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ABSTRACT

tRNA fragments (tRFs) are small RNAs comparable
to the size and function of miRNAs. tRFs are gen-
erally Dicer independent, are found associated with
Ago, and can repress expression of genes post-
transcriptionally. Given that this expands the reper-
toire of small RNAs capable of post-transcriptional
gene expression, it is important to predict tRF targets
with confidence. Some attempts have been made to
predict tRF targets, but are limited in the scope of tRF
classes used in prediction or limited in feature selec-
tion. We hypothesized that established miRNA target
prediction features applied to tRFs through a random
forest machine learning algorithm will immensely im-
prove tRF target prediction. Using this approach, we
show significant improvements in tRF target predic-
tion for all classes of tRFs and validate our predic-
tions in two independent cell lines. Finally, Gene On-
tology analysis suggests that among the tRFs con-
served between mice and humans, the predicted tar-
gets are enriched significantly in neuronal function,
and we show this specifically for tRF-3009a. These
improvements to tRF target prediction further our un-
derstanding of tRF function broadly across species
and provide avenues for testing novel roles for tRFs
in biology. We have created a publicly available web-
site for the targets of tRFs predicted by tRForest.

INTRODUCTION

tRNA fragments (tRFs) are a novel class of small RNAs
derived from precursor tRNAs or mature tRNAs (1). tRFs
account for nearly 25% of the small RNAs found in the cell
and are the second most abundant class of RNAs within
the small RNAome. They have been found to play a myriad

of roles in normal biology and disease. For example, tRFs
have been found to play a role in ribosome biogenesis, respi-
ratory syncytial virus pathogenesis, and breast cancer pro-
gression (2–6). More recently, tRFs have been found to aug-
ment symbiosis between nitrogen-fixing bacteria and plant
hosts via entry of bacterial tRFs into host Ago1 (7).

Following the observation that many tRFs fall within the
same size range as microRNAs (miRNAs), we have shown
that tRFs can behave as bona fide miRNA (8). Until re-
cently, tRF target prediction tools were limited to tools
trained on miRNA. This may provide predicted targets that
may not be as accurate as algorithms trained on tRFs. Ac-
curate identification of tRF targets will improve our under-
standing of the role of tRFs in biology and disease. Rec-
ognizing this need, tRF specific target prediction tools have
become available recently (9–11). Despite the increase in the
number of tools over the past couple of years, these tools
are lacking in one way or another. For example, tRFtar and
tRFTars do not predict targets for tRF-1s, although tRF-1s
have been found to affect gene expression in some contexts
(12). tRFtarget builds a target algorithm based on RNA in-
termolecular interactions, but excludes several features that
may be important for tRF target prediction, such as target
site conservation and AU content (10).

Here, we present tRForest, a tRF target prediction algo-
rithm built using the random forest machine learning algo-
rithm. This algorithm predicts targets for all tRFs, includ-
ing tRF-1s and includes a broad range of features to fully
capture tRF-mRNA interaction. Furthermore, unlike other
available algorithms, its performance does not rely entirely
on just a few features; instead, it uses all available features in
ensemble. Finally, since we have employed a machine learn-
ing based approach, our predictions can be readily extended
to novel tRFs in the future. We used Crosslinking, Liga-
tion, and Sequencing of Hybrids (CLASH) data generated
by crosslinking AGO1 with interacting small RNAs and
their targets in HEK293 cells as our training and testing
dataset (1,13). We rigorously validate the accuracy of tR-
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Forest on data from two human cell lines and show that tR-
Forest matches or outperforms currently available tRF and
miRNA target prediction tools. We also generated Gene
Ontologies (GO) for each tRF’s predicted targets to aid
researchers in generating hypotheses about the biological
role of each tRF. Existing tRF target prediction tools, tRF-
target and tRFTar have GO analysis capabilities, but are
limited in their target prediction features and approach.
In addition, our pipeline for producing GO analysis plots
is more streamlined, and provides users with publication-
ready visualization of the results. tRF predicted targets and
GO terms are available to the research community at https:
//trforest.com/.

MATERIALS AND METHODS

Data and algorithm source and pre-processing

CLASH data with tRFs and their corresponding gene tar-
gets were obtained from Kumar et al., which identified all
of the tRF-mRNA chimeric reads available in CLASH data
from Helwak et al. (1, 13). The filtering of chimeric reads
from the original CLASH dataset by Kumar et al. excluded
fragments derived from non-tRNA sources including mi-
croRNAs (1). The training set was built from this set of
chimeras through several steps of pre-processing to improve
the quality of the dataset for training. This pruning step in-
volved removing chimeras in which the 3′ UTR was unavail-
able in Ensembl or the 3′ UTR was too short to calculate
the features of the flanking sequences. We did not denote a
minimum read cutoff because that reduced the number of
training examples and did not improve the sensitivity and
PPV values. Furthermore, such a cutoff would remove tRF-
1 ground-truth targets from the training set, preventing us
from accurately predicting tRF-1 targets in novel indepen-
dent datasets.

