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Abstract
Among the three primary gynecological malignancies, ovarian cancer has the lowest incidence but the worst prognosis. Because
of the poor prognosis of ovarian cancer patients treated with existing treatments, immunotherapy is emerging as a potentially
ideal alternative to surgery, chemotherapy, and targeted therapy. Among immunotherapies, immune checkpoint inhibitors have
been the most thoroughly studied, and many drugs have been successfully used in the clinic. CD47, a novel immune checkpoint,
provides insights into ovarian cancer immunotherapy. This review highlights the mechanisms of tumor immune evasion via
CD47-mediated inhibition of phagocytosis and provides a comprehensive insight into the progress of the relevant targeted
agents in ovarian cancer.
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Introduction

Ovarian cancer (OC) is one of the deadliest female malig-
nancies, with the lowest incidence but the worst prognosis
among all gynecological malignancies. According to clinical
guidelines and expert consensus, cytoreductive surgery fol-
lowed by platinum-based chemotherapy is the standard
treatment for most patients with OC.1 Related clinical
symptoms are relieved under this standard treatment; how-
ever, OC is prone to recurrence and drug resistance, resulting
in a five-year survival rate of less than 50%.2 Despite sig-
nificant progress in surgical techniques and drug therapies, the
survival of patients with advanced OC has not improved.
Therefore, there is an urgent need to get OC out of therapeutic
dilemmas.3

Growing evidence has demonstrated that malignancy is a
heterogeneous disease with immunogenicity, and its occur-
rence, development, and metastasis rely on immune sup-
pression.4 Immunotherapy targeting immunogenicity is a
hotspot of anti-tumor therapies and has been successfully used
in clinics as a novel anti-tumor option after traditional
treatments (e.g., surgery, radiotherapy, chemotherapy, and

endocrine therapy).5 Along with the discovery of immune
checkpoints (ICs), immune checkpoint inhibitors (ICIs) have
become the focus of research in tumor immunotherapy.6–8

ICIs restore self-clearing and monitor the function of the
immune system by blocking inhibitory signals. Various ICIs
have shown anti-tumor activity in preclinical models, and
some have been successfully used in clinics.6–11 Programmed
cell death protein-1 (PD-1) and its ligand (PD-L1) inhibitors
have been the most successful and widely used ICIs.12

Nevertheless, new ICIs are continuously being identified
and developed.

The known ICIs primarily act on the adaptive immune
system. However, only 10%-30% of patients with OC show
long-term and durable responses, followed by acquired
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resistance, which remains a substantial dilemma.7,12–14 CD47
has been identified as the first innate IC, restoring macro-
phages phagocytosis by blocking the “don’t eat me”
signal.15,16 CD47 is a promising therapeutic target to provide
insights into new treatment options for patients with OC.

The Development of ICIs

Adaptive ICs

T cells mediated adaptive immune dominates in anti-tumor
reaction.5,14 Both the primary signals produced by the in-
teraction between the major histocompatibility complex and
T cells receptor (TCR) and the secondary signals offered by
the co-stimulatory molecules are necessary to elicit intact
T cell responses.14 Functioning as the assistant of T cell ac-
tivation and proliferation, co-stimulatory molecules are also
essential regulators of humoral immunity and cytokine pro-
duction.17 However, increasing evidence has shown that some
members, such as cytotoxic T-lymphocyte-associated protein-
4 (CTLA-4), PD-L1, PD-L2, PD-1 homolog, and B7-H3, also
provide critical inhibitory secondary signals.18 These inhib-
itory signals act as a “brake” to protect normal cells from the
excessive T cells’ attack by attenuating T cell response.18,19

Conversely, multiple tumors suppress anti-tumor immune
responses and evade immune attacks by overexpressing these
molecules.7

