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Passive Shimming of MRI Static Magnetic Field Using  
Regularization of Truncated Singular Value Decomposition

Mitsushi Abe

Purpose: To develop a new shimming calculation method, which can calculate iron piece placements rap-
idly to make the magnetic field homogeneous at intended homogeneity and then to make the shimming 
working time short.
Materials and Methods: The shimming calculation yields magnetic moment (MM) distribution, which is 
calculated by the truncated singular value decomposition (SVD) from the measured magnetic field. The MM 
distribution is described by a superposition of eigenmodes obtained by SVD of a response matrix from the 
moment distributions to magnetic fields at the field of view (FOV). The homogeneity is regulated by a trun-
cation number of the superposed eigenmodes. The magnetic moments are converted into iron volumes with 
the assumption of saturated magnetization and the iron pieces are placed according to the calculation results. 
Since the SVD calculation can be done in advance, the computational time at the shimming site is short. 
Results: Trial applications on a 0.5T magnetic resonance imaging (MRI) magnet were done using the new 
shimming calculation method, which was proved to work well. However, since the iron piece volumes had 
tolerances, the work was repeated until enough homogeneity was obtained. As a result, an intended homo-
geneity of 8.9 ppm (peak-to-peak) on 40 cm diameter spherical surface was successfully obtained from 
measured homogeneity of 543 ppm with short computational and working time.
Conclusion: The test shimming work showed that the developed shimming calculation method with trun-
cated SVD regularization is applicable to the shimming work on the MRI magnets. 
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Introduction
Magnetic resonance imaging (MRI) magnets have strong and 
homogeneous static magnetic fields at their field of view 
(FOV) to get clear imaging. The static magnetic field homo-
geneity is defined by the amplitude of the magnetic field 
strength distribution divided by a mean magnetic field on the 
surface of the volume of interest (VOI), which is roughly 
equal to FOV usually and a 40 cm diameter spherical volume 
(40 cm-DSV) in this paper. The homogeneity in FOV should 
be on the order of 10 ppm peak-to-peak (PP),1,2 where ppm 
means parts per million (1 × 10−6). This study treats static 
magnetic field shimming. After this, the magnetic field is 

static one, the shimming means static magnetic field shim-
ming and all homogeneities are described by ppm simply, 
meaning they are peak-to-peak values in 40 cm-DSV. 

MRI Magnets are designed with adequate coil block (CB) 
placements to have the capabilities to produce sufficient homo-
geneities.3–5 However, the magnets have some errors in their 
static magnetic fields due to manufacturing tolerances on CB 
placements and magnetic site environment. Each just manufac-
tured magnet is subjected to a magnetic field correction proce-
dure called shimming work to ensure they have a designed 
homogeneous magnetic field at the installation site.1,2 The shim-
ming work makes homogeneity from several hundred ppm to 
the designed value which is on the order of 10 ppm over FOV.2 

There are two kinds of shimming techniques. One is pas-
sive one and the other is active one.1,2 The passive shimming 
commonly uses iron pieces as shims. The iron pieces are 
magnetized passively due to the strong magnetic field and the 
magnetized iron pieces have magnetic moments (MMs) 
which generate a magnetic field to correct error fields.6–13 
The active shimming uses small coils (shim-coils) and many 
shim-coils are necessary for accurate shimming with an 
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The CP is identical to the flow function which is used for 
gradient field coil (GC) designs.18,19 DUCAS has also been 
applied to GC designs.20,21 

In this study, DUCAS treats the MM placements as shims 
with continuous distributions like the magnetization mapping 
approach for shim designs.7 However, This novel method cal-
culates CP distributions by DUCAS and CP values are con-
verted into MM distributions and iron piece placements. This 
is possible because a CP value means that the current is flowing 
around the node19 and can be recognized as an MM density. 
For a short computation time in the shimming site, our method 
calculates singular value decomposition (SVD) in advance.

SVD has been applied to CB placements in MRI magnet 
design,3,4 which are done by tuning the large singular value 
(low ordered) eigenmodes. Such eigenmodes have signifi-
cant magnetic field strengths. The low ordered eigenmodes 
are easy to have error magnetic fields4 and this novel shim-
ming method tunes the low ordered eigenmodes, compatibly. 
The method worked well at test shimming works. It has been 
proved that our novel shimming calculation provides ade-
quate iron piece placements for the shimming and good pre-
dictions of the shimmed magnetic fields from the measured 
magnetic fields. 

This paper describes formulations of the shimming cal-
culation method using TSVD regularization and results of 
shimming tests on a real MRI magnet. 

Materials and Methods
Shimming geometry and procedure
Figure 1 is a schematic drawing of a geometry for a magnetic 
field shimming with a magnet, which is for open type MRI 
and has poles (top and bottom), between which is a homoge-
neous magnetic field with mainly vertical (Z) component. 
The poles have CBs and iron yokes. MRI magnets are used 
with radio frequency antennas and GCs, but they are not 
shown in the figure. The FOV is at the center of the magnet 
as shown by the circle and the VOI, in which magnetic field 
is shimmed, is roughly same as FOV. Passive shimming is 
applied with iron pieces.

The shimming work is done repetitively with a proce-
dure shown in Fig. 2. The work starts with magnetic field 
measurement. If the measured magnetic field meets the 
homogeneity specification, no further work is necessary. If 
the homogeneity is not sufficient, the shimming work con-
tinues until the homogeneity becomes good (meets the speci-
fication). The procedure after measurement is that the 
shimming calculation and the iron piece placements.