The tRF sequences and IDs were obtained from
tRFdb (http://genome.bioch.virginia.edu/trfdb/) (1). Hu-
man gene and transcript sequences, as well as Ensembl
and Refseq IDs, were retrieved from Ensembl Biomart
(version GRCh37.p13, http://grch37.ensembl.org/biomart/)
(14). TargetScan targets were retrieved from TargetScanHu-
man 7.2 (http://www.targetscan.org/vert 72/) (15). miRDB
targets were retrieved from miRDB (http://mirdb.org/) (16).
tRFTar predicted targets were obtained from tRFTar
(http://www.rnanut.net/tRFTar/) (11). tRFTarget predicted
targets were obtained from tRFTarget (http://trftarget.
net/) (10). tRFTars predicted targets were obtained from
tRFTars (http://trftars.cmuzhenninglab.org:3838/tar/) (9).
The random forest classifier used in tRForest was from
scikit-learn in Python (https://scikit-learn.org/) (17). RNA-
seq data for target validation was obtained from GEO,
specifically series GSE99769 (8), series GSE189510, series
GSE93717 (18), series GSE180331 and series GSE197091.

RNA-seq library preparation and analysis of RNA-seq data

U87 cells were cultured in MEM supplemented with
1% non-essential amino acids, 1 mM sodium pyru-
vate, 0.15% sodium bicarbonate and 10% FBS plus 1%
penicillin/streptomycin. The cells were grown in hu-
midified incubators under 5% CO2 at 37◦C. For RNA

mimic transfection, synthetic single-stranded tRF-3009a
(5′phos-rArCrCrCrCrArCrUrCrCrUrGrGrUrArCrCrA-
3′OH) and non-targeting GL2 control (5′phos-
rCrGrUrArCrGrCrGrGrArArUrArCrUrUrCrGrArUrU-
3′OH) were transfected at 50 nM final concentration with
Lipofectamine 2000 for 48 h before RNA extraction
by ZYMO directzol RNA miniprep kit with DNase I
treatment. For mRNA-seq library preparation, 250 or 500
ng total RNA was poly-A selected by NEBNext Poly(A)
mRNA Magnetic Isolation Module (NEB #E7490). Li-
brary preparation was performed using NEBNext Ultra
II Directional RNA Library Prep Kit for Illumina (NEB
#7760) according to the manufacturer’s protocol. The
resulting libraries were quality checked for concentration
and size distribution before pooling for sequencing on
Illumina HiSeq by Novogene.

HEK293T Cells were maintained in HyClone Dul-
becco’s High Glucose Modified Eagles medium with
L-glutamine (GE #SH30081.01) plus 10% fetal bovine
serum (Gibco #10437028) and 1% penicillin/streptomycin
(Gibco #15140122). 500 nM final total concentra-
tion of RNA mimetic (non-targeting GL2: /5Phos/-
rCrGrUrArCrGrCrGrGrArArUrArCrUrUrCrGrArUrU-
/3OH/ or human tRF-3004b: /5Phos/-rUrCrArArArUrC
rUrCrGrGrUrGrGrArArCrCrUrCrCrA-/3OH/) was re-
verse transfected with Lipofectamine RNAiMax (Thermo
Fisher #13778150) and collected 120 h post-transfection.
RNA extraction and library preparation was performed
similarly as above and sequenced on Illumina NextSeq at
UVA GATC core.

FastQC was used to perform a quality check on the raw
RNA-seq data files (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Kallisto was then used to quantify
the abundances of transcripts using the prebuilt ENSEMBL
index available in the kallisto manual (19). DESeq2 was
then utilized in R to perform differential expression anal-
ysis with an expression cutoff of 10 normalized counts (20).
Finally, BioMart was used to convert Ensembl transcript
IDs to gene names (14).

miRNA and tRF prediction algorithms

TargetScan and miRDB were used to find the predicted
gene targets for a given tRF or miRNA, such as tRF-3009a
or miR-941, with the following search parameters: for Tar-
getScan and miRDB, the default parameters were used,
with 7mer-m8 seed pairing for TargetScan and the full tRF
sequence for miRDB. For each algorithm, predicted targets
were separated from non-targets. The log2 fold changes (the
log base 2 ratio of gene expression in a sample with tRF
mimics or tRNA overexpression versus a control sample)
of targets and non-targets were used to generate cumula-
tive distribution function (CDF) plots. This was done for
available tRF prediction algorithms as well, such as tRF-
Tar, tRFTarget, tRFTars and tRForest, with the following
search parameters: for tRFTar, 3′ UTR target element type
with no restrictions on the expression levels of the tRF or
co-expression of tRF-gene pairs; for tRFTarget, 3′ UTR
binding region and default free energy (≤−10 kcal/mol)
and maximum complementary length (≥8 nts); for tRF-
Tars, the SVM-GA model with high confidence; for tRFor-
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est, targets with a prediction score of ≥0.8. Only 3′ UTR tar-
gets were compared because tRForest is only trained on and
predicts targets in the 3′ UTR. The miRNA target predic-
tion algorithms were used independently to compare their
relative effectiveness with tRF target prediction algorithms,
especially tRForest.

Generation of negative sites

The CLASH data only provided positive ground-truth data
to train the random forest with; we classified the targets
found in the CLASH data as ground-truth because they
were experimentally validated. In order for the training to
be most effective, realistic negative sites had to be gener-
ated corresponding to each positive site. This was done sim-
ilarly to TarPmiR (21). For each positive ground-truth tRF-
mRNA duplex in the CLASH data, a set of candidate nega-
tive sites was first generated by running a sliding window of
the same length as the binding region on the 3′ UTR of the
mRNA upstream and downstream of the binding region.
Then, the CG dinucleotide frequency in the binding region
was identified; if the dinucleotide frequency was the same as
the corresponding positive binding site, the frequency of the
G nucleotide was then identified. If the frequency of the G
nucleotide was also similar between the candidate negative
site and corresponding positive site, it passed the first fil-
ter. After filtering the original list with the CG dinucleotide
and G nucleotide frequencies, the binding energy between
the tRF and each of the remaining candidate negative sites
was calculated, and the candidate site with the lowest en-
ergy was selected as the negative corresponding site. These
filters were used when generating the negative site to allow
the negative site to be sufficiently similar to the positive site,
so that the random forest would distinguish them using the
calculated features, and not exclusively binding energy or
because of the frequency of individual nucleotides (22).