These brake-like molecules and related inhibitors have
been dubbed as ICs and ICIs in cancer immunotherapy be-
cause of the satisfactory anti-tumor effects of targeting CTLA-
4. 14,20,21 Mechanically, the increased anti-tumor effects
appear to be the result of the simultaneous enhancement of
effector T cell function and concurrent inhibition of Treg
activity. In 2011, the FDA (the Food and Drug Administra-
tion) authorized the first ICI, Ipilimumab, a CTLA-4 mono-
clonal antibody (mAb), for the treatment of advanced
melanoma. Notably, subsequent approvals of Ipilimumab for
the treatment of other malignancies have involved its use with
the PD-1/PD-L1 ICIs.22–24 PD-1/PD-L1 inhibitors are the
most successful ICIs, which primarily act in the adaptive
immune system to trigger tumor-specific T cells responses.25

PD-L1 overexpresses on various human tumors and induces
the phosphorylation ordephosphorylation process of intra-
cellular signaling pathways when it binds to PD-1.26–29 These
signaling cascades suppress T cell proliferation, activation,
and cytokine production, inhibiting the anti-tumor immune
responses and promoting tumor growth.9,13 Various anti-PD-
1/PD-L1 mAbs have been shown to have effective anti-tumor
activities in, for example, melanoma, lung cancer, and
Hodgkin’s lymphoma (HL).29–32 Multifarious PD-1/PD-L1
inhibitors, for example, Pembrolizumab, Atezolizumab, and
Nivolumab, have been approved worldwide for various
malignancies.33,34

Despite their proven efficacy, only 10%-30% of patients
with solid tumors receiving PD-1/PD-L1 or CTLA-4 ICIs

show long-term, durable responses, and the remainder mostly
do not respond. This result is true in OC.35–37 How to
overcome acquired resistance in the development of ICIs is
critical, prompting us to explore new targets in tumor im-
munotherapy to solve this predicament.

Innate ICs

The immune system consists of the innate and adaptive im-
mune systems, both of which must be activated simulta-
neously to obtain sufficient anti-tumor effects.38 CTLA-4 and
PD-L1 has garnered considerable attention, which mainly acts
on adaptive immunity, but the impact of innate immunity is
ignored. In innate immune responses, antigen-presenting cells
(APCs) present antigens after phagocytes take up tumor-
specific antigens; NK cells directly kill tumor cells, or
APCs trigger an adaptive immune response to participate in
anti-tumor responses by presenting antigens to T cells.39

Brake-like molecules are also found during the innate im-
mune response.

CD47 is the first identified innate IC,40 and Oldenborg
described its anti-phagocytic effect by observing the rapid
clearance of erythrocytes from CD47�/� mice injected into
wild-type mice, but macrophage depletion removed this ef-
fect.41 Van Buerger found that macrophages rapidly cleared
senescent erythrocytes with reduced CD47 expression.42

Notably, CD47 has become a research hotspot since the
revelation of its innate IC identity.

Biological Characteristics and Function
of CD47

CD47 is a 50-kDa highly glycosylated-transmembrane im-
munoglobulin43 possessing an extracellular IgV-like domain
at the N-terminal, five highly hydrophobic membrane-
spanning regions, and a short intracellular tail at the C-
terminal, ubiquitously expressing on various normal
cells.44,45 The known ligands of CD47 include integrin,40

thrombospondin-1 (TSP-1), signal regulatory protein α
(SIRPα), SIRPγ.16,45 Integrin or TSP-1 binding to CD47 is
involved in cell adhesion, migration, aging, angiogenesis,
platelet activation, and other biological functions.45–51 Ad-
ditionally, the connection of TSP-1 and CD47 inhibits anti-
tumor immunity by regulating the immune system.49,52 On the
one hand, TSP-1/CD47-dependent signaling inhibits T cell
function via limiting TCR-mediated first signal transduction
and blocking H2S-mediated T cell activation.50,53 On the other
hand, TSP-1 reduces macrophage activation by limiting
lipopolysaccharide-induced IL-1β expression and total protein
production in macrophages.51 Notably, mice myeloid mac-
rophages without TSP1 or CD47 showed the reduced in-
duction of mature IL-1β of lipopolysaccharide.49,54

Simultaneously, decreased macrophage infiltration was ob-
served in the absence of TSP-1.55 Moreover, TSP-1 was
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initially identified as an angiogenesis inhibitor to suppress
tumor growth by limiting angiogenesis and perfusion in
the tumor vasculature.56,57 Perhaps the bi-phasic effects
of TSP-1 in cancers that therapies targeting TSP-1/CD47
have not progressed from preclinical studies into human
trials.

