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Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent

pandemic, caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2,

is taking a heavy toll on society and planetary health, and illustrates the threat emerging

coronaviruses can pose to the well-being of humans and other animals. Coronaviruses

are constantly evolving, crossing host species barriers, and expanding their host range.

In the last few decades, several novel coronaviruses have emerged in humans and

domestic animals. Novel coronaviruses have also been discovered in captive wildlife or

wild populations, raising conservation concerns. The evolution and emergence of novel

viruses is enabled by frequent cross-species transmission. It is thus crucial to determine

emerging coronaviruses’ potential for infecting different host species, and to identify

the circumstances under which cross-species transmission occurs in order to mitigate

the rate of disease emergence. Here, I review (broadly across several mammalian host

species) up-to-date knowledge of host range and circumstances concerning reported

cross-species transmission events of emerging coronaviruses in humans and common

domestic mammals. All of these coronaviruses had similar host ranges, were closely

related (indicative of rapid diversification and spread), and their emergence was likely

associated with high-host-density environments facilitating multi-species interactions

(e.g., shelters, farms, and markets) and the health or well-being of animals as end-

and/or intermediate spillover hosts. Further research is needed to identify mechanisms

of the cross-species transmission events that have ultimately led to a surge of emerging

coronaviruses in multiple species in a relatively short period of time in a world undergoing

rapid environmental change.

Keywords: coronavirus, COVID-19, cross-species transmission, host range, MERS, One Health, SARS, spillover

INTRODUCTION

Coronaviruses (CoVs) cause respiratory and digestive diseases in humans and other animals,
and are responsible for several emerging diseases. The severe acute respiratory syndrome (SARS)
outbreak in 2002–2003 resulted in 8,422 human cases and 916 deaths in 33 countries (1). In 2012,
Middle East respiratory syndrome (MERS) emerged, and over time has resulted in over 2,500
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human cases and 866 deaths in 27 countries (2, 3). As of mid-
2021, the novel coronavirus disease 2019 (COVID-19) pandemic
has resulted in 4.2 million human deaths and 196.2 million cases
in 221 countries and territories (4). Other animals have also
been affected by these and other emerging coronaviruses, all of
which resulted from cross-species transmission, and demonstrate
the serious threat coronaviruses can pose to humans and other
animals globally.

Named after their crown-shaped spike surface proteins,
coronaviruses are enveloped, positive-sense single-stranded
RNA viruses that belong to the family Coronaviridae,
subfamily Orthocoronavirinae (5, 6). They split into four
genera: Alphacoronavirus, Betacoronavirus, Deltacoronavirus,
and Gammacoronavirus (5). The first two genera infect
mammals primarily, whereas Gammacoronaviruses infect birds,
and Deltacoronaviruses infect both mammals and birds (7).
Coronaviruses further split into species; however, they exist
as quasispecies due to the rapid evolution driven by their
high mutation rates and homologous RNA recombination (8).
Coronaviruses have the largest genomes (26.4–31.7 kb) of all
known RNA viruses; thus, their genomes are especially prone to
accumulation of mutations and recombined segments over time,
which contributes to their diverse host range and potential for
disease emergence (9).

Bats are considered reservoirs for most Alpha- and
Betacoronaviruses, while wild birds are probable reservoirs
for Gamma- and Deltacoronaviruses (10). Coronavirus spillover
from reservoirs to other species, and subsequent cross-species
transmission, is primarily mediated by recombination in the
receptor-binding domain (RBD) of the spike protein (S) gene
(11). The receptor-binding domain enables coronaviruses to
infect hosts by binding to a host receptor, e.g., angiotensin-
converting enzyme 2 (ACE2) in the case of SARS coronaviruses,
for cell entry (7, 12, 13). Although research has revealed
reservoirs and molecular mechanisms enabling cross-species
transmission, and that viral evolution is facilitated by frequent
cross-species transmission events (14), less is known about
the environments favoring emerging coronavirus evolution in
non-reservoir hosts.