Feature calculation

Thirteen features were calculated for each tRF-mRNA
ground-truth duplex in the CLASH dataset. These in-
cluded: (i) binding energy; (ii) seed match; (iii) AU content;
(iv) number of paired positions; (v) binding region length;
(vi) the length of the longest consecutive pairing; (vii) the
position of the longest consecutive pairing; (viii) the number
of 3′ end pairs; (ix) seed-3′ end pair difference; (x) binding
region conservation with phyloP scores; (xi) flanking region
conservation with phyloP scores; (xii) binding region con-
servation with phastCons scores and (xiii) flanking region
conservation with phastCons scores. These features were se-
lected due to their experimental importance as exemplified
by TargetScan, as well as their successful use in TarPmiR,
a random forests-based target prediction algorithm for mi-
croRNA (21). In addition, we previously established that
tRFs can downregulate mRNA targets in a miRNA-like
mechanism, using seed sequences (23). Therefore, we used
modified miRNA seed binding rules as a feature in tRFor-
est. The only modification was that we allowed binding at
the first nucleotide of the tRF. Because some of the features
were dependent on the 3′ end of the molecule, target pre-
diction was restricted to the 3′ UTR of genes. While it may

be true that miRNAs or tRFs may have some non-canonical
functions via targeting in the 5′ UTR and coding sequences,
here we are focusing on canonical functions to ensure ro-
bust target prediction that is more likely to be validated by
other researchers. detailed definitions and information on
the calculation of each of these features is described in sup-
plemental file 1.

Random forest training and testing

Scikit-learn’s RandomForestClassifier function was used to
train and get testing metrics for tRForest (17). tRForest was
trained in two ways to obtain metrics of its performance: 10-
fold cross validation (in which the training data was split
into 10 equal blocks of data, with 9 blocks of data being
used for training and 1 block for testing, iterating until each
block had been used as a testing set) and with a classic
67:33 train-test split. From this, the following performance
metrics were obtained: accuracy, positive predictive value
(PPV), sensitivity, F1 scores, and a receiver operating char-
acteristic (ROC) curve with the area under the curve (AUC).
Hyperparameter tuning was performed for algorithm opti-
mization. We tested several values for the number of trees in
the random forest, the number of features to consider when
looking for the best split, the maximum depth of the tree, the
minimum number of samples required to split an internal
node, the minimum number of samples required to be at a
leaf node, and whether bootstrapping was conducted. How-
ever, after varying the hyperparameters, a majority of them
were kept at their default setting, barring two. The number
of trees in the random forest was doubled to 200 trees, and
bootstrapping was disabled.

Algorithm robustness

Several tests were performed to test the robustness of the
trained algorithm. First, the Pearson correlations between
the features were examined for the feature profiles of tRF-
3009a, as the random forests algorithm is most effective
when its features have very low internal correlation (24).
Pearson correlations were chosen because the correlation
value represents the linear relationship between continuous
variables. After this, the algorithm was tested with various
subsets of features in order to determine whether the choice
to classify a gene as a target for a particular tRF hinged
on just one highly important feature or a small subset of
important features, or whether it was using an ensemble of
all of the features. This was done by removing each feature,
one at a time, and then by removing the 7 most important
and least important features, where the importance of the
features was ranked through recursive feature elimination
(RFE function from Scikit-learn).

Finally, an accuracy-efficiency analysis was performed, in
which the effect of dropping the most time-intensive fea-
tures on the performance of the algorithm was determined,
in order to create the most efficient algorithm possible. This
was done by ranking the features in order of time required to
calculate them, removing these features one at a time from
the most time-intensive to least time-intensive, and then de-
termining the performance metrics of the algorithm. Based
on this analysis, secondary structure accessibility, phast-
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Cons stem conservation score, and phastCons flanking re-
gions conservation score were removed (phyloP conserva-
tion scores were kept), resulting in a total of 11 features in
the final iteration of tRForest.

Algorithm validation

To validate the algorithm, tRForest was tested on two in-
dependent RNA-sequencing datasets following experimen-
tal perturbation of the abundance of the tRFs. This was
done by creating the feature profile for the perturbed tRF,
and then determining the predicted targets. After this, the
genes from the RNA sequencing dataset were separated
into targets and non-targets, and CDF plots were gener-
ated comparing the log2 fold change of targets compared
to non-targets to determine whether the targets were re-
pressed when the tRF was increased. These CDF plots were
compared to those generated from the predicted targets of
tRFTar, tRFTarget, and tRFTars, three existing tRF pre-
diction algorithms, as well as miRDB and TargetScan, two
existing miRNA prediction algorithms. Effect sizes (X-axis
displacement between the two CDF plots: log2 fold change
of targets at 0.5 fraction of genes – log2 fold change of
non-targets at 0.5 fraction of genes) and the two-sided P-
values from a Kolmogorov–Smirnov (KS) test were also cal-
culated.

