwise-deletion option. We used the 16S dataset because, as op-
posed to CO1, 16S data were obtained from all geographic sites. In LocalDiff we implemented
the following parameters: 2 fictional neighboring populations in the vicinity of each sampled
site, and a geographic distance between the neighbors and the sampling sites of 0.1 km. Local-
Diff measures were averaged over 1000 replicates.

Because LocalDiff is an extension of isolation by distance [57], we checked if population dif-
ferentiation indeed increased with increasing geographical distance by estimating the relation-
ship between geographic and genetic distances with multiple matrix regression with
randomization (MMRR) [78], which tests the significance of a simple or multiple regression
using a randomized permutation procedure to account for the potential non-independence
among samples. Geographic distances were estimated with Geographic Distance Matrix Gener-
ator [79]. We performed the MMRR method using the R function from IanWang [78] with
10,000 permutations.

Ethics Statement
Procedures for capture and handling of live animals in the field were approved by the Colom-
bian Ministry of the Environment, under research and collecting permit N°15 and access to ge-
netic resources permit N°44. None of the species collected for this study is listed in the
Convention on International Trade in Endangered Species of Wild Fauna and Flora—CITES
(www.cites.org). The frogs were collected on private property, and permission was received
from landowners prior to sampling.

Results
We surveyed ten localities (Table 1) and collected 232 individual frogs representing eight taxo-
nomic families, 25 genera, and 52 nominal species (Table 2). The localities on the eastern slope
of the Eastern Cordillera all showed greater species richness than sites on the western slope.
52% of nominal species were collected on the eastern slope, 36% on the western slope, and 11%
were found on both sides of the Eastern Cordillera (Table 2).

We obtained DNA sequence data from the 16S ribosomal gene fragment for all 237 sampled
individuals, consisting of 579 aligned bp, excluding gapped sites. We obtained CO1-5’ gene se-
quences for 213 individuals (658 bp, with no length variation among individuals). The discrep-
ancy between the two genes in the number of individuals sequenced was due to problems with
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Table 2. Description of the nominal species identified a priori with external morphology. Species are organized alphabetically by family and then
by genera.

Nominal species Family Number of individuals within
species

Species found in how many
localities?