Agriculture and industrialization expanded the global
abundance of humans and domestic mammals (i.e.,
livestock and pets). Today, their combined biomass makes
up 96% of all mammalian biomass on Earth (15). This
may be the primary reason for disease emergence in
humans and other animals (16). To help curb coronavirus
disease emergence, it is important to identify current host
ranges of existing coronaviruses in humans and domestic
animals, and the circumstances associated with their
cross-species transmission.

This review provides an updated succinct summary of
known host ranges and cross-species transmissions of
recently emerged coronaviruses in humans and domestic
mammals. Moreover, I discuss commonalities among the
ecological circumstances related to spillover and emergence of
several coronaviruses in various mammalian hosts, and how
these may inform One Health interventions for preventing
disease emergence.

EMERGING HUMAN CORONAVIRUSES

There are seven known human coronaviruses: the
Betacoronaviruses SARS-CoV-1, MERS-CoV, and SARS-CoV-2,
which caused SARS, MERS, and COVID-19, respectively, and
the Alphacoronaviruses NL63 and 229E and Betacoronaviruses
OC43 and HKU1, which cause the common cold in humans
(17). The latter four may not be labeled as recently emerging
coronaviruses, although they have spilled over at some point
in the past. Bats are considered reservoirs for NL63 and 229E,
whereas rodents are putative reservoirs for OC43 and HKU1
(17–19). NL63 possibly emerged several hundred years ago
from recombination between ancestors to 229E in hipposiderid
bats and coronaviruses circulating in African trident bats
(19, 20). Based on phylogenetic analyses, cattle and camelids
have been identified as probable intermediate spillover hosts
for OC43 and 229E emergence one and two centuries ago,
respectively (17, 18, 20). The bovine-to-human spillover that led
to OC43 emergence likely coincided with a pandemic in 1890
(17, 21, 22). Indeed, OC43 and bovine coronavirus share 96%
global nucleotide identity (23). Finally, extant lineages of HKU1
trace their most recent common ancestor to the 1950s, when it
possibly spilled over from rodents (20).

Next, this section covers plausible spillover events—from
reservoirs to humans via potential intermediate host species—
that generated the recent SARS-CoV-1, MERS-CoV, and SARS-
CoV-2, and their cross-species transmission potential.

SARS-CoV-1
Severe acute respiratory syndrome emerged in Guangdong,
China, and caused the devastating 2000–2003 outbreak in several
countries (1). Successful efforts curbed the epidemic: only a few
cases occurred in late 2003 and early 2004 (24). There have been
no known SARS-CoV-1-related cases since.

Based on genetic and epidemiologic investigations, the first
SARS-CoV-1-infected individuals likely contracted the virus
frommasked palm civets or other wildlife in wetmarkets (24–27).
Civet isolates revealed ongoing adaptation, suggesting that they
were not reservoir hosts, but intermediate spillover hosts that
contracted the virus from horseshoe bats (26–30). Substantial
evidence confirms bats as SARS reservoirs (26, 28, 29, 31, 32).

Wildlife samples from a market in Shenzhen revealed that
SARS-CoV-1 shared 99.8% nucleotide identity with isolates
from civets and a raccoon dog, and that a ferret badger
had seroconverted against SARS-CoV-1 (24, 26). Initial human
cases reported direct or indirect contact with these animals
via handling, killing, meat serving, or residing near wet
markets (33). Surveys showed that animal (especially civet)
traders, although asymptomatic, had disproportionately high
seroconversion against SARS-CoV-1, suggesting they have been
exposed to SARS-CoV-related viruses for several years before the
SARS epidemic (24, 26). Intermediate spillover hosts were not
necessarily required for the evolution of SARS-CoV-1, since a bat
SARS-like coronavirus is able to bind to ACE2 in humans and
civets for cell entry (34). Nonetheless, civets may have amplified
the virus and brought it closer to humans (35).
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Additional mammals are susceptible to SARS-CoV-1
infection. Cats, ferrets, guinea pigs, golden hamsters, common
marmosets, grivets, and cynomolgus and rhesus macaques can
be infected under experimental inoculation, seroconvert, and
display similar pathological signs as humans, and the monkeys
and guinea pigs usually display mild clinical signs, while cats
and golden hamsters show no clinical signs (36–44). In two
studies, inoculated ferrets only exhibited signs of lethargy
(36, 37). Furthermore, cats and ferrets can shed SARS-CoV-1
and transmit the virus within each species (36). Cats have also
been naturally infected by SARS-CoV-1 in an apartment block
where residents had SARS, suggesting possible human-to-cat
transmission (36). Although swine are susceptible to SARS-
CoV-1 both experimentally and naturally, viral replication in
(and shedding from) swine is poor (45–47). Mice and poultry
are not susceptible to SARS-CoV-1 infection (45, 48, 49). Thus,
SARS-CoV-1 was not uniquely adapted to humans, yet likely
restricted to mammals.