Small RNA sequencing data from ENCODE

Small RNA sequencing (size fractionation < 200 nu-
cleotides) unique reads from ENCODE were visualized
using the UCSC genome browser hg19 genome build. We
visualized the tRNA-LeuTAA and miR-4286 loci in A549,
HeLa-S3, HepG2 and K562 cell lines. The corresponding
accession numbers for the cell lines are: ENCSR000AES,
ENCSR000CSA, ENCSR000CRY, ENCSR000CSN,
ENCSR000CRX, ENCSR000CQX, ENCSR000CRA,
ENCSR000CRF, ENCSR000CSM, ENCSR000CRB,
ENCSR000CSB, ENCSR000CSK, ENCSR000CRW,
ENCSR000CRQ, ENCSR000CSL, ENCSR000CRO,
ENCSR000CQY, ENCSR000CRP, ENCSR000CSO,
ENCSR000CRZ, ENCSR000CTE and ENCSR000CQZ.

tRF gene target database

After the algorithm had been validated, tRForest was used
to predict gene targets for each of the tRFs in tRFdb across
seven species, excluding the tRFs from R. sphaeroides be-
cause it is the only species in the database that does not
undergo eukaryotic Ago-mediated repression (1,25). This
was done by first generating a list of all transcripts in
each genome (human: version GRCh37.p13/hg19; mouse:
mm9; D. melanogaster: dm3; C. elegans: ce6; S. pombe:
schiPomb1; Xenopus: xenTro3; zebrafish: Zv9). For each
tRF, two passes were first conducted: a seed match pass
and a binding energy pass. In miRNA, the first nucleotide
is generally unavailable for binding due to the architecture
of the Argonaute protein; however, we considered the first
position of the tRF to determine whether it was a factor
in target prediction (26). Thus, for the first pass, a list of
transcripts with 7mer-m1 seed matches (canonical pairing

in nucleotides 1–7 of the tRF) to the tRF was generated.
For the second pass, the binding energy of a tRF to each
transcript was calculated, and a list of transcripts with a
more stable binding energy than 60% of the binding en-
ergy from a perfect tRF–mRNA duplex was generated. For
the transcripts in the intersection of the two passes, the re-
maining nine features were calculated and the feature pro-
files for the tRF–mRNA duplexes were passed to tRFor-
est, which determined the final predicted targets. For S.
pombe, the fission yeast species, conservation scores were
not calculated. RNAhybrid was also used to create interac-
tion illustrations of the tRF–mRNA duplexes (27). These
targets were placed in a database, which can be queried
through different criteria including tRF type, tRF ID, gene
name, and transcript ID at https://trforest.com. The tool re-
turns the Ensembl transcript ID, gene name, binding en-
ergy, binding location on the 3′ UTR, and an interaction
illustration for each target, along with an option to re-
turn the chromosomal coordinates of the 3′ UTR of each
target.

Gene ontology analysis

Gene ontology analysis was implemented using the
clusterProfiler package https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html (28). First, the list of
tRForest predicted genes was converted to Entrez IDs using
BioMart (14). Then, the gene list was processed for each
of the three different ontology types (Biological Process,
Molecular Function, and Cellular Component) using the
enrichGO function, which yielded pathways ranked based
on number of genes relating to the pathway and the adjusted
P-value. These enrichment outputs were then used to cre-
ate two different plots for each ontology type. First, a dot-
plot was created using the dotplot function, which showed
the ten pathways with the highest gene ratios and displayed
data for the gene ratio, gene count, and adjusted P-value.
Secondly, a network plot was created using the cnetplot
function, which showed the connections between various
genes and the highest-ranking pathways. These two plots
for each ontology type were then combined into a final fig-
ure containing six plots for each tRF and each species. For
some tRFs, though, one or more ontologies would not have
enough genes to generate an output, in which case there
would be fewer plots for that tRF.

For two species (Xenopus tropicalis and Schizosaccha-
romyces pombe), the annotations were not already part of
the organism database (OrgDb) built in as part of cluster-
Profiler, so extra steps were taken to build the databases.
For X. tropicalis, species annotations were available within
the AnnotationHub resource https://bioconductor.org/
packages/release/bioc/html/AnnotationHub.html, so those
annotations were downloaded within R and used as an
OrgDb. For S. pombe, annotations were created using the
makeOrgPackageFromNCBI() function in the Annotation-
Forge package https://bioconductor.org/packages/release/
bioc/html/AnnotationForge.html, which downloaded
annotations directly from NCBI and stored them locally
in order to build an OrgDb. From here, these two OrgDbs
were used just as the built-in ones were when performing
the GO analysis.

https://trforest.com
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
https://bioconductor.org/packages/release/bioc/html/AnnotationForge.html
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Figure 1. Comprehensive workflow from initial dataset to validated algo-
rithm applied to tRFs in seven species.

Code with documentation

The code for tRForest is available at https://github.com/
tRForest-team/tRForest.git.

RESULTS

tRForest metrics and algorithm robustness

Figure 1 shows a comprehensive workflow describing the
development of the tRForest algorithm (with a visual rep-
resentation of the structure of a random forest and how it is
used for classification of small RNA targets and non-targets
in Supplemental Figure S1). We obtained ground-truth tar-
gets from an AGO1 cross-linking, ligation, and sequencing
of hybrids (CLASH) dataset (1) and used them to train tR-
Forest using the calculated features described in Methods.
After several optimization steps described below, the final
algorithm was obtained.