Flank of the Eastern
Cordillera

Allobates niputidea Aromobatidae 1 1 Western

Allobates ranoides Aromobatidae 2 1 Eastern

Rheobates palmatus Aromobatidae 9 3 Both

Rhinella humboldti Bufonidae 4 2 Eastern

Rhinella margaritifera Bufonidae 5 2 Eastern

Rhinella marina Bufonidae 10 5 Both

Espadarana andina Centrolenidae 2 1 Western

Hyalinobatrachium
esmeralda

Centrolenidae 1 1 Eastern

Rulyrana flavopunctata Centrolenidae 1 1 Eastern

Craugastor longirostris Craugastoridae 2 1 Western

Pristimantis carranguerorum Craugastoridae 1 1 Eastern

Pristimantis douglasi Craugastoridae 3 1 Western

Pristimantis frater Craugastoridae 6 2 Easten

Pristimantis lutitus Craugastoridae 1 1 Western

Pristimantis miyatai Craugastoridae 7 2 Western

Pristimantis savagei Craugastoridae 6 2 Eastern

Pristimantis taeniatus Craugastoridae 3 1 Eastern

Pristimantis vilarsi Craugastoridae 6 1 Eastern

Dendrobates truncatus Dendrobatidae 3 1 Western

Agalychnis terranova Hylidae 2 1 Western

Dendropsophus ebraccatus Hylidae 2 1 Western

Dendropsophus mathiassoni Hylidae 13 3 Eastern

Dendropsophus
microcephalus

Hylidae 4 2 Western

Dendropsophus cf. stingi Hylidae 10 3 Eastern

Dendropsophus subocularis Hylidae 3 1 Western

Hyloscirtus cf. phyllognathus Hylidae 1 1 Eastern

Hypsiboas boans Hylidae 1 1 Eastern

Hypsiboas crepitans Hylidae 14 5 Both

Hypsiboas lanciformis Hylidae 4 1 Eastern

Hypsiboas pugnax Hylidae 7 2 Western

Hypsiboas punctatus Hylidae 6 2 Eastern

Phyllomedusa
hypochondrialis

Hylidae 4 2 Eastern

Pseudis paradoxa Hylidae 1 1 Eastern

Scinax cf. kennedyi Hylidae 5 2 Eastern

Scinax rostratus Hylidae 7 3 Both

Scinax ruber Hylidae 10 4 Both

Scinax wandae Hylidae 7 2 Eastern

Smilisca phaeota Hylidae 1 1 Western

Trachycephalus typhonius Hylidae 1 1 Eastern

Adenomera andreae Leptodactylidae 3 1 Eastern

Engystomops pustulosus Leptodactylidae 5 3 Western

Leptodactylus colombiensis Leptodactylidae 7 3 Both

Leptodactylus fuscus Leptodactylidae 6 4 Both

(Continued)
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PCR amplification of the CO1-5’ fragment, despite using two sets of primer with numerous de-
generate bases. The topologies of the character-based ML trees for CO1 and 16S agreed in
terms of clade membership and support for terminal nodes, though not in terms of the rela-
tionships among basal groups. We therefore present here the ML tree based on the concatenat-
ed alignment as our best estimate, though again our goal was to identify nominal species and
potential unconfirmed candidates species, not to resolve generic and family-level relationships
(Fig 2). Bootstrap support for terminal nodes was high (>95%) but was low for basal nodes.

In terms of species delimitation, the ABGD algorithm produced a stable number of clusters
(or “hypothetical species”) for each independent gene and the concatenated alignment across a
wide number of intraspecific thresholds (S1 Fig). ABGD recovered 47 clusters based on 16S, 54
clusters based on CO1, and 56 clusters using the concatenated alignment. Given that both
genes independently recovered congruent groups, from now on we discuss the groups formed
in terms of the concatenated alignment (56 clusters), since it is supported by more data (when
contrasting ABGD and RESL we refer to the CO1 alignment only, see below). For the
concatenated matrix we chose 6% based on the observed ‘barcode gap’ in the bimodal distribu-
tion of pairwise genetic distances (S1 Fig). It is worth noticing that our concatenated alignment
contained a small proportion of missing data, since 23 individuals were not sequenced for
CO1. Therefore, the resolution might be lower in those clades with 16S sequence data only.

In three cases individuals identified as members of the same nominal species (given their
strong morphological similarity) were genetically highly divergent and split into paired clusters
by ABGD: Scinax ruber (3 clusters), S. wandae (two clusters), and Hypsiboas punctatus (two
clusters). These three nominal species might, therefore, correspond to three named species
plus four unnamed cryptic species according to the ABGD algorithm.

The RESL analysis employing only the CO1 data (Fig 2) recovered a total of 65 clusters (11
more than the ABGD algorithm using the same gene). Of these clusters, 10 records were single-
tons thus providing the first reports of these lineages in BoLD. In eight cases, individuals iden-
tified as members of the same nominal species were split by RESL into paired clusters: S.
wandae, Engystomops pustulosus, Pseudopaludicola llanera, Hypsiboas crepitans,H. punctatus,
Pristimantis miyatai, Leptodactylus colombiensis, and L. fuscus. Two additional nominal species
were split into three clusters: Scinax ruber and Rheobates palmatus. These 10 nominal species
might, therefore, contain an additional 11 unnamed cryptic species, according to the
RESL algorithm.

The RESL algorithm appeared to have a slightly lower threshold separating CO1 haplotypes
into different clusters compared with ABGD. For instance, the nominal species E. pustulosus,

Table 2. (Continued)

Nominal species Family Number of individuals within
species

Species found in how many
localities?