MERS-CoV
Middle East respiratory syndrome cases are still being reported
since it became endemic in the Arabian peninsula. Middle
East respiratory syndrome does sporadically spread to
other parts of the world, although with limited human-to-
human transmission (50, 51). Most outbreaks originate from
independent spillover events.

Bats are putative reservoirs for MERS, while dromedary
camels and other camelids are intermediate spillover hosts (52–
54). Although rare, camel-to-human transmission does occur
(51, 55). Infected camels shed MERS-CoV via bodily fluids,
especially nasal secretions, and exhibit sneezing, coughing, fever,
and loss of appetite (56, 57). Camel care-takers or consumers of
camel products are at risk of contractingMERS-CoV (51). People
in direct or indirect contact with camels have disproportionately
high seroconversion against MERS-CoV (58). Surveys from 2010
to 2013 in Saudi Arabia show that 90% of 310 and 74% of
203 camels were MERS-CoV seropositive (59, 60). Historical
seropositive samples and phylogenetic analyses suggest that
MERS-like coronaviruses have been circulating in camels for at
least a few decades before MERS recently emerged in humans
(52, 60–63). Camel markets with both live and dead animals are
believed to serve as hotspots for MERS-CoV transmission (64).

MERS-CoV may infect additional species. Rhesus macaques,
common marmosets, swine, llamas, rabbits, and alpacas have
been infected experimentally, and the monkeys developed mild-
to-moderate and moderate-to-severe disease, respectively, swine
and llamas displayed rhinorrhea, while rabbits and alpacas
showed no clinical signs, although alpacas shed MERS-CoV and
transmitted it within its species (65–68). A virological survey
found MERS-CoV in sheep, goats, donkeys, and a cow, but not
in buffaloes, mules, or horses (69). A serological study confirms
that equids might not be susceptible to MERS-CoV infection,
although in vitro inoculation suggests otherwise (70). However,
in an experimental inoculation study, sheep and horses did
not show evidence of viral replication or seroconversion (68).
Mice, golden hamsters, ferrets, and poultry are not considered
susceptible to MERS-CoV infection, mainly because of their low

host receptor homology with that of the MERS-CoV-susceptible
species (67, 71).

SARS-CoV-2
The current COVID-19 pandemic was initially reported in
Wuhan, China in 2019 (72, 73), although the origin of its
pathogen, SARS-CoV-2, is still unclear. Its ancestor probably
originated in bats, since SARS-CoV-2 is most closely related to
the 2013 and 2019 isolates from horseshoe bats in Yunnan, China
at the genome level, although not at the RBD level, suggesting
neither might bind to human ACE2, and are thus not immediate
ancestors of SARS-CoV-2 (72, 74, 75).

Conversely, isolates (pangolin-CoVs) from smuggled and
diseased pangolins in Guangdong (2018–2019) are closely
related to SARS-CoV-2 in the RBD region (76–80). Molecular
binding simulations show that S proteins of SARS-CoV-2 and
pangolin-CoVs can potentially recognize ACE2 in both humans
and pangolins, suggesting possible pangolin-to-human spillover
(76, 77). However, because pangolin-CoVs (including strains
from Guangxi) are not the closest relatives to SARS-CoV-
2 at the genome level, they are likely not direct ancestors
of SARS-CoV-2 (76, 78, 79). Nevertheless, a 2019 pangolin-
CoV isolate from Guangdong displayed high genome-wide
similarity with both SARS-CoV-2 and SARS-CoV-2’s closest
relative (from bats), suggesting SARS-CoV-2may have originated
from recombination among coronaviruses present in bats and
other wildlife (76, 77, 79, 81).