To decide on our final optimized algorithm, we first deter-
mined the sensitivity and positive predictive value (PPV) of
tRForest. Sensitivity (calculated as true positive/(true pos-
itive + false negative)) is the ability to detect positive tar-
gets and PPV (calculated as true positives/(true positives

Table 1. Sensitivity and PPV values for tRForest with different seed
match criteria (see Figure 2). 7mer-m1 and 8mer seed matches outperform
other criteria

Seed match Sensitivity PPV

6mer 0.9439 0.9446
7mer-A1 0.9523 0.9525
7mer-m1 0.9616 0.9620
7mer-m8 0.9588 0.9585
8mer 0.9622 0.9617

+ false positives) is the ability to detect true positive targets
among all predicted positive targets. Together, these metrics
show the algorithm is both sensitive and specific. The algo-
rithm performs best with 7mer-m1 or 8mer seed matching
(Table 1; see Figure 2 for seed matching schematic). It is pos-
sible that 7mer-m1 matching outperforms other 7mer seed
matching criteria because tRFs, unlike miRNAs, can actu-
ally pair with mRNA in the first position. However, it may
also be due to the fact that adenine is the first nucleotide
in ∼50% of tRFs, making the seed match identical to the
7mer-A1 criteria in 50% of cases (Supplemental Figure S2).
In tRForest, 7mer-m1 seed matching was used because it
provided a larger number of high-confidence targets than
8mer seed matches. Sensitivity and PPV were 0.9616 and
0.9620, respectively when 7mer-m1 seed matches were used
and when considering all features (Table 2).

Random forest algorithms work optimally when there
is little correlation between features. Therefore, we deter-
mined the correlation between each feature in tRForest us-
ing tRF-3009a as an example (Figure 3A). The magnitude
of the correlation was close to zero for a majority of the
pairs. There were two groups of pairs with high correla-
tion. The first group consisted of pairs in which informa-
tion about one feature was used in the calculation of the
other feature. For example, there was a moderate correla-
tion (r = 0.590) between the presence of a seed in the bind-
ing region and the difference in the number of paired po-
sitions between the seed region and 3′ region of the tRF.
In addition, there was a strong correlation (r = 0.677) be-
tween the number of paired positions and the length of the
longest consecutive sequence of pairs in the binding region.
The features in both of these pairs were kept in the algo-
rithm because although there was a moderate-to-strong cor-
relation between them, which is suboptimal for the random
forests algorithm, they provided distinct pieces of informa-
tion about the tRF-mRNA duplex. The second group of
correlated pairs consisted of two sets of conservation scores
of the binding region and the flanking region, phastCons
scores and phyloP scores. These scores differ in that phast-
Cons scores give the probability that a nucleotide belongs
to a conserved element, while phyloP scores give the log-
arithm of the P-value under a null hypothesis of neutral
evolution. From this analysis, we decided to remove the
phastCons scores and keep the phyloP scores, because phy-
loP scores provide information on both slower-than-neutral
and faster-than-neutral evolution.

In order to reduce the time to run tRForest, we per-
formed an accuracy-efficiency analysis in which the accu-
racy of the algorithm was measured as time-intensive fea-
tures were removed (Figure 3B). The ranking of the fea-

https://github.com/tRForest-team/tRForest.git
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Figure 2. Site type breakdown for seed-matching. The 6mer seed comprises nucleotides 2–7 on the tRF, with additional matching of the target at nucleotides
1 and/or 8 on the tRF based on the site type.

Table 2. Run time comparisons, sensitivity and PPV values for tRForest evaluated on various subsets of features

Rank by time to calculate Feature subset Sensitivity PPV

0 All features 0.9616 0.9620
1 Removed phastCons flanking score 0.9596 0.9597
2 Removed phastCons stem score 0.9603 0.9605
3 Removed phyloP flanking score 0.9596 0.9599
4 Removed phyloP stem score 0.9594 0.9597
5 Removed binding energy 0.9583 0.9587
6 Removed position of longest consecutive pairing 0.9606 0.9609
7 Removed length of longest consecutive pairing 0.9605 0.9610
8 Removed AU content 0.9604 0.9608
9 Removed number of paired positions 0.9616 0.9620
10 Removed seed 0.9602 0.9607
11 Removed binding region length 0.9570 0.9577
12 Removed number of 3′ end pairs 0.9602 0.9605
13 Removed difference between seed and 3′ end pairs 0.9613 0.9616
N/A All RFE ranked > 1 (RFE = 7) 0.9458 0.9453
N/A All RFE ranked = 1 (RFE = 7) 0.9423 0.9422
N/A Randomly shuffled 0.5053 0.5054

The run times are ranked from 0 (slowest) to 13 (fastest). The clustering of the sensitivity and PPV values after removal of various features suggests
that no individual or small subset of features contributes disproportionately to the classification. RFE: Recursive Feature Elimination. Last row: tRForest
performs significantly better when labels properly indicate targets and non-targets compared to randomly shuffling the labels.

tures according to time to calculate is in Table 2. We found
that the accuracy remained above 95% after the two most
time-intensive features, the phastCon conservation scores
(seed and flanking), were removed. Thus, both the correla-
tion and accuracy-efficiency analyses support the removal
of the phastCons scores, allowing tRForest to have low-to-
moderate correlation between features, maintain an accu-
racy above 95%, and achieve PPV and sensitivity values of
0.96.