This procedure shims the magnetic field at magnetic 
field evaluation points (MFEPs) which are on the magnetic 
field evaluation surface (MFES). In this study, the MFES is 
the surface of the VOI. Magnetic fields on the MFES are 
measured and shimmed by the shims (iron pieces) on the 
shim-trays which are placed surrounding the VOI.  Since the 
magnetic field is strong (a few 1/10 to several T), the iron 

increased magnet cost. However, the shim-coils for the active 
shimming can also be considered to have MMs by applied 
currents, and the MMs generate correcting magnetic fields. 
This situation is same as that of the passive shimming. 

If MM placements are known, the magnetic field can be 
well calculated. However, for the shimming, the placements 
have to be calculated to compensate the error magnetic field, 
which is a distribution of the deviation between the homoge-
neous target magnetic field and the measured magnetic field. 
This is a shimming calculation, which is an inverse problem 
and is the subject of this study. This study treats the passive 
shimming and the calculated MM distribution is converted 
into iron piece placements. 

Some shimming calculation methods have been pro-
posed. One uses linear optimization (LO) to search iron piece 
placements which minimize error magnetic field,6 and others 
use constraints such as iron volumes.7,8 Finally, some 
methods shim the magnetic fields through eliminating the 
coefficients of spherical harmonic functions (SHFs).9–13 

These methods have yielded successful shimming works 
for cylindrical MRI magnets. However there are two con-
cerns. One is a computational time. The shimming works on 
the cylindrical MRI magnets, are done with ramp-down and 
ramp-up of the magnetic fields in a few hours, meaning that 
one hour computational time does not disturb the shimming 
works. However, the shimming calculation in this paper is to 
be applied to the open MRI magnets, which shimming works 
can be done without the ramp-down and ramp-up, meaning 
that the computational time should be less than the magnetic 
field measurement time and it should a few minutes or less. 
Once we tried the LO and found that it took a few tens of 
minutes. Then, the shimming calculation using LO is consid-
ered to be not suitable for the shimming work of the open 
MRI. Another concern is about the uses of SHFs for which 
the shimming is done by placing MMs (iron pieces) on planar 
or cylindrical shim-trays. The SHFs form bases of the VOI 
surface magnetic fields. However, there are no corresponding 
bases on the shim-trays. Then, the functions for MM place-
ments become complicated. This fact means that eliminating 
low ordered SHFs may cause some error fields at high 
ordered SHFs, which disturb the shimming and deteriorate 
the homogeneity.

Usually, the shimming calculation has been considered 
to be a complicated problem. However, since the iron 
pieces are at near saturated magnetization, the shimming 
calculation can be solved as a system of linear equations, 
which describe relations between MMs and magnetic 
fields. An inverse calculation determines the MM place-
ments from the error magnetic fields and the calculation 
needs a regularization.14 

The same kind of the problem is found in nuclear fusion 
device designs, and DUCAS15 was developed to handle it. 
DUCAS calculates current potential16 (CP) or MM density 
distributions on arbitrary surfaces using a regularization of 
the truncated singular value decomposition17 (TSVD).  
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Fig 1. Schematic drawing of a magnet for an open type magnetic resonance imaging (MRI) and a shimming computational model. Left 
frame shows an open MRI magnet. Center frame shows a computational model with top and bottom shim-trays, and with magnetic field 
evaluation surface (MFES) at middle. In the shimming calculation, the shim-trays are formed by finite elements (FEs), one of which is shown 
in right with node current potentials. FOV, field of view; VOI, volume of interest.

Fig 2. Procedure of the repetitive shimming work.

pieces are at saturated magnetization in the magnetic field 
direction and, similarly, the MMs of the iron pieces are in the 
vertical (+Z) direction. The magnetic field in the FOV is 
almost completely aligned in the Z direction.

Magnetic field
The shimming calculation is formulated with only the Z com-
ponent BZ and the target magnetic field is a uniform one at 
strength B0 in the FOV and we define the error field distribu-
tion BER as,

  B B BER 0 MS= - ,       
(1)

where BMS is a distribution vector of present measured 
magnetic field, and the components are BZ strengths at 
MFEPs. There are several hundred magnetic field measure-
ment points (MFMPs) and MFEPs. Generally MFMPs and 
MFEPs can be different each other. However, we define the 
MFEPs at the same positions as the MFMPs. They are on 
the MFES (VOI surface) of Fig. 1. The magnetic fields 

(component of the magnetic field vectors) in Eq. (1) are  
at MFEPs. They form vectors of, BER = (-----, B i

ER,  ------),  
B0 = (-----, B0 i, -----) and BMS = (------, B i

MS,  ------) and each 
point i is at MFEP. 

The shimming work is to produce a magnetic field 
BMM = (-------, B i

MM,  -----) at MFEPs by MMs of the iron 
pieces and BMM compensates BER. We assume here that 
MMs are distributed on the shim-trays as m(x) [A], which 
is the magnetic moment [Am2] per an area [m2] and com-
ponents are for X, Y and Z directions. The magnetic field 
at the i-th MFEP due to the MM at the j-th position Mj = 
m(xj)∆ Sj is,

B r rij
MM

0 ij= −{ / ( )}[ ( ) / ].
ij Z ,µ 4 33 2p M r r Mj ij jij

   (2)

where rij is a vector from the j-th position to the i-th MFEP, 
rij is an absolute length of rij, μ0 is permeability in a vacuum 
and the last subscript Z means the Z component of the mag-
netic field. 