Like SARS-CoV-1, SARS-CoV-2 infects species with high
ACE2 homology. Cats, ferrets, golden hamsters, tree shrews,
common marmosets, grivets, and cynomolgus and rhesus
macaques have been infected with SARS-CoV-2 experimentally,
shed the virus, and displayed similar or milder clinical and
pathological signs as humans, although cats may not show signs
of disease (82–91). Conversely, dogs have low susceptibility to
SARS-CoV-2, and show lack of clinical signs or dog-to-dog
transmission, possibly due to their low levels of ACE2 in the
respiratory tract (82, 91–93). Yet, cat-to-cat, ferret-to-ferret,
hamster-to-hamster, and bat-to-bat transmission of SARS-CoV-
2 have been confirmed experimentally (82, 90, 91, 94). However,
mice, swine, and poultry are not susceptible to SARS-CoV-2
infection (49, 71, 82).

Accumulating evidence supports naturally occurring human-
to-cat SARS-CoV-2 transmission, such as multiple reports
worldwide of SARS-CoV-2-positive cats from confirmed or
suspected SARS-CoV-2-positive owners (95). Natural human-
to-dog transmission may be possible, as was confirmed by
seroconversion and SARS-CoV-2 presence in two out of 15
dogs in close contact with COVID-19 patients, where the
viral sequences from each dog-and-owner pair were identical
(92). Serological and virological surveys, conducted several
months after the pandemic started, indicate that SARS-CoV-
2 prevalence is much lower in pet and street cats and dogs
than in humans, even if pet owners had suspected or confirmed
SARS-CoV-2 infection (96–100). Thus, cats and dogs can get
infected under natural conditions, but rarely. However, certain
environments might amplify natural infections and cross-species

Frontiers in Public Health | www.frontiersin.org 3 September 2021 | Volume 9 | Article 717941

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Nova Cross-Species Transmission of Coronaviruses

transmission. Human-to-mink, mink-to-mink, and mink-to-
human transmission of SARS-CoV-2 have occurred on fur farms
in several countries (95, 101–104). SARS-CoV-2 has also been
transmitted to tigers, lions, and gorillas in zoos, raising concern
for wildlife conservation (105).

Apart from the mink farm outbreaks, evidence so far
suggests limited SARS-CoV-2 maintenance in domestic
mammals or risk for secondary zoonoses (104). However, the
panzootic potential of SARS-CoV-2 necessitates expanding
veterinary surveillance (104, 106), especially if domestic and/or
wild animals were to maintain SARS-CoV-2 as the human
population undergoes vaccination, making COVID-19 control
more difficult.

EMERGING CORONAVIRUSES IN
DOMESTIC MAMMALS

Since the advent of agriculture (∼8,000 BC), several spillover
events have led to the emergence of novel pathogens in humans
and domesticated animals (16). Genetic analyses place the
common ancestor to all known coronaviruses at around 8,000
BC, and those of each genus at around 2,400–3,300 BC (10).
Like humans, domestic mammals have been experiencing an
increasing rate of novel coronavirus emergence, especially within
the last century.

Bovine coronavirus (BCoV) likely emerged from rodent-CoVs
around 1400 AD (17, 107). Bovine coronavirus is transmitted
via the fecal–oral route, causing bloody diarrhea and respiratory
infections in cattle (108–110). Bovine coronavirus-like viruses
have also been detected in other domestic and wild ruminants
(108). Bovine coronavirus can infect dogs experimentally,
although subclinically (111). Turkeys show clinical signs of
enteritis when infected with BCoV experimentally, but chickens
are not susceptible (112). Equine-CoV, discovered in 1999,
plausibly also descended from BCoV and causes enteritis in
horses (113–115).