To ensure robustness of the algorithm, we first removed
individual features from the training set. Even when half of
the most important or least important features are removed,
the algorithm performs effectively (PPV = ∼0.944, sensitiv-
ity = ∼0.944), indicating that no feature or set of features
is much more important than any other features (Table 2).
Since these features and feature subsets were able to suffi-
ciently train the algorithm, additional features did not need
to be added. Furthermore, many of these features are easily
calculated, increasing the efficiency of the algorithm. To en-
sure the algorithm was not merely classifying all targets as
positive targets and to ensure the negative sites were prop-
erly generated, the labels on the positive and negative sites
were randomly shuffled. When the algorithm was trained
this way, the PPV and sensitivity dropped to ∼0.5, indicat-

ing the algorithm was simply guessing (Table 2). Therefore,
tRForest performs significantly better than random guess-
ing.

Finally, a receiver operating characteristic (ROC) curve
was also generated from the 10-fold cross validation train-
ing of the optimized tRForest (after the phastCons conser-
vation features were removed). The ROC curve for tRForest
is very close to an ideal classifier and has an area under the
curve (AUC) of 0.99, in which the ideal value is 1 (Figure
3C).

Independent validation and comparison to existing miRNA
and tRF algorithms

Next, we wanted to determine how well tRForest performs
on new data derived from tRF overexpression. We used
three independent datasets with three separate experimen-
tal conditions in two different cell lines. First, we ana-
lyzed data in which tRNA-LeuTAA was overexpressed in
HEK293T cells, which led to increased tRF-3009a expres-
sion (8). There has been some confusion about whether
tRF-3009 is a miRNA (miR-4286). A search of miRDB
for the 22-base tRF-3009b does not reveal any complete
matches even with miR-4286, but the shorter 18-base tRF-
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Figure 3. (A) Heatmap of Pearson correlations between pairs of features for tRF-3009a. Only the two different methods of computing evolutionary
conservation scores are highly correlated, with low-to-moderate correlation between all other pairs. (B) Accuracy-efficiency analysis of tRForest. tRForest
continues to perform well as the most time-intensive features are removed, allowing it to become more efficient while maintaining accuracy above 95%. (C)
Receiver operating characteristic curve. tRForest performs nearly ideally compared to random guessing during training and testing.

3009a does match with miR-4286. However, since both
tRF-3009a and tRF-3009b are detectable and tRF-3009b
matches only to tRNAs, we believe that these are bona fide
tRFs and the miRNA annotation is erroneous. Overexpres-
sion of tRF-3009 parental tRNA directly results in an in-
crease in tRF-3009a and tRF-3009b and tRF-3009 is pro-
duced even in Dicer-knockout cells, which distinguishes it
from a miRNA (8). Furthermore, analysis of small RNA se-
quencing data from ENCODE for various human cell lines
reveals abundant expression of the parental tRNA, but no
expression from the miR-4286 locus (Supplemental Figures
S3 and S4) (29,30). Finally, we did not see expression of
RNA in several of the ERVL-MaLR loci we checked (data
not shown) (31).

We observed that tRF-3009a targets predicted by tRFor-
est were significantly repressed compared to non-targets by
cumulative distribution function (CDF) plot (Figure 4A;
KS test P value = 3.65E−04). The next dataset we analyzed
was from overexpression of a tRF-3009a mimic in U87 cells.
Again, we observed that tRF-3009a targets predicted by tR-
Forest were significantly repressed compared to non-targets
by CDF plot (Figure 4B; KS test P value = 2.64E−05).
Finally, we generated and analyzed a dataset from overex-
pression of tRF-3004b in HEK293T cells and observed that
tRF-3004b targets predicted by tRForest were significantly
repressed compared to non-targets (Table 3; KS test P value
= 3.49E−05).

CDF plots for targets predicted by other miRNA and
tRF algorithms are in Supplemental Figures S5 and S6.
For each cell type, the predicted targets from miRDB, tar-

getScan, tRFTar, tRFTarget, tRFTars, and tRForest were
compared to non-targets. We established an effect size
statistic to compare the difference between targets and non-
targets for the different algorithms (see methods). A neg-
ative effect size indicates target repression. Table 3 shows
effect sizes and P-values from each validation experiment.
tRForest outperforms miRNA target prediction algorithms
overwhelmingly with much larger effect sizes and by show-
ing significance with P < 0.01. tRForest also outperforms
tRFTarget and tRFTars with respect to effect size by nearly
a factor of two in the HEK293T cell experiment with in-
creased tRF-3009a expression, and by a factor of two to
four in the U87 cell experiment with P < 0.001. tRFor-
est matches the performance of tRFTar with similar effect
sizes, but presents a greater number of targets with much
greater significance (P < 0.001). tRForest also outperforms
tRFTarget and tRFTars by a factor of two to four with re-
spect to effect size in the HEK293T cell experiment with
tRF-3004b overexpression, for which tRFTar was unable
to provide targets. The range of effect sizes and number of
predicted targets from tRForest are comparable to miRDB
and targetScan evaluated on miRNA mimic overexpression
data, indicating that with the appropriate target prediction
tool, tRFs are just as functional as miRNAs, at least in the
case of tRF-3009a and tRF-3004b. Overall, tRForest either
closely matches or greatly outperforms all existing tRF tar-
get prediction algorithms along with several miRNA tar-
get prediction algorithms, and matches the performance of
established miRNA algorithms on miRNA overexpression
datasets.
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Figure 4. (A) tRForest distinguishes targets from non-targets of tRF-3009 in RNA-sequencing data collected after parental tRNA (chr6.trna83-LeuTAA)
overexpression in HEK293T cells. This is known to increase the level of tRF-3009a (8). (B) tRForest distinguishes targets from nontargets of tRF-3009 in
independent RNA-sequencing data collected from upon tRF-3009 mimic single-stranded overexpression transfection in U87 cells