SIRPα is the most researched ligand of CD47, which is
mainly restricted to its expression on myeloid
cells.46,47,58,59 SIRPα consists of three immunoglobulin-
like extracellular domains, a transmembrane region, and a
cytoplasmic domain containing four immunoreceptor
tyrosine inhibitory motifs (ITIMs).59 The interactions
between CD47 and SIRPα on macrophages recruit Src
homology-2 (SH2)-containing tyrosine phosphatase 1
(SHP-1) and SHP-2, leading to the phosphorylation of
ITIMs. These upstream signals prevent myosin-IIA ac-
cumulation to form phagocytic synapses, leading to
phagocytosis inhibitions.45,47,59–61 (Figure 1) This phe-
nomenon could further induce APCs cross-presentation
and initiate adaptive immunity. In a sense, the CD47-
SIRPα axis bridges innate and adaptive immunity.11,62,63

Overall, CD47 sends a “don’t eat me” suppressant signal
to maintain immune tolerance and avoid excessive
phagocytosis.

CD47 Expression in OC and Its Possible
Regulatory Mechanism

CD47 is overexpressed on OC cells and was identified as an
OC tumor-specific marker in 1986.63 Subsequently, diverse
insights into its expression and regulation in OC have been
proposed.

Regulatory factors, including Myc, NF-κB, and HIF-1,
induce CD47 expression at the transcriptional level.64–66

Myc oncogene has been confirmed to regulate CD47 and
PD-L1 expression through direct joining to their promoters.
CD47 and PD-L1 expression was decreased in a mouse xe-
nograft tumor model with Myc suppression, and the anti-
tumor immune response was enhanced. Conversely, the op-
posite phenomenon was observed with Myc activation.64 HIF-
1 binding to the promoter initiates transcription and increases
CD47 expression, protecting breast cancer cells from
phagocytosis.65 Moreover, NF-κB directly connects with a
super-enhancer near the CD47 gene to promote its expression
upon stimulation by TNF-α in breast cancer.67 Notably, the
aforementioned transcriptional regulatory pathways must be
further verified in OC models.

At the cellular level, the CD47 expression levels of exo-
somes in OC cells were observed to correlate with macrophage

Figure 1. The CD47-SIRPα signal axis. The interaction between CD47 and SIRPα recruits SHP-1/2, leading to the phosphorylation of two
tyrosine residues of ITIMs in the intracellular structural domain of SIRPα. Phosphorylation of SHP-1/2 prevents the accumulation of myosin-
IIA, which forms phagocytic synapses, resulting in sending a “don’t eat me” signal. Blocking the CD47-SIRPa axis could restore phagocytosis.
Abbreviations: SHP-1, Src homology 2 containing tyrosine phosphatase 1; SHP-2, Src homology 2 containing tyrosine phosphatase 2; ITIMs,
immunoreceptor tyrosine inhibitory motifs.
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phagocytosis. Inhibition of exosome release and uptake can
downregulate CD47 expression, increasing macrophage
phagocytosis.68 In general, the multifaceted regulatory
mechanisms of CD47 expression imply diverse perspectives
on CD47-targeted therapies.