Figure 3 plots the magnetic field distribution of Eq. (2). 
An iron piece of 0.1 cm3 with magnetization in Z direction 
(MZ = 0.1711 Am2) is placed on the top shim-tray in each 
frame, changing the radial position at the center and edge. 
The iron piece strengthens the magnetic field in the VOI. 
However, when the piece is placed at the edge, it has a 
negative magnetic field (dotted area). On the top frame, 
the piece generates a magnetic field of more than 10 μT. 
which corresponds to 6.7 ppm and 20 ppm for B0 of 1.5T 
and 0.5T, respectively. This means that smaller pieces 
than 0.05 cm3 are necessary for accurate shimming to 
make the homogeneity down to 10 ppm in 40 cm-DSV on 
a 0.5T magnet. The shimming calculation in this study 
calculates the m(xj) distribution which generates BMM 
roughly equal to BER. 
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Formulation of shimming calculation
Formulation
This shimming calculation uses DUCAS15 which calculates 
the CP distribution according to a magnetic field distribution 
given by measurements. DUCAS forms the shim-trays by the 
triangle finite elements (FEs) and each node has a CP value Ti 
as Fig. 1 right. Calculated CP values are converted into MMs 
and iron piece volumes which generate BER approximately. 
The CP value (described as Tj for the j-th node) denotes the 
magnetic moment density (A), because Tj is a value of the cur-
rent flowing around the node21 as indicated in Fig. 4a. Since 
DUCAS uses triangle FEs, any surfaces for shim-trays can be 
treated. This study focuses on planar shim-trays as Fig. 1. 

A node with Tj has a MM of, 
  M nj k S T= kj k jå / ,3     (3)

where the summation is done over the k-th FE which includes 
the j-th node, and Skj and nk are the area and normal vector of 
the k-th FE. The factor 1/3 is due to the triangle FE shape. As 
Fig. 1 shows, nk and Mj are in the Z direction parallel to the 
magnetic field. Figure 4b shows magnetization current JM on 
iron piece surfaces. The current generates a MM in the mag-
netic field direction (Z). Then, the two MMs in Fig. 4 are 
identical to each other and the CP distribution can be con-
verted into the MM distribution and then the iron piece 
placement. 

Using Eq. (2) and Eq. (3), we can describe the magnetic 
field distribution BMM due to CPs as, 

   
B TMM = A ,

    (4)

where Aij of the response matrix A is,
 A r r r Sij ij

3
Zij
2

ij
2= /{ / ( )}( ) / ,µ −0 k kj4 3 1 3p å    (5)

and T is a vector for which components are node CP values 
Tj. The summation in Eq. (5) is done over the k-th FE which 
includes the j-th node.

The magnetic field after the shimming work becomes 
BMM + BMS which all node CP values should satisfy,

   − < + < +e eB B B Bi i
ER

i
MM

i
0 0( ) ,    (6)

where e  is an allowable residual rate and is half of the 
homogeneity (on the order of 10.0 × 10–6 or 10 ppm) on 
MFEPs or the VOI surface of the 40 cm-DSV in this study. In 
this shimming calculation, BMM is generated by CPs on the 
shim-trays T SH as,

   B TMM SH= A .     (7)

The shimming calculation must obtains T SH, with which 
magnetic field BMM Eq. (6) is satisfied, then BMM is roughly 
equal to BER. DUCAS solves the equation to obtain such 
BMM,

   
T BSH *

,

( ) ,= ERAR
    (8)

where R is a matrix to choose independent nodes,15,20,21 
which CPs form T SH’(=RT SH), and the superscript * means a 
pseudo-inverse matrix. For the shimming calculation, all 
MFEPs have the same weights.

TSVD is applied in order to get a pseudo-inverse of AR. 
Then, SVD describes the matrix as,

   
AR= i i i

t

i=
∑

1

MD

u lm ,
     

(9)

where the summation is done over eigenmodes from i=1 to a 
truncation number MD of TSVD regularization. The pseudo-
inverse matrix can be calculated as,

   
( ) / ,AR *

i

M

i

D

u= i
t

i
=
∑

1

m l
     

 (10)

Fig 3. Magnetic field BZ distribution by a magnetic dipole moment 
MZ = 0.1711 Am2 (referenced to a 0.1 cc iron piece) placed. 1/4 
circles at left bottom in each frame represent 40 cm-DSV surfaces.

Fig 4. A computational model of a magnetic moment for a node 
current potential and magnetization currents on an iron piece sur-
faces creating a magnetic moment. (a) Current potential and mesh 
currents. (b) Iron piece and magnetization current JM.
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where vi is the i-th normalized eigenvector for T, ui is the i-th 
normalized eigenvector for the magnetic field distribution, λi 
is a singular value, and the summation is over eigenmode 
number i. Eq. (8) and Eq. (10) yield, 

   
T DSH

E=
=
∑R
i

M

i i

D

N i
1

1
2m / ,l

   
 (11)

where NE is the number of MFEPs and the Di is an eigen-
mode strength for the error field, calculated by,

   D Ni i
t= ER

Eu B / /
.

1 2      (12)

The summation in Eq. (11) is done over eigenmodes with a 
truncation as follows. 