Table 3. tRForest outperforms several miRNA target prediction algorithms in its ability to predict repression of target genes upon tRF induction in two
different cells

Experiment Cell type Algorithm # of targets Effect size P value

tRNA overexpression (GSE99769) HEK-293T miRDB 287 −0.0436 0.0714
targetScan 118 −0.0484 0.0830
tRFTar 308 −0.0770 0.0152
tRFTarget 1380 −0.0417 9.74E-04
tRFTars 2519 −0.0446 8.15E-05
tRForest 1083 −0.0732 3.65E-04

tRF-3009a mimic overexpression (GSE189510) U87 miRDB 284 −0.0082 0.759
targetScan 114 0.0267 0.560
tRFTar 309 −0.1646 0.0015
tRFTarget 1336 −0.0350 0.0219
tRFTars 2458 −0.0746 8.350E-05
tRForest 578 −0.1458 2.64E-05

miR-941 mimic overexpression (GSE93717) HEK-293T miRDB 27 −0.2160 9.45E-07
targetScan 776 −0.0279 3.35E-05

miR-101–3p.1 mimic overexpression (GSE180331,
sample GSM 5460899)

143BTK miRDB 893 −0.2177 < 2E-16

targetScan 834 −0.2107 < 2E-16
tRF-3004b overexpression (GSE197091) HEK-293T miRDB 491 −0.2373 2.93E-04

targetScan 190 −0.2049 6.09E-05
tRFTar* 0 N/A N/A
tRFTarget 1110 −0.1189 4.40E-06
tRFTars 541 −0.1883 1.55E-07
tRForest 111 −0.3857 3.49E-05

* No targets were found using tRFTar for the tRF-3004b sequence.
tRForest matches or outperforms all existing tRF target prediction algorithms in its ability to predict repression of target genes upon tRF induction in

two different cells across three experiments and two tRFs. Its performance is also comparable to miRDB and TargetScan evaluated on miRNA mimic
overexpression data.

Gene ontology analysis

Following target prediction and validation, gene ontology
analysis was performed for each tRF in order to provide
an overview of pathways potentially affected by a given
tRF. Strikingly, we identified neural and axonogenesis re-
lated GO terms in the tRF targets as top pathways enriched
across human, mouse, zebrafish, and drosophila (Figure
5A). To determine if these or other GO terms are conserved
across these species, we first identified conserved tRF se-
quences across these species. The highest number of con-
served tRFs were found between human and mouse, with
54 tRFs conserved at the sequence level (Figure 5B). Hu-

man, mouse, and drosophila have 3 conserved tRFs, and
human, mouse and C. elegans have only one conserved
tRF (Figure 5B). Since humans and mice had the high-
est number of conserved tRFs, we sought to determine
which GO terms are conserved for the conserved tRFs in
these species. We identified 409 conserved GO terms be-
tween mice and humans (Figure 5C). Of particular inter-
est, the top conserved GO terms between mice and hu-
mans involve brain related processes, indicating that tRFs
may have a conserved role in regulating genes in the ner-
vous system. Figure 5E shows an example output for the
human tRF-3009a Biological Process ontology. This in-
cludes both the dotplot and the gene concept network plot
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Figure 5. Several tRFs and tRF target GO terms are conserved. (A) Infographic showing the top 10 GO Biological Processes targeted by tRFs terms across
four species. (B) Upset plot showing the intersection of conserved tRF sequences across four species. (C) Venn diagram of the intersection of conserved,
significant GO terms of targets predicted for the 54 conserved tRFs between humans and mice. (D) Top 10 GO terms conserved among predicted targets of
human and mouse tRFs. Top ten GO terms were selected based on q value. MF: molecular function. CC: cellular component. BP: biological process. (E)
An example gene ontology analysis plot describing biological processes enriched among predicted targets of tRF-3009a. Left: dot plot. Right: gene-concept
network plot.
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as generated by clusterProfiler (28). As a negative control,
we performed a similar GO analysis for a non-targeting
unrelated short RNA used in RNA-seq (ssGL2: sequence
5′-CGUACGCGGAAUACUUCGAUU-3′). For this neg-
ative control, in contrast to what we saw with tRF tar-
gets, there were very few unique targets found with lit-
tle enrichment for brain-related processes (Supplemental
Figure S7).

tRForest users have the option to view and download the
extended version of this plot with all three ontologies for
any tRF and any species when possible. The dotplot allows
users to quickly get a feel for the most probable pathways as
well as the types of pathways affected for that tRF; for ex-
ample, for human tRF-3009a it is evident from Figure 5 that
the tRF may largely affect pathways related to neurons and
their development. The plot contains information regarding
gene ratio as the x-axis, adjusted P-value as dot color, and
gene count as dot size, so the user can easily see the most
relevant pathways as well as the underlying data, including
statistical significance. The gene-concept network plot gives
a more in-depth view of the connections between genes and
pathways, which shows users not only how many genes in-
fluence a certain pathway, but also the level of connection
and gene overlap between various pathways, which is not
information given by the dotplot. Both of these plots give
users an intuitive overview of their particular tRF, which
can be very useful in looking beyond the genetic targeting
capabilities of tRForest to how they can be applied. This
also saves users the step of needing to perform GO them-
selves to see if a tRF is likely related to a certain biological
process, molecular function, or cellular component.