There are two dog coronaviruses: an Alphacoronavirus called
canine enteric coronavirus (CCoV), transmitted fecal-orally, with
serotypes CCoV-I and CCoV-II, and a Betacoronavirus called
canine respiratory coronavirus (CRCoV), which causes kennel
cough (116). Canine respiratory coronavirus was discovered in
2003 from a kennel outbreak (117). It was later also detected
in samples from 1996 (118). It is closely related to BCoV and
OC43, and genetic analyses suggest that CRCoV arose from
a recent host-species shift of BCoV from bovine to canine
hosts (117, 119).

Canine enteric coronavirus was first isolated from an outbreak
in military dogs in 1971 (116). Initially, CCoV infections were
believed to be restricted to the enteric tract causingmild diarrheal
disease (120), but an increasing number of lethal pantropic
infections suggests that CCoV is responsible for an emerging
infectious disease in canines (116). There are three proposed
subtypes of CCoV-II: original CCoV-IIa, recombinant CCoV-
IIb, and CCoV-IIc (116). The two biotypes of CCoV-IIa have
different tissue tropism and pathogenicity: “classical” CCoV-
IIa is restricted to the small intestine causing enteritis, but the

emerging “pantropic” CCoV-IIa causes leukopenia and is often
fatal (116, 121). In 2019, an Asian pantropic CCoV-IIa strain
was also isolated from a wolf in Italy (122), suggesting spillover
to wildlife of imported strains (123). Cats and swine are also
susceptible to CCoV (124–126).

There are six porcine coronaviruses: four Alphacoronaviruses,
transmissible gastroenteritis virus (TGEV), porcine respiratory
coronavirus (PRCoV), porcine epidemic diarrhea virus (PEDV),
and swine acute diarrhea syndrome coronavirus (SADS-
CoV), one Betacoronavirus, porcine haemagglutinating
encephalomyelitis virus (PHEV), and one Deltacoronavirus,
porcine deltacoronavirus (PDCoV) (127). Transmissible
gastroenteritis virus, PEDV, SADS-CoV, and PDCoV cause
severe enteritis that are fatal in piglets, PHEV causes
digestive and/or neurological disease, and PRCoV causes
mild respiratory disease (127).

Transmissible gastroenteritis virus, discovered in 1946 (128),
likely emerged from CCoV-II (129), and its less virulent
descendent PRCoV was identified in 1984 (130). Porcine
haemagglutinating encephalomyelitis virus, first described in
1957, likely descended from BCoV (127). Porcine epidemic
diarrhea virus emerged in the 1970s in Europe and Asia, likely
from bat-CoVs, and was introduced in North America in 2013
after a new PEDV strain emerged in China in 2010 (131–134). A
serological study indicates that PEDV subsequently spilled over
from domestic to feral swine populations in the US (135). Porcine
deltacoronavirus was first detected in swine samples from 2009 in
Hong Kong (10, 132). In 2014, PDCoV caused the first-reported
outbreaks in USA and South Korea (136, 137). It was proposed
that the virus’ ancestor originated from recombination between
sparrow-CoV and bulbul-CoV (138). Porcine deltacoronavirus is
most closely related to Deltacoronaviruses sampled from Asian
leopard cats and ferret badgers in Guangdong and Guangxi
markets (the first documented cases of Deltacoronaviruses in
mammals) (139), suggesting that these species could have acted
as intermediates for interspecies PDCoV spillover (140). In 2016,
SADS outbreaks emerged in Guangdong with evidence strongly
suggesting bat-to-swine spillover origin (141).