Clinical Significance of Abnormal CD47
Expression in Patients With OC

Similar to various malignancies, CD47 high expression is
associated with disease development and adverse clinical
outcomes in OC.38,46,69

In 2012, Weissman et al first observed that the expression
level of CD47 mRNA is associated with prognosis in OC and
other solid tumors. They revealed that CD47 expression in
tumor tissues was more than three times that in the sur-
rounding normal tissues. Further analysis demonstrated that
high CD47 mRNA expression correlated with poorer
progression-free survival and overall survival (OS) in OC.46

Another team found that CD47 overexpression enhanced
growth and motility in TOV OC cell lines.70 Wang et al not
only observed high CD47 expression in 86 ovarian clear cell
carcinomas by IHC but also confirmed that CD47 expression
was correlated with surgical stage, drug resistance, and
prognosis. Furthermore, it was an independent risk factor for
prognosis.71 Subsequently, the same researchers proposed that
CD47 comprised Lewis-y antigen, implicated in tumor cells
adhesion, metastasis, and resistance. CD47 and Lewis-y were
confirmed to be significantly highly expressed in OC, and their
expressions were linearly correlated. High expression of
CD47 and Lewis-y was statistically correlated with the FIGO
stage, lymph node metastasis, and differentiation degree.72

The effective component of CD47 was clarified in this study.
Opinions on the association between CD47 expression and

prognosis differ. A retrospective exploratory analysis of 316
serous patients with OC in the Cancer Genome Atlas database
showed no difference in disease-free survival and OS between
patients with different CD47 expression levels. IHC was used
on another 265 patient tumor samples to validate this con-
clusion. Upregulation of CD47 expression was observed in
48.7% of the patients, and the low-expression group showed
better treatment responses. However, this result did not im-
prove their prognosis, which might partially be explained by
the presence of multiple immune evasion mechanisms in the
tumor immune microenvironment (TME) of OC.73

A recent bioinformatics study offers several references
to this confusion. The OC TME with CD47 overexpression
in the Tumor Immune Estimation Resource database
contained more M2 and Treg cell infiltration, promoting
tumor cell immune escape. Additionally, the positive
correlation between CD47 overexpression and T cell ex-
haustion further confirmed that CD47 might influence the
infiltration abundance of immune cells in the TME to
regulate OC biological behavior.74

Mechanism of CD47-SIRPα Axis Targeted
Therapy in OC

In 2009, Weissman et al observed the disappearance of AML
cells in vitro and in xenografted mice with B6H12.2 (anti-
human CD47 mAb). Surprisingly, the depletion of macro-
phages eliminated this phenomenon. It suggested that tar-
geting the CD47-SIRPα axis eliminates tumors by restoring
macrophage phagocytosis.75 Anti-CD47/SIRPα mAbs and
recombinant SIRPα-fusion proteins are thus considered
promising immunotherapies based on these inspiring theories.
These attractive immunotherapies may facilitate tumor
clearance through the following pathways: (Figure 2).

First, anti-CD47/SIRPα-blocking mAbs restore macrophage-
mediated phagocytosis by blocking the “don’t eat me” signal and
non-blocking antibodies without such function. In xeno-
transplantation models, the exhaustion of clodronate-mediated
phagocytes eliminated such mAbs-dependent anti-tumor effects,
confirming that phagocytes as the primary effectors.15,46,76 In this
pathway, tumor-associated macrophages differentiate toward the
M1-like phenotype, shifting immune-tolerant TME to attacking
tumor cells.46,77

Second, the balance between pro-phagocytic and anti-
phagocytic signals determines phagocytosis. In other words,
blocking the “don’t eat me” signal alone may be insufficient to
gain effective anti-tumor effects.62,78 Calreticulin (CRT), a
dominant pro-phagocytic signal, highly expresses on various
cancer cells’ surfaces, whereas barely on normal cells.62,79 The
Fc receptor is another pro-phagocytic molecule, which
eliminates tumor cells through NK cells’ mediated antibody-
dependent cytotoxicity (ADCC) and macrophage-mediated
antibody-dependent phagocytosis (ADCP). Importantly,
most anti-CD47/SIRPα mAbs or SIRPα fusion proteins
contain an IgG (Fcγ) skeleton. The SIRPα-Fc fusion protein
constructed by Huang et al. significantly enhanced ADCC and
highlighted a potent anti-tumor effect in SK-OV3 and
HO8910 OC cells.80 Moreover, further research is necessary
to clarify the roles of other pro-phagocytic molecules, in-
cluding SLAMF and PtdSer, during the CD47-SIRPα axis
blockade.62,79