Since ui have a unity norm, Di is a square averaged mag-
nitude of the i-th eigenmode component of BER. The summa-
tion in Eq. (11) can be summed up to the rank AR, but 
generally, the high order (small li) eigenmodes produce a 
very weak magnetic field and a summation of a limited 
number of low order eigenmodes can reconstruct a suffi-
ciently accurate magnetic field for B0. The reconstructed 
magnetic field distribution BRC is obtained as,

  
B uRC

E( )DM D=
=
∑
i

M

i

D

N i
1

1
2

   
 (13)

The accuracy of BRC is a function of MD and large MD makes 
BRC(MD) approach B0, or it is important to choose MD to get 
a good shimming result. The prediction of a residual mag-
netic field BRE, 

  B B BRE 0 RC
= − ( ),DM     (14)

is mainly due to the eigenmodes which are not summed in 
Eq. (13). The shimming calculation predicts the peak-to-
peak homogeneity h as,
 

h B B

B B B

( ) ( ) /

( ) ( ) / ,
D D

D D{ }
M M

M M

=

ppm
PP
RE

mx
RE

mn
RE

=0

0- [ ]

    (15)

where Bmx
RE  and Bmn

RE are maximum and minimum residual 
magnetic field on MFEPs. BRE of Eq. (14) has two compo-
nents. The truncation error of Eq. (13), or the magnetic field 
from the higher ordered eigenmodes than MD, is a main 
component on BPP

RE (MD) and is larger than several μT.  
A measurement error is an additional and weak component 
less than 0.1 μT. Then, h(MD) is almost determined by the 
truncation error.

Since MFEPs are on the 40 cm-DSV, the homogeneity 
on 40 cm-DSV is denoted by h40, which is used not only for 
the measured BER but also for the predicted residual BRE. The 
calculated h40(MD) is expected to approach zero by increasing 
MD with decreased truncation error in Eq. (13), and h40(MD) 
predicts the homogeneity after the shimming work. The 
shimming calculation determines MD which satisfies

   
h40 2( )DM < e.

     (16)

On the other hand, h40(0) is without a shimming work 
and is a homogeneity for the measured magnetic field BMS. In 
this paper, h40(0) is simplified as h40 and it is usually described 
by the unit of ppm (1 × 10–6).

Input and output parameters
The shimming calculation needs two input parameters of 
target magnetic field B0 and the truncation number MD which 
is the upper most eigenmode included in the shimming calcu-
lation {Eq. (11) and (13)}, other than measured magnetic 
field data. The output parameters are CP distribution T SH of 
Eq. (11), predicted residual magnetic field BRE of Eq. (14) 
and predicted homogeneity {for example, h40(MD) of Eq. (16)}. 
Eq. (14) shows that these outputs depend on two input 
parameters of B0 and MD. 

The expected homogeneity directly depends on MD. 
Increase of MD improves homogeneity, but increase the total 
iron volume. Too large MD may make the iron volume too 
large and iron piece placements impossible. Since the homo-
geneity is usually monotonically improved as MD increases, 
MD should be determined at a value with which homogeneity 
meets the specification. 

On the other hand, B0 has an optimum value near the 
average magnetic field strength of the measured magnetic 
field <BMS>. B0 magnitude is to be set as <BMS> as a first 
candidate and it is tuned to get good homogeneity with rea-
sonable iron volumes. The tuning of B0 is done using this 
shimming calculation, so that predicted homogeneity meets 
the specification with adequate iron volume placements. 

Iron piece placements
Iron volume distribution
In order to obtain the iron piece placements as shims, T SH of 
Eq. (11) is converted into the iron volume distribution, as 
follows. An iron piece in a magnetic field of the MRI magnet 
is almost magnetically saturated at magnetization 2.15T as 
reported in Refs. (9, 11). The magnetization corresponds to a 
surface current JM (Fig. 4b) of 1.711 × 106 A/m and magnetic 
moment of 1.711 × 106 Am2 per unit volume of 1.0 m3 on the 
shim-tray. Each element of T SH is converted into iron volume. 
For example Vj of j-th node is,  
   

V S TMj Zj= = k kj J
SH/ .

/ . [m ],

/1 711 10

1 711 10

6

6

3
3

×

×

{ }Σ
  (17)

where subscript j denotes the j-th node on the shim-trays of 
Fig. 1, Vj is a function of MD through Eq. (11) and the sum-
mation in Eq. (17) is done over the k-th FE which includes 
the j-th node. Usually, the number of the shim-tray nodes is 
large as several thousands in Fig. 1 and Vj values are summed 
in areas of a few tens of cm2 on the trays to get definite iron 
mass. Since T SH is obtained through Eq. (11) of summation 
on eigenmodes, Vj of Eq. (17) has contributions from selected 
eigenmodes which number is less than MD and will be placed 
on the two shim-trays of top and bottom. We have to design 
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the shim-trays so that the iron pieces calculated by Eq. (17) 
are possible to be placed. The design baselines are as 
follows.

Shim-tray size and expression of eigenmodes
The shim-trays should be designed to have a capability to 
shim the magnetic field to make the homogeneity less than 
the specification. We should have two considerations. One is 
eigenmodes and another is volumes of iron pieces. 

About the eigenmodes, following considerations were 
applied. The shim-trays (Fig. 1) should represent the dis-
tributions of eigenmodes vi, which are necessary for the 
homogeneous magnetic field and are up to MD-th. Such 
eigenmodes were discussed in Refs. (3, 4), which devel-
oped a magnet design method with two dimensional (2D) 
SVD eigenmodes with a symmetry in axial (Z) direction. 
They show that only six 2D symmetry eigenmodes are 
fully and the 7-th 2D eigenmode is fractionally used for 
usual MRI magnet with 6 main CBs. Then, the shim-trays 
are considered to have the capability to reconstruct up to 
the 7-th 2D symmetry eigenmode. In the following part of 
this paper, such symmetric eigenmodes are called as the 
basic eigenmodes. 