There is one coronavirus that primarily infects cats: feline
coronavirus (FCoV). This Alphacoronavirus exists in two
serotypes: FCoV-I and FCoV-II (142). Both cause digestive
diseases and are transmitted fecal-orally. FCoV-I is the most
common type, but less virulent than FCoV-II (143, 144).
Comparative sequence studies indicate FCoV-I is genetically
similar to CCoV-I, and FCoV-II emerged from recombination
between FCoV-I and CCoV-II (121, 142, 145, 146). Conceivably,
FCoV-I and CCoV-I evolved from a common ancestor, while
CCoV-II and FCoV-II arose as more virulent recombinants
(129). For each serotype, there are two biotypes with different
pathogenicity: feline enteric coronavirus (FECV) and feline
infectious peritonitis virus (FIPV). Feline enteric coronavirus
usually causes mild diarrhea, whereas feline infectious peritonitis
(FIP) is lethal. Feline infectious peritonitis virus evolves from
FECV via within-host mutations in the S gene that alter cell
tropism, and emerges during persistent infection of FECV (142,
147). However, a novel FIPV strain may have been transmitted
horizontally (144). In 2004, a disease resembling FIP was also
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FIGURE 1 | (A) The evolution and radiation of coronaviruses in humans and domestic mammals (via potential wild intermediate spillover host species). The radiation

suggests there could be a vicious cycle of coronavirus emergence, whereby newly emerged viruses in new hosts increase the likelihood of producing more new

recombinants. Red, blue and yellow arrows indicate the direction of spillover of coronavirus emergence for Alphacoronaviruses, Betacoronaviruses, and

Deltacoronaviruses, respectively. Solid arrows represent direct (confirmed or suspected) coronavirus transmission between host species (although indirect

transmission via an unidentified intermediate host is not excluded), and dashed arrows represent suspected indirect transmission via an unidentified intermediate host

(although direct transmission is not excluded) (10, 17, 104, 127, 139, 141, 156). Dotted arrows with a question mark indicate uncertain spillover events. (B) A

simplified phylogeny of the coronaviruses covered in this review, drawn from published findings (5, 129, 157).

discovered in ferrets caused by an emerging ferret systemic
coronavirus, a decade after the first and less virulent ferret
coronavirus (enteric) was discovered (148). Feline infectious
peritonitis likely emerged in the late 1950s, within a decade after
the first TGE cases in swine in USA (128, 149). Thus, FCoV is
closely related to TGEV and CCoV, and recombinants among
all three have emerged (150–152), probably because all three can
cross-infect cats, swine, and dogs (125, 151, 153–155).

DISCUSSION

Coronaviruses in humans and domestic animals are closely
related (Figure 1), and have emerged recently and at an
increasing rate. The circumstances associated with their
emergence are high-animal-density environments that favor
interspecies interactions, such as kennels, shelters, farms, and
markets (Table 1), which increase disease prevalence and
promote cross-species transmission. Indeed, studies show that
seroprevalence of CCoV is higher in kennels compared to
the rest of the dog population, and shelters co-housing dogs
with cats harbor recombinant canine-feline coronaviruses
(116, 151, 153, 159). Further, commercial agriculture has led to

large numbers of domestic animals living in close proximity to
humans, possibly driving the emergence of OC43 from cattle,
and 229E and MERS from camelids.

Additionally, animals kept under poor conditions or exposed
to stress (e.g., during transport) suffer from poor health and
suppressed immune systems, rendering themmore susceptible to
infections (64, 160). For example, mink fur farms, where animals
are usually kept in small, unhygienic enclosures, generated new
strains of SARS-CoV-2 causing secondary zoonoses (95, 101–
103). The wildlife trade and wet markets are conducive to
disease emergence as well, since animals are transported and
kept in small, unhygienic cages next to many different animal
species (160). Indeed, a study showed that civets in markets
were disproportionately positive for SARS-CoV-1 compared to
civets on the supplying farms (30). Further, SARS-CoV-1 isolates
from a civet and a racoon dog at the same market, but from
different regions of China, had an identical S-gene sequence,
which differed from that of the other civet isolates, indicating
the occurrence of cross-species transmission at the market
(26). Accordingly, the concept of One Health is important for
suppressing coronavirus emergence.

Little is still known about host ranges and cross-species
transmissions of coronaviruses. Most studies on this topic
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TABLE 1 | First reported outbreaks and probable host species involved in the cross-species transmission events of recently emerging coronaviruses (or new virulent

strains of re-emerging coronaviruses) in humans and domestic mammals covered in this review.