Third, inhibition of the CD47-SIRPα axis bridges innate
and adaptive immunity. Weissman et al first observed that
anti-CD47 antibody-mediated phagocytosis of tumor cells
promoted CD8+ T cell activation but inhibited CD4+ T cell
initiation in vitro and in vivo.81 Furthermore, the interactions
of CD47 with SIRPα suppress the biological behaviors of
dendritic cells (DCs), such as maturation and cytokine
production, resulting in the inhibition of T cell antigen
presentation and adaptive immunity initiation.82 Blocking
CD47-SIRPα can remove these inhibitory effects, enabling
the cross-presentation of tumor antigens and activating
adaptive immunity.83,84

Fourth, direct induction of apoptosis is another
mechanism, which has been observed in breast cancer,
chronic myeloid leukemia (CML), and multiple myeloma
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(MM).15,76,85,86 Notably, anti-CD47 antibodies mediated
apoptosis via a caspase-independent pathway.86

Clinical Drug Development Targeting
CD47-SIRPα Axis in OC

Although no drugs targeting the CD47-SIRPα axis have been
officially approved, related clinical trials have set off booms
worldwide. As of August 29, 2022, 74 and 25 related clinical
trials were registered in the United States National Clinical
Trials Registry (NCT) system and China Drug Trials Registry
(CDT) system, respectively. (Table 1) Additionally, we
summarized and updated the latest clinical research involving
OC. (Table 2)

Blocking CD47-SIRPα Axis Monotherapy

The research onanti-CD47 mAbs in OC started later than the
research on AML, ALL, NHL, breast cancer, and bladder
cancer, which may be related to its complex histological types
and heterogeneities. In 2012, Weissman et al found that
B6H12.2 and Bric126 effectively promoted human and mouse
macrophage phagocytosis of SK-OV-3 OC cells in vitro,
respectively. Furthermore, tumor growth suppression and
significant survival improvement were demonstrated in xen-
otransplantation mice.46 In 2017, Liu et al further observed
increased macrophage infiltration abundance with B6H12.2 in

xenograft OCs. In this study, OC stem cells (CSCs) were also
found to highly express CD47, and robust phagocytosis of
CSCs was induced with anti-CD47 mAbs. CSCs are known
for their proliferation, recurrence, and resistance, suggesting
that anti-CD47 mAbs may prevent and treat metastatic and
recurrent OC.87,126 Significant inhibition of tumor cell growth,
migration, and invasion in TOV OC cell lines has been ob-
served by applying CD47 shRNA and anti-CD47 mAbs.70

BI 765063, a selective humanized-IgG4 mAb, blocks
the CD47-SIRPα axis by antagonizing SIRPα. During a
phase I study including nine advanced patients with OC,
BI 765063 was well tolerated without reported dose-limited
toxicities or hemotoxic adverse drug reactions and showed well-
pharmacokinetics and efficacy (NCT04653142).121 Details are
available on clinicaltrials.gov.

Blocking CD47-SIRPα Axis Therapy Combined With
Tumor-Targeting Antibody

Blocking the CD47-SIRPα axis monotherapy has shown
promising utilization, but the combination strategies of CD47-
SIRPα inhibition may offer more therapeutic potential than
that treatment.