The capability to represent the eigenmodes depends on 
RS/ZS and FE sizes of the computational models in the shim-
ming calculation. Shim-trays with large RS/ZS can represent a 
larger number of eigenmodes and high ordered SVD eigen-
modes need small size fine FEs in the computational model. 

About the iron volumes, we have to design the shim-
trays so that they have the capabilities to hold enough iron 
volumes to compensate the error fields. During the magnet 
design, we estimate possible error fields and evaluate iron 
piece placements by the shimming calculations. Then, we 
have to design the shim-trays which have enough volume 
capabilities to compensate the error fields. 

The designed shim-trays and capabilities are discussed 
and confirmed with real magnetic field data of the test magnet 
a in the section Results in later.

Negative volumes in shimming calculation  
result and repetitive work
In the geometry of open MRI magnet like Fig. 1, the mag-
netic field due to MMs on the shim-trays are mainly positive 
as indicated in Fig. 3 and this magnetic fields strengthens the 
magnetic fields in FOV. Then, B0 is set to be a slightly higher 
magnetic field than the measured average one to reduce the 
negative iron volume.

Sometimes, the calculation yields negative Vi. This situ-
ation is seen especially for cases with lower B0 than averaged 
one and/or too large MD number, which includes high ordered 
eigenmodes. They are likely to have large amplitudes CP dis-
tributions because of the small singular values and they 
easily lead to yield negative Vi values. Permanent magnet 
pieces may be applicable for the negative Vi, however, it is 
possible to get the shimmed magnetic field even with only 

passive iron pieces. The possible technique is to place iron 
pieces only at the positive area and to repeat the shimming 
work as explained roughly in Fig. 5, in which a computa-
tional test shimming is described and BER is assumed to have 
only the 75-th eigenmode distribution, i.e. BER = NE

1/2u75D75 
with D75 = 0.4 μT. 

In Fig. 5a, bottom half plots the contour lines for the BER 
distribution and top half plots those for the remained error 
field BER,

   B u BER
i i

ER
i= i

tA{ /( )( ) },m m- l     (18)

after the positive only iron piece placements, where vi is the 
distribution obtained from vi with making the negative ele-
ments forced zero. Figure 5b shows eigenmode strengths of 
BER. The error field amplitude (then homogeneity) is 
increased by this iron piece placement. However, this situa-
tion shows a shimming progress. The eigenmode strengths 
for BER (square) before and BER (circle) after the positive 
only shimming are plotted in Fig. 5b. Due to the shimming, 
75-th eigenmode strength is reduced by half, while some 
other eigenmodes appear. Those in higher eigenmode num-
bers than 75-th (original) are less than 1/10 of the original 
75-th strength, meaning that they are negligible. Those in 
low eigenmode number are larger than the original 75-th 
strength. However, they can be easily shimmed with small 
volumes of iron pieces, because of large singular values for 
them as plotted in Fig. 5b.

As a summary of the discussion so far, we can expect 
that the shimming without the negative iron piece place-
ments, can shim the error magnetic field as reduced eigen-
mode strengths. However, the strengths at low eigenmode 
numbers may be increased. In order to make these low 
ordered eigenmodes shimmed, two points should be consid-
ered. One is that the repetitive shimming work is necessary, 
and the other is that B0 should be tuned considering that the 
magnetic fields on MFES and in VOI are generally strength-
ened due to the placed iron pieces. In the test shimming of the 
next section, this technique of positive only shimming the 
repetition and B0 tuning were adopted. 

The shimming procedure needs some repetitions as shown 
in Fig. 2 until the homogeneity meets the specification. Cause 
of the repetitive work is considered to be due to errors of the 
iron piece volumes placed and the errors from the ignored 
negative volumes is the largest among iron volume error 
sources. There are two possible error iron volume sources 
other than the ignored negative volumes. They are iron piece 
tolerances and magnetization strengths of iron pieces. The first 
one depends on shimming calculation parameters and the 
errors are estimated to reach 30% of calculated volumes at 
maximum. The others are estimated to be less than 10% of 
calculated volumes. These may increase the number of the 
repetitions, while the homogeneity is expected to improve 
repetitively to meet the specification. This shimming calcula-
tion with the repetitive shimming work were confirmed exper-
imentally on shimming works as next sections. 
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Fig 5. Computational shimming test for 75-th eigenmode of 0.4 μT strength or 1.65 μT peak-to-peak. (a) Assumed error magnetic field 
distribution in the bottom half and remained error magnetic field distribution after positive only MM shimming in the top half. Contour 
lines are at every 0.5 μT. (b) Eigenmode strengths of the error magnetic field. A black square denotes the strengths before the shimming BER 
and black circles denote those remained error magnetic field BER after the positive only shimming. The placements are illustrated in small 
frames at the top right position. MM, magnetic moment.

Results
Test shimming works were done to confirm the applicability 
of the developed shimming calculation method to MRI mag-
nets. The target homogeneity in the following test shimming 
was decided as 10 ppm in VOI of 40 cm-DSV on a 0.5T open 
type MRI magnet (h40 = 10 ppm). The homogeneity 10 ppm 
corresponds to BPP

RE = 5 μT and has the following meanings.
(1) BPP

RE = 5 μT corresponds 3.3 ppm for 1.5T magnet, 
meaning a high field magnet can be shimmed down to a few 
ppm by this method.

(2) With h40 = 10 ppm, an MR image has little distor-
tion (0.5 mm distortion in 40 cm-DSV) due to BRE of –2.5 to 
2.5 μT, even with weak gradient field of 5 mT/m, which is 
1/5 of the maximum gradient field strength in this system. 