Primary

host

Emerging coronavirus

(or new virulent strain)

Year and location of

first reported cases

Intermediate spillover

host or host of viral

predecessor

Potential reservoir host Environment associated

with emergence

References

Human SARS-CoV-1 2002 Guangdong, China Masked palm civet

(Paguma larvata)

Bat (Rhinolophus spp.) Wet market (1, 24–30,

156)

MERS-CoV 2012 Saudi Arabia Dromedary camel

(Camelus dromedarius)

Bat (Taphozous perforatus,

Rhinopoma hardwickii and

Pipistrellus kuhlii)

Camel farm and market (2, 3, 52–54,

64, 156)

SARS-CoV-2 2019 Wuhan, China Malayan pangolin

(Manis javanica)?

Bat (Rhinolophus spp.) Wildlife trade and/or

wet market?

(72, 73, 75,

79)

Pig Porcine epidemic diarrhea

virus (PEDV)

1978 Belgium Unknown Bat (Scotophilus kuhlii) Swine farm (156)

New virulent PEDV strain 2010 Southern China Unknown Bat (Scotophilus kuhlii) Swine farm (132)

Porcine deltacoronavirus

(PDCoV)

2009 Hong Kong Asian leopard cat

(Prionailurus bengalensis)?

Ferret badger

(Melogale moschata)?

Avian, sparrow and bulbul Illegal live-animal market? (132, 138–

140)

Swine acute diarrhea

syndrome coronavirus

(SADS-CoV)

2016 Guangdong, China Unknown Bat (Rhinolophus spp.) Swine farm (141, 156)

Dog Canine respiratory

coronavirus (CRCoV)

2003 United Kingdom Cattle (BCoV) Rodents? Bats? Kennel (10, 17, 106,

115, 116,

118)

Canine enteric coronavirus

(CCoV)

1971 Germany Unknown Bat (Rhinolophus spp.?) Military dog kennel (10, 115, 126,

156, 158)

Pantropic CCoV-IIa 2005 Italy Unknown Bat (Rhinolophus spp.?) Pet shop (10, 115, 120,

126)

Cat Feline coronavirus (FCoV) 1963 United States FCoV-I: Unknown

FCoV-II: Cat and/or dog

(FCoV-I × CCoV-II)

Bat (Rhinolophus spp.?) Shelters and catteries (10, 127, 149)

Horizontally-transmitted FIP

FCoV-II

2011 Taiwan Cat and/or dog

(FCoV-I × CCoV-II)

Bat (Rhinolophus spp.?) Shelter (10, 127, 144)

The entry “Unknown” may either suggest that an intermediate spillover host exists but it has not been identified, or that it may not exist. Question marks represent uncertainty.

FCoV-I × CCoV-II denotes recombination between FCoV-I and CCoV-II.

have been motivated by finding appropriate animal models
for vaccine development, or identifying potential host species
enabling viral persistence. However, future studies should expand
their surveys beyond domestic, captive, or common laboratory
animals for a fuller comprehension of coronavirus emergence
and the extent of its radiation (Figure 1A). Surveillance efforts
of coronaviruses in the wild are underway (e.g., PREDICT,
Global Virome Genome) (161, 162), which are important for
identifying new coronaviruses with zoonotic potential [reviewed
in (163)], tracking spillover pathways, and potentially filling in
the host range gaps of known coronaviruses in humans and
domestic mammals.

Concurrently with the global expansion of humans and
domestic mammals, various coronaviruses have emerged as
a result of cross-species transmission among humans, and
domestic and wild animals. Conceivably, the human and
domestic mammal population increase yielded a large enough
susceptible population to maintain coronavirus circulation,
provided more opportunities for novel coronavirus emergence
via spillover among different species, and brought humans and

domestic animals in closer contact with wild reservoirs (164–
166). The mechanisms governing the surge and radiation of these
recently emerged coronaviruses require further investigation.
Actions reducing people’s dependency on domestic animals and
animal products, while improving the health of the animals
remaining in captivity, may mitigate coronavirus emergence.
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