Database overview

Figure 1 provides a comprehensive workflow for the con-
struction of the database. The database for tRForest con-
tains predicted targets for seven species: human, mouse,
D. melanogaster, C. elegans, S. pombe, X. tropicalis and
zebrafish. Notably, R. sphaeroides, which was included in
tRFdb, is not included in tRForest because gene repres-
sion in this bacteria species is not Ago-mediated, as it is
in the other species. In total, 628 tRFs with 262 880 target
transcripts are included in the database. A more detailed
breakdown by species is available on the Statistics page of
the website. Predicted targets can be retrieved by filtering
by tRF type or tRF ID as assigned in tRFdb; in addition,
the database can be queried by gene name or Ensembl tran-
script ID to find tRFs that are involved in its repression.
The output provided contains the tRF-ID, Ensembl tran-
script ID, gene name, binding energy of the tRF–gene du-
plex, binding location of the tRF on the 3′ UTR of the gene,
an interaction illustration of the duplex, and is ordered by
the prediction probability score given by tRForest which is
also shown. The database also allows the user to download
the 3′ UTR chromosomal coordinates of the predicted tar-
gets, as well as the output as a CSV file or Excel spreadsheet;
GO analysis can also be viewed or downloaded. Further in-
formation about the tool, as well as statistics on the tool,
a manual on usage, and a page to provide feedback can be
found on the database′s webpage (https://trforest.com).

DISCUSSION

tRFs are becoming increasingly relevant in the study of bi-
ology and disease due to their involvement in regulating
gene expression by pathways similar to miRNAs. However,
there are few tools available that are specifically designed for
tRF target prediction, and even fewer that utilize a machine
learning-based approach. This study presents a comprehen-
sive, rigorously designed and validated tRF target predic-
tion tool in a convenient online database that includes tRFs
across seven different species and includes tRF-1s, which
other tRF algorithms neglect.

tRF targets were predicted using existing research on fea-
tures involved in miRNA target prediction using random
forests applied to tRF data. At the time of this study, there
are several tRF targeting algorithms available, including
tRFTar, tRFTarget and tRFTars. However, only tRFTars
uses a machine-learning approach, and tRForest is the first
to use random forests in its algorithm. A significant ad-
vantage of using random forests is that they avoid overfit-
ting, a common limitation of machine learning algorithms
in which they become tailored specifically to the dataset
they were trained on and thus become less predictive in in-
dependent datasets (24). This is evident by the greater ef-
fect size for tRForest predicted targets compared to tRF-
Tars and tRFTarget predicted targets in all of the inde-
pendent validation datasets. Furthermore, the performance
of the algorithm is not impacted by the amount of train-
ing data available. The sequence for tRF-3009a comprises
over 10% of the training dataset, while the sequence for
tRF-3004b comprises less than 0.2% of the training dataset;
however, tRForest continues to perform two to four times
better (by the effect size metric) than tRFTars and tRF-
Target in the tRF-3004b analysis. tRForest is also the only
tRF target prediction algorithm to generate correspond-
ing negative sites for positive sites to better distinguish true
targets, and the only one to return tRF-1 targets. Unlike
several of the other algorithms, it also uses evolutionary
conservation as a feature and provides a streamlined ap-
proach to accessing gene ontology information. In addition,
it provides high-quality visualization of the enriched path-
way information from the targets. As a result of this unique
approach, tRForest matches or outperforms other exist-
ing tRF and miRNA target prediction tools for tRF target
prediction.

tRForest has several limitations associated with data
availability and efficiency. Feature calculation is currently
rather time-consuming, so tRF targets are currently only
available for existing tRFs found in tRFdb in species with
Ago-mediated repression. In addition, there is a lack of
available RNA-sequencing data with tRF overexpression to
further validate the results. We attempted to address this
limitation by testing tRForest on publicly available data,
as well as data generated in our lab. The main limitation
for the GO plot analysis is the fact that it requires a cer-
tain number of genes to generate plots (usually >5), and for
many tRFs this was not achieved with tRForest predictions.
It was less of an issue for more popular model organisms,
but S. pombe, for example, lacks many plots. This reduces
convenience to users but is overall not a significant issue for
the tool as a whole.

https://trforest.com
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The inclusion of conservation scores may be expected to
restrict target prediction; however, as Table 2 shows, elim-
inating any of the features for conservation did not signif-
icantly alter the sensitivity and PPV values. Lastly, tRFor-
est does not consider disease- or tissue-specific expression
of target RNAs, so it is advisable to confirm predicted tar-
gets or GOs by other analysis in specific conditions. For ex-
ample, Telonis et al. (32) utilized correlational analysis and
identified ‘Development, cell adhesion & RTK signaling’
and metabolism-related GOs as one of the four major cate-
gories of biological processes affected by tRFs across cancer
types. While not nervous-system related, this is broadly con-
sistent with our findings for human tRFs, as we found that
many conserved processes relate to neuron development.
We also note that, in other contexts, other targets might ap-
pear that we have missed using the training dataset devel-
oped in HEK293T cells.

Improvements to the algorithm could be made by in-
creasing the availability of CLASH and RNA-sequencing
data. In addition, its efficiency can be increased by fixing
the bottleneck in feature calculation which would allow the
addition of a custom option to the tool, in which the user
can input a unique tRF sequence and receive its targets.

This study presents a novel random forests-based ma-
chine learning model to predict tRF transcript targets in
seven species. Furthermore, it provides a gene ontology
analysis with these targets to determine enriched pathways.
tRForest allows researchers to determine tRF targets and
generate hypotheses about the biological functions of tRFs.
The tool is available publicly at https://trforest.com.
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