Flank of the Eastern
Cordillera

Leptodactylus insularum Leptodactylidae 2 1 Western

Leptodactylus knudseni Leptodactylidae 2 1 Eastern

Leptodactylus lineatus Leptodactylidae 3 1 Eastern

Leptodactylus mystaceus Leptodactylidae 1 1 Eastern

Physalaemus fischeri Leptodactylidae 6 3 Eastern

Pleurodema brachyops Leptodactylidae 1 1 Western

Pseudopaludicola llanera Leptodactylidae 7 3 Eastern

Pseudopaludicola pusilla Leptodactylidae 2 1 Western

Elachistocleis ovalis Microhylidae 9 3 Eastern

doi:10.1371/journal.pone.0127312.t002
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Fig 2. Maximum likelihood gene genealogy of the combined dataset (16S + CO1). Numbers on
branches are bootstrap support values as estimated using the software RAxML. Horizontal grey boxes
delineate the nominal species identified a priori. Nominal species with asterisks were divided into more than
one cluster by at least one DNA barcoding algorithm. Vertical lines indicate the grouping of individuals by
each algorithm, RESL and ABGD. Single asterisk (*) indicates nominal species that were split by RESL but
not by ABGD. Double asterisks (**) indicate nominal species divided congruently by both algorithms.
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P. llanera, H. crepitans, and L. fuscus were grouped in a single cluster each by the ABGD algo-
rithm, but split into two or three clusters each by the RESL algorithm, confirming that RESL is
more sensitive and potentially more subject to false positives compared with ABGD. The re-
maining clusters were concordant between the two algorithms (85% of the nominal species). In
summary, out of the original 52 nominal species for which we obtained CO1 data, the ABGD
algorithm suggested 54 clusters based on a gap of 1.0, while the RESL algorithm increased to 65
the number of potential species.

We confirmed the prevalence of isolation by distance with the MMRR algorithm, finding
significant (P< 0.05) associations between geographic and genetic distances in all seven nomi-
nal species sampled on multiple localities (L. colombiensis: r2 = 0.74, P = 0.0039; H. crepitans: r2

= 0.14, P = 0.0007; L. fuscus: r2 = 0.60, P = 0.0035; R. palmatus: r2 = 0.90, P = 0.0142; S. ruber: r2

= 0.40, P = 0.0002; R.marina: r2 = 0.23, P = 0.0007; and R. humboldti: r2 = 0.40, P = 0.03219).
The majority of species that were sampled on both sides of the Eastern Cordillera ridge (R.

marina, L. fuscus, L. colombiensis,H. crepitans, and, R. humboldti) displayed a steep gradient in
the local genetic differentiation (the genetic distance per unit of geographic distance) that in-
creased parallel to the ridge (Fig 3). In these species, the more abrupt change between low local
genetic differentiation (colder colors) and high local genetic differentiation (warmer colors) oc-
curs near-by the geographic area that corresponds to the ridge (Fig 3), suggesting that a) the
Eastern Cordillera ridge is acting as a barrier separating western flank and eastern flank sites,
and b) that within these species, local genetic differentiation is higher in the western slope of
the Eastern Cordillera. Even though we did not sample R. palmatus on both sides of the ridge,
we found a steep change in local genetic differentiation in the area corresponding the Chicamo-
cha canyon, a low elevation valley that reaches depths of 400 m (Fig 3). Scinax ruber, which
had strongly divergent samples from a far eastern site (Orocué) in the Llanos east of the Cordil-
lera was the only species showing a local genetic differentiation gradient perpendicular to the
ridge. We were not able to test local genetic differentiation in the other nominal species given
that these were collected in just one or two localities or the barcode algorithms divided them
into different clusters.

Discussion

Species identification and discovery across the Eastern Cordillera
Our DNA barcoding survey of 52 nominal species corresponds to 7.3% of all anuran species of
Colombia (of a total of 710 anurans recorded as of October 2014 [80]). In terms of species iden-
tification, external morphology revealed fewer entities than DNA barcoding, not surprisingly,
with 52 nominal species identified with morphology versus 56 and 65 clusters identified with
molecular data (ABGD and RESL, respectively).