Test shimming geometry
The shimming calculation method described in the former sec-
tion was applied to test MRI magnet shimming works. The 
magnet was an open type (Fig. 1) with 0.5T magnetic field 
strength. The iron pieces were placed 3 cm away from pole sur-
faces, and they were considered to be at saturated magnetiza-
tion 2.15T.11 The shim-trays, in which iron pieces were placed 
according to the shimming calculation results, were RS = 0.54 m 
radius thin planar shapes placed at Z = +0.339 m and Z = 
−0.339 m. The FE sizes of computational models were deter-
mined to be less than 2.5 cm, and actual sizes are 0.8 cm (center) 
to 2.0 cm (edge) and the total number of nodes on the computa-
tional model of shim-trays is 5282. Maximum iron volume 
density on the trays was designed as 0.25 cm3/cm2, which 

corresponded to the maximum CP value of 5.13 kA. There were 
several kinds of iron piece volumes of 0.04 to 1.0 cm3 and the 
pieces were placed within 0.329 m < |Z| < 0.349 m or 2 cm 
thickness. 

There were 768 MFEPs on the MFES with 24 points 
along the latitude angle and 32 planes in the longitude 
angle. MFEPs were at the same position as the MFMPs and 
on the surface of VOI (40 cm-DSV). Homogeneity h40 was 
calculated from peak-to-peak magnetic field strength ampli-
tude at MFEPs.

SVD eigenmodes
The response matrix A had a size of 768 × 5282 and the 
number of identified eigenmodes were 482. Among them, 
sample six eigenmodes are shown in Fig. 6. Contour lines of 
CP distributions on the top and bottom shim-trays and of 
magnetic field distributions on the MFES are plotted for six 
sample eigenmodes from the identified 482 eigenmodes. 
They are three low ordered (large li value) eigenmodes (1-st, 
2-nd and 3-rd) and three middle to high ordered eigenmodes 
(40-th, 80-th and 123-th). Dotted areas have negative values. 

The first and the 123-th eigenmodes are 2D up-down 
symmetry and are the basic eigenmodes. The No. 6 and No. 
7 basic eigenmodes1,2 are at the 85-th and 123-rd eigen-
modes, respectively, in this shimming geometry. Increasing 
the order (decreasing li values), the eigenmode distributions 
become fine and they can reconstruct the detailed magnetic 
field distribution with large CP (then, heavy iron piece 
volume) values. The high ordered (higher than the 85-th) 
eigenmodes are chosen when a magnetic field shimming 
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Fig 6. Examples of eigenmodes in the shimming calculation obtained by singular value decomposition (SVD). Six eigenmodes are plotted 
as examples from identified 482 eigenmodes. Among the examples, the first and 123-th eigenmodes are basic eigenmodes which mag-
netic distributions have two dimensional (2D) (azimuthal and Z) symmetries. 

with fine magnetic field distribution is necessary. MD in Eqs. 
(11), (13) and (14) is determined to get a good homogeneity 
and the basic eigenmodes are available as markers. 

Test shimming work results
Figure 7a shows BER calculated by Eq. (1) with B0 = 0.499998 
T. This B0 was determined at average <BMS> and h40 was 543 
ppm. Contour lines are plotted on the Mercator projection at 
MFES (40 cm-DSV). In dotted area, the measured magnetic 
fields exceed B0 and BER is negative.

Figure 7b plots the eigenmode strengths Di of Eq. (12) 
and BPP

RE(MD) calculated from Eqs. (14) and (15) for Fig. 7a 
BER, as a function of MD. The circled eigenmodes were 
chosen to be shimmed with the limitation of Di > 0.2 μT 
which limitation was not necessary for usual shimming, but 
this was a test and we included it to confirm that the eigen-
modes were well controlled. When chosen eigenmodes are 
well shimmed as Eq. (13) and (14) for i < MD, the predicted 
h40(80) from Eq. (15) is 15.3 ppm (BPP

RE(80) = 7.6 μT). Short 
vertical lines with numbers indicate the basic eigenmodes. 
The chosen MD for the shimming are consistent with up to 
the 6-th basic eigenmodes. The expected h40 = 15.3 ppm was 
a little larger than the target homogeneity h40 = 10 ppm, but 
this first test shimming work was done to confirm the validity 
of this shimming calculation. A shimming for the target 
homogeneity will be discussed after this.

Figure 8 shows the obtained (solid line) h40 and predicted 
h40(MD) (dashed lines) plotted by functions of repetition. They 
finally obtained h40 was 17.0 ppm which was quite near the 
predicted h40(80) of 15.3 ppm in Fig. 7. The dashed lines are 
h40(MD) calculated by Eq. (15) with Eq. (13) and Eq. (14). If 
the eigenmodes up to MD are ideally shimmed (Di = 0 for  

i < MD), the predicted h40(MD) can be obtained as the measured 
one i. e. that is h40(0) after the shimming. However, the iron 
piece placements are estimated to have roughly 30% volume 
errors in this test shimming work. The errors are the cause that 
the repetition is necessary for the shimming work. Di values at 
i = 50 to 80 have to be shimmed to reduce Di by 1/10 roughly. 
Since the shimming is considered to be done with the errors 
randomly, at least four repetitions are necessary to shim the 
eigenmodes. Around the 40-th eigenmode, D40 should be 
shimmed as 1/30 and at least six repetitive works are neces-
sary. For the 1 to 10-th eigenmodes, at least 12 repetitions are 
necessary to reduce Di by 1/1000 for the test shimming works. 
Then it can be estimated that the number of repetition more 
than 12 times may be necessary in the test shimming works.