The two DNA-based algorithms were somewhat dissimilar in terms of the agreement be-
tween the nominal species and clusters. ABGD revealed that only three of the nominal species
identified a priori contained cryptic lineages, while in RESL, this number increased to ten. We
suggest, then, that the ABGD algorithm would be more appropriate for identifying uncon-
firmed candidate species, as it is more conservative and groups haplotypes independently of
their taxonomy. The RESL algorithm, on the other hand, would be preferable for species identi-
fication, since it is less conservative and compares the DNA barcodes against a reference

Nominal species without asterisks were grouped into a single cluster by both algorithms. Black triangles
indicate clades geographically separated by the high-elevation ridge of the Eastern Cordillera. Black inverted
triangles indicate clades geographically separated by the Chicamocha canyon.

doi:10.1371/journal.pone.0127312.g002

DNA Barcoding of Anurans of the Colombian Andes

PLOS ONE | DOI:10.1371/journal.pone.0127312 May 22, 2015 11 / 20



Fig 3. Map of local genetic differentiation in the seven nominal species sampled from both flanks of the Eastern Cordillera. For each species, the
triangle on the left represents the minimum convex polygon that encompasses the sampling sites of each species. Warmer colors represent greater genetic
distances between sampled sites and unsampled neighbors. The map on the right represents topography, with the dotted line indicated the spatial location of
the polygon on the left. Black stars are western flank localities and white stars are eastern flank localities. Numbers correspond to map codes in Fig 1 and
Table 1. Local genetic differentiation corresponds to one minus the expected correlation between sampled sites and neighboring unsampled sites located at
0.1 km.

doi:10.1371/journal.pone.0127312.g003
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database of identified samples, and thereby suggests names for the unknown sequences. Of
course, any species identification method is only as reliable as the database upon which it is
based [60], in this case BoLD.

Regarding species discovery, we found that the nominal species E. pustulosus, P. llanera,H.
crepitans, L. fuscus, R. palmatus, P.miyatai, and L. colombiensis, were split into two or more
groups by the less conservative RESL algorithm. Since this algorithm requires low genetic di-
vergence to separate entities, these seven species might correspond to either highly divergent
conspecific lineages, or unconfirmed candidate species separated by narrow genetic diver-
gences. Amphibian species frequently show relative morphological stasis despite strong genetic
divergences (well above the proposed thresholds to identify species using DNA barcode mark-
ers) [18,62]. Moreover, convergence and parallelism are often found among even relatively
closely related amphibians [81,82]. It is likely, therefore, that species diversity becomes masked
with the exclusive use of morphological characters to describe diversity [83]. A barcode ap-
proach allows even the non-specialist to be able to flag genetically divergent groups whose tax-
onomic status require further expert investigation using independent data.

The more conservative ABGD identified three nominal species that we believe are highly
likely to contain cryptic diversity given their very deep genetic divergences: H. punctatus, S.
wandae and S. ruber. This is not surprising for S. ruber, which has been shown to contain sub-
stantial cryptic diversity in a recent study of populations in French Guyana [84]. AsH. puncta-
tus, S. wandae and S. ruber are geographically even more widespread across lowland sites that
our sampling included, we suspect each of these nominal species to contain a multitude of
cryptic lineages each, overlooked by previous studies based in morphology. A good example of
the underestimation of diversity in lowland frog species is the case of Dendropsophus minutus,
a widespread species in South America that displays 43 statistically supported deep mitochon-
drial lineages, many of which likely correspond to undescribed cryptic species [85]. Curiously,
both algorithms missed the two divergent clades within Rhinella marina separated by the east-
ern Cordillera ridge. We explain this result by the fact that R.marina had several CO1 missing
sequences, decreasing the overall resolution of this clade and the performance of both algo-
rithms identifying groups. This observation highlights the relevance of CO1 (compared with
16S) detecting groups separated by narrow genetic divergences, and also, the possible role that
missing data can have on the performance of genetic barcode algorithms.

It is clear that the DNA barcode technique outperformed our morphological identifications
in terms of both accuracy and time. The question is what to do with the outcomes of barcode
surveys. For example, we found three highly divergent groups within the nominal species S.
ruber, while Fouquet et al. [84] found six. Our candidates and Fouquet’s candidates are differ-
ent entities since they were sampled in distant geographic regions. One of the goals of rapid
biodiversity description is to characterize communities and biogeographic regions, such as the
tropical Andes, in short time spans. The use of standardized markers and data bases goes a
long way towards facilitating comparisons among disparate studies, yet ascribing a formal
name to all these divergent groups might still be difficult, especially if it required the interna-
tional shipment of type specimens. Padial et al. [55] suggested a strategy that could speed up
the characterization of biogeographic regions using barcoding techniques. Their approach pro-
poses to designate the provisional label of ‘unconfirmed candidate species’ to groups of speci-
mens within nominal species that show unusually large genetic distances. The lineage would
then be identified through the combination of the Linnaean binomial species name of the most
closely related nominal species, followed by the abbreviation "Ca" (for candidate), adding a nu-
merical code indicating the particular candidate species group. This system potentially would
help researchers to be aware of what particular candidate species have been found, avoiding re-
peating or ignoring genetic clusters that have been already published. Also, it may speed up the
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naming process by taxonomists, making more evident the groups that contain undescribed di-
versity. Similarly, the standardized barcode database, BoLD, scans all CO1 sequences in the da-
tabase and labels each cluster identified by its RESL algorithm numerically, creating a Barcode
Index Number [70].

The Eastern Cordillera as a geographic barrier
DNA barcode analyses can go beyond describing biodiversity patterns by studying the process-
es that generate or erase such patterns [48,86]. In addition to characterizing the diversity of lin-
eages in our survey, we also explored the role that the Eastern Cordillera may have played in
increasing intraspecific divergence within nominal species sampled from both flanks. A map of
local genetic differentiation showed that in five out of six species, the steepest change in genetic
distances per unit of geographic distances was parallel and in close proximity to the Eastern
Andes ridge. Genetic differentiation varies spatially due to several factors, including migration
and other demographic processes [86], extinction and re-colonization of demes [87] and of
course historical biogeographic processes [88], and teasing apart these factors is often challeng-
ing. The fact that the same pattern was found in five species of different taxonomic families,
however, strongly suggests that local genetic differentiation was not the product of idiosyncrat-
ic processes, but the general effect of the Eastern Andes ridge reducing gene flow between pop-
ulations across both sides of the ridge.

The observation of genetically divergent conspecific populations from opposite slopes of the
Andes has been described in multiple anuran species including R.marina [89], E. pustulosus
[90], R. palmatus [42,91], and Dendropsophus labialis [43], as well as in several species of An-
dean birds [92,93]. This evidence supports the fact that tropical lowland species (as opposed to
temperate species) have strong difficulties crossing high elevation summits, a hypothesis for-
mulated by Janzen almost 50 years ago [94], prior to the advent of DNA sequence analyses.
Also, we confirmed the results of Muñoz-Ortiz et al. [91] finding that valleys are also important
geographic features that restrict gene flow in mid-elevation species such as R. palmatus. Wier
[95] suggested that Andean low valleys are more important promoting vicariance than Andean
high summits, because the major uplift activity of the northern Andes was too recent for strong
genetic divergences to build-up across such barriers, whereas low-elevation barriers have had
more time to generate divergence. We found strong evidence, however, that both high eleva-
tion summits and low elevation valleys are a prevalent force isolating populations and promot-
ing genetic divergence in Andean anurans. This result agrees with Lynch et al. [34], suggesting
that the nonsynchronous uplift of the Eastern Cordillera generated a topographic complexity
that likely fragmented populations and promoted diversification in the past. Certainly, the
comparison of high and low elevations as geographic barriers should be explored in more detail
in future studies including more species and additional Andean landscapes.