The test shimming work was done with MD = 80 in Fig. 7. 
This is why h40(80) had a little change meaning that the Di 
values for i > 80 were not shimmed during the repetitive 
shimming work. For the same reason, h40(120) had little 
change during the repetitive work. However, the others 
{h40(MD= 0 to 40)} were reduced repetitively. At the second 
repetition (after the first iron placements), h40 was deterio-
rated, while the h40(MD = 20 to 40) values were reduced, 
meaning that the shimming was effective for the eigenmodes 
of i = 20 to 80 in the first repetition. We have to check the 
eigenmode strength Di as well as homogeneity itself (h40) 
during the repetitive shimming work.

Figure 9 plots (a) error magnetic field BER and (b) Di 
values and a line for the BPP

RE(MD) at 7-th repetitive work. The 
homogeneity was 211 ppm with a reduced number of peaks as 
shown in Fig. 9a. In Fig. 9b, the 50-th to 80-th eigenmodes had 
small Di values, less than 0.2 μT as intended. They were 
shimmed from the values in Fig. 7b. The BPP

RE(MD) line plot is 
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Fig 7. Error magnetic field before shimming on 40 cm-DSV surface. (a) Measured error magnetic field distribution with contour lines at 
every 2.0 x 10–5T. For the dotted area, BER < 0 (BMS > B0). (b) Eigenmode strengths (crosses) and predicted peak-to-peak amplitude B

PP

RE
(MD) 

(line). The eigenmodes plotted with circles are selected as those to be shimmed. The numbered short lines denote the basic eigenmodes. 
Numbers at the top right are the measured and predicted h40 values with B

mn

ER
, B

mx

ER
 and B

mn

RE
, B

mx

RE
. The shimming calculation predicted that 

h40 = 15.27 ppm could be attainable by the iron piece placements obtained by this shimming calculation with MD = 80.

Fig 8. Homogeneities during the test repetitive shimming work. The 
top line is for the measured and obtained homogeneity h40. The rests 
are predicted homogeneities h40(MD) from the residual magnetic 
fields calculated by this shimming calculation with MD = 20 to 120.

flat between MD of 50 to 80 because of small Di values for i = 
50 to 80. These plots show that, during the repetitions (first to 
7-th), 50-th to 80-th eigenmodes were well shimmed. It can be 
recognized that the shimming is done from high ordered to 
low ordered eigenmodes during the repetitive shimming work 
and this characteristic is consistent with Fig. 5.

Figure 10a shows a BRE after shimming finished and BPP
RE

is 8.5 μT which has been greatly reduced from 272 μT in  

BER before the shimming started. Figure 10b plots Di and BPP
RE

(MD). The Di values have been shimmed and reduced com-
pared to Fig. 7b and the BPP

RE(MD) line is flat at MD < 80. These 
show that the repetitive shimming work has finished and this 
first test shimming work has confirmed that the passive shim-
ming with this novel shimming calculation works well. 

Since our target homogeneity was h40 = 10 ppm, we 
could understand from Fig. 10b, shimming including higher 
ordered eigenmodes than 80-th and reduction of Di (i < 80) 
less than 0.2 μT were necessary. Another test shimming was 
done using the same magnet. In order to obtain h40 less than 
10 ppm, following two policies were introduced.

(1) The shimming for the eigenmodes up to 160-th 
were added to make Di of high ordered (80 to 160-th) eigen-
modes small before the first repetition. 

(2) During the repetition, the eigenmode strengths were 
shimmed to be Di < 0.05 μT instead of 0.2 μT of 1-st test 
shimming.

Figure 11 plots the results. As shown by arrows with dashed 
lines, h40(MD = 80) and h40(MD = 120) were reduced before the 
first repetition. Roughly the same characteristics were observed 
as the former test shimming after the first repetition. 

Figure 12 plots Di of Eq. (12) for 15-th repetition. Calcu-
lated BPP

RE(MD) is also plotted as a line and h40 = 8.9 ppm at 
MD = 0. At the same time the predicted h40(80) was 7.8 ppm, 
meaning that the repetitive shimming work could be continued 
to get better h40. However, this test shimming was terminated 
at 15-th repetitive work, because a better h40 than the first test 
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shimming work and less than 10 ppm has been obtained with 
the reduced Di of the 80-th to 160-th eigenmodes and less than 
0.05 μT Di eigenmode strengths at 20-th to 80-th as intended. 
The difference, between the obtained h40 = 8.9 ppm and 

predicted h40(80) = 7.8 ppm, is considered to be due to the low 
ordered eigenmodes (i < 20) plotted with circles. 

The test shimming results obtained were very promising. 
Since then, this shimming calculation has been applied to 

Fig 9. Error magnetic field and its eigenmode strengths at the 7-th shimming calculation during repetitive shimming work. (a) Error magnetic 
field distribution on magnetic field evaluation surface (MFES) (40 cm-DSV) with contour lines at every 1.0 x 10–5T. For the dotted area, BER 
< 0 (BMS > B0). (b) Eigenmode strengths Di (crosses) and predicted peak-to-peak (PP) amplitude B

PP

RE
 of the residual magnetic field (line) as 

functions of MD. The eigenmodes plotted with circles are selected as the ones to be shimmed. The numbered short lines denote that they are 
basic eigenmodes. Numbers at the top right are the measured and predicted h40 values with B

mn

ER
, B

mx

ER
 and B

mn

RE
, B

mx

RE
. At MD = 80, h40(80) = 15.8 

ppm is predicted. 