We hypothesize that the reason why five different species showed higher local genetic differ-
entiation in the western flank of the Eastern Cordillera (relative to the eastern flank) is because
it has a more complex topography and climate than the homogeneous Llanos in the eastern
flank (Fig 3), and complex topographies and climates have been found to increase genetic di-
vergence [27,96]. Curiously, our survey found both higher genetic differentiation among sites
and lower species richness in the western flank. In other words, it appears that the western
flank has higher beta diversity relative to the eastern flank, while the eastern flank has higher
alpha diversity. We hypothesize that this observation is explained by the fact that the eastern
flank localities contain multiple widely distributed species living in sympatry, due to the lack of
geographic barriers in the flat Llanos Orientales, while in the western flank the complex
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topography and environmental heterogeneity of the Magdalena Valley isolates populations, in-
creasing the diversity among sites.

Even though we focused our discussion on the effects of topography and climate fragment-
ing anuran populations, we cannot claim these are the only factors playing role in the diversifi-
cation of the Eastern Cordillera. There are abundant studies that have shown how the
idiosyncratic natural history of each species can be relevant explaining biological diversifica-
tion. For example, small body sizes in the Malagasy mantellid frogs have been shown to limit
the dispersal capabilities and to low physiological tolerances, causing strongly fragmented
ranges [23]. Also, call variation (instead of landscape features) has been shown to promote ge-
netic divergence and speciation in the lowland Amazonian frog, Engystomops petersi [97]. Even
though we agree with Lynch et al. [34] that topography and climate are in general the most im-
portant factors explaining the current diversity of the Eastern Cordillera, it is fundamental to
further explore how the natural history of Andean species promotes their diversification
or extinction.

We found clear evidence for the key role of the Eastern Cordillera in creating genetic diver-
gence at the nominally intraspecific level. More evidence, however, needs to be collected in
order to determine not only how the Andes shape genetic variation, but also how it shapes the
ecology and phenotypes of these species.

Conclusions
Here we performed the first wide-scale DNA barcode survey of anurans in Colombia. We
found that DNA barcoding is a method that outperformed our morphological identifications
allowing us to complete the survey in a short period of time and to flag specimens from popula-
tions that require further taxonomic and ecological scrutiny. We also found, using a novel
Bayesian kriging approach, that both summits and valleys of the Eastern Andes of Colombia
are important geographic features promoting intraspecific genetic divergence across several
frog species, and that the eastern and western flanks have contrasting diversity levels. It is
somewhat accepted that tropical lowland species have rather wide geographic distributions,
while montane species have very restricted ranges. We believe, however, that due to morpho-
logical stasis, a significant proportion of lowland species diversity has been underestimated by
the predominant use of morphology in previous estimations [85,98]. It is quite possible that fu-
ture genetic analyses will keep fragmenting the wide distributions of lowland species, which
might change our current perception of tropical lowland vs. highland diversity patterns. We
recommend that DNA barcoding surveys spend the additional effort, when possible, to collect
multiple specimens from multiple localities that cover the geographic extent of each species in
order to recover a better proportion of the intraspecific variability [99], which in turn allows
for extended analyses of the genetic variation of the species found in the survey and their geo-
graphic patterns. The tropical Andes in general, and Colombia specifically, still represent a
poorly known region in terms of its biodiversity. We encourage researchers to include DNA
barcode analyses in addition to the fundamental morphological analyses in future surveys of
biodiversity of the tropical Andes [98]

Supporting Information
S1 Fig. ABGD additional information. Left: Histogram showing the distribution of pairwise
genetic distances (Kimura 2-parameter) among all samples using the combined dataset. The
arrow indicates the threshold selected as separating within-species genetic variation and
between-species genetic divergence. Right: Plot depicting how the number of clusters or hypo-
thetical species recovered by the ABGD algorithm varies across increasing ‘prior intraspecific
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genetic divergences’ or thresholds. Recursive partitions are obtained by allowing the threshold
to vary among species.
(PDF)

S1 Table. Detailed information on the samples collected. Field number, museum code, nom-
inal species designation, collecting locality, BoLD ProcessID, ABGD cluster membership, RESL
cluster membership (BIN), and GenBank accession number for each sample included in this
study. NA correspond to missing voucher specimens.
(PDF)
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