Fig 10. Residual magnetic field after the 1-st test shimming work finish. The homogeneity is h40 = 17.0 ppm. (a) Residual magnetic field 
distribution with contour lines at every 2.0 μT. For the dotted area, BER < 0 (BMS > B0). (b) Eigenmode strengths and predicted peak-to-peak 
(PP) amplitude B

PP

RE
 of the residual magnetic field (line) as functions of MD. The numbered short lines denote that they are basic eigenmodes. 

At MD = 80. h40 = 17.0 ppm is predicted, meaning that no further shimming is applicable.
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Fig 12. Eigenmode strengths for the residual magnetic field at the 
15-th shimming calculation after the repetitive shimming work. 
Measured homogeneity is h40 = 8.9 ppm and predicted homogene-
ity h40(MD) are shown as the line. The numbered vertical short lines 
denote the basic eigenmodes. The calculation predicts that slightly 
improved homogeneity h40 = 7.8 ppm could be obtained with MD = 
80 with further repetitive shimming work.

Fig 11. Homogeneities during the repetitive shimming work 
of the 2-nd test shimming. The top line data are for obtained 
homogeneity h40. The rest of the data are predicted h40(MD) by 
the shimming calculations with MD = 20 to 120. Before this test 
shimming, eigenmodes of number 80-th to 120-th are roughly 
shimmed as shown by the 0-th to 1-st repetitive shimming work 
to obtain a better homogeneity than the first test shimming.

installations and maintenances of open type MRI magnets up 
to 1.2T. With this method, the shimming works are usually 
done in one day.

Discussion
These two sets of test shimming results have shown that the 
shimming calculation method in this study works well. Here, 

we discuss two subjects: the calculated negative iron vol-
umes and the advantages of this method. These discussions 
suggest that this method has possibilities of extended 
applicability.

Calculated negative iron volume
The shimming calculation sometimes yields negative volume 
iron piece placements partially and a technique to deal with 
them was discussed with Fig. 5, which suggested repetitive 
shimming work was necessary. Another possible technique is 
considered from Fig. 3, which shows that the iron pieces on 
the shim-tray generate a positive magnetic field. Then, to 
delete the negative calculated iron volume, an increased B0 
may be adequate. Fig. 13 is an example which shows iron 
volumes per 25 cm2 at the bottom shim-tray of a 1/4 part. The 
unit of the numbers is 0.01 cm3. The left side is calculated at 
B0 = 0.50000T and the right is at B0 = 0.50020T. At B0 = 
0.50000T, some negative iron volumes were calculated. At 
B0 = 0.50020T, no negative numbers were calculated. This 
comparison clearly shows that increasing B0 is effective to 
eliminate calculated negative iron volumes. However, the 
right side also shows that increased B0 needs a larger iron 
volumes than low B0. We have to choose B0 which deletes the 
negative iron volumes during the repetition without too much 
increase of the iron volumes and this shimming calculation is 
available to choose the adequate B0. 

Advantage of TSVD in shimming calculation
The first advantage of the TSVD is that the computational 
time does not disturb the shimming work. Since the geom-
etry is fixed for one model series of MRIs and the SVD cal-
culation is only done once in advance, the computational 
time for the shimming calculation at a site is quite short. One 
calculation, from reading the measured data, through sum-
ming SVD eigenmodes, to the iron piece placements, takes 
about 5 seconds with 5282 nodes, 768 MFEPs, and 3.3 GHz 
i5 CPU. This computational time enables the search for 
the optimum shimming condition for B0, MD and attainable 
homogeneity. 

The second advantage is that the eigenmodes included in 
Eq. (11) of the shimming calculation are selected from low 
order eigenmodes, which have large singular values, and 
magnetic fields are generated with small iron volumes. Then, 
this method has a capability to carry out the shimming works 
with small iron volumes. Some methods with LO8,9,11,12 use 
constraints of not only homogeneity but also shim amounts. 
The results depend on the weight factors. However, in our 
method we understand that the specified homogeneity can be 
obtained with a small shim amount.

The third advantage is that it is easy to understand the 
attainable homogeneity as a line of BPP

RE in Fig. 7b from the mea-
sured magnetic field. From the line, we can choose the shim-
ming calculation parameter MD easily. The eigenmodes 
included in the shimming calculation are considered to be 
related to magnet designs i.e. the number of main CBs.3,4 
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This understanding is based on the TSVD regularization and 
we can easily get attainable homogeneity along with the MRI 
magnets.

Conclusion
A novel passive shimming calculation method has been 
developed and applied to an open MRI magnet. Shimming 
works are to correct the error magnetic fields to make mag-
netic fields homogeneous for the MR imaging. The shimming 
calculation calculates the MM distribution which generates 
the correction magnetic field and converts it into iron piece 
placements for the shimming works. The calculation is done 
from the measured error magnetic fields, which are the differ-
ences between the uniform target magnetic fields and the 
measured magnetic fields. The calculation method is based 
on TSVD regularization on a response matrix which describes 
the relation between the MM distributions (which is the CP 
distribution) on the shim-trays and the magnetic fields on 
MFEPs. The MM distributions are obtained through a super-
position of the SVD eigenmodes with truncation. 

Shimming tests were done on a 0.5T MRI magnet. It 
have been concluded the novel shimming calculation method 
is well applicable to MRI magnets shimming works with 
adequate target magnetic field B0 and truncation eigenmode 
number MD.
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