The pro-phagocytic effects of CD47-SIRPα axis mAbs
combined with the Fc-dependent effects (ADCC and ADCP)
of tumor-targeting antibodies exert synergistic roles for
maximum efficacy.63,83 In 2010, Cao et al combined B6H12.2

Figure 2. Mechanisms of blocking CD47-SIRPα axis therapies in OC. First, blocking the CD47-SIRPα axis could clear tumor cells by restoring
macrophage phagocytosis and promoting tumor-associated macrophages to differentiate toward the M1 subtype (upper right). Second,
anti-CD47/SIRPα-blocking mAbs or SIRPα-fusion proteins could clear tumor cells through classical Fc-dependent mechanisms, including NK
cell-mediated ADCC (lower left) and macrophage-mediated ADCP (upper right). Third, blocking the CD47-SIRPα axis might indirectly
stimulate adaptive immunity by promoting DCs uptake by tumor cells and cross-presentation to CD8+ T cells (upper left). Fourth, blocking
the CD47-SIRPα axis could directly clear tumor cells by caspase-independent apoptosis (lower right). Abbreviations: ADCC, antibody-
dependent cytotoxicity; ADCP, antibody-dependent phagocytosis; DC, dendritic cells; M1, M1-like macrophages; M2, M2-like macrophages;
NK cells, natural killer cells; OC, ovarian cancer.
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with anti-CD20 mAb (rituximab) to eliminate lymphoma in
mice engrafted with primary human NHL.88 Hu5F9-G4
(Magrolimab), a humanized-IgG4 antibody, is the first
CD47-targeting mAb with good clinical data to be tested in
humans.90 In a subsequent phase Ib trial, Magrolimab com-
bined with rituximab showed promising activity and well-
tolerated safety events in aggressive and indolent patients with
NHL (NCT02953509).127 Similarly, trastuzumab-mediated
ADCP can significantly suppress ADCC-tolerant HER2+

breast cancer growth with the combination of anti-CD47
mAb.128

In the absence of specific targets for OC, the combination
of targeting PD1/PD-L1 therapies is the mainstream research
in this field. Blocking the CD47-SIRPα axis has been shown to
simultaneously restore macrophage phagocytosis and activate
T cells, indicating that combinations of innate and adaptive
ICIs may yield promising results.64,81,129 In 2016, Weissman
combined anti-CD47 mAb with anti-PD-L1 mAb to syner-
gistically promote tumor cell phagocytosis in vitro, and tumor
growth was suppressed in vivo, demonstrating the therapeutic
synergy between innate and adaptive ICIs.130 Subsequently, a
complete phase 1b trial of Hu5F9-G4 combined with avelu-
mab (PD-L1) showed a 56% stable disease rate in 18
platinum-resistant or refractory patients with OC, which fa-
cilitated further phase II trial evaluation (NCT03558139).122

AO-176 (NCT03834948),108 TJ011133 (NCT03934814),113

and TTI-621 (NCT02663518)96 in combination with various
PD-1/PD-L1 ICIs are now in different trial stages.

Blocking CD47-SIRPα Axis With Bispecific Antibody

Bispecific antibodies (BsAbs) have been developed based on
combination therapy with targeting-tumor antibodies, which
are expected to be more effective and precise. The BsAbs
skeleton contains two binding arms, one arm blocks the
CD47-SIRPα axis, and the other arm binds tumor-specific
antigens, which ensures that BsAbs specifically kill cancer
cells.

Majeti et al constructed a BsAb targeting CD47 and CD20
arms with less affinity for CD47 and more affinity for CD20
than the parental antibodies. Decreased tumor burden and
prolonged survival in human NHL-engrafted mice were ob-
served with BsAb; more importantly, less blood cell de-
struction occurred in the BsAb group than in the combination
therapy group.119 IMM0306, the related agent, is in the re-
cruitment stage (NCT04746131).

Similar to combination therapy, BsAbs were designed to
co-target CD47/SIRPα and PD-1/PD-L1 in OC. PF-
07257876, a dual checkpoint inhibiting BsAb, simulta-
neously blocks CD47 and PD-L1 to maximize anti-tumor
immunity. The preferential targeting of tumor cells in the TME
is attributed to its high affinity for PD-L1 and weak affinity for
CD47. It can additionally activate DCs and macrophages and
increase CD8+ T cells in the TME.119 In a phase I dose
escalation and expansion study of PF-07257876, patients
with OC tolerated the priming and subsequent dose
(NCT04881045).

Table 2. Blocking CD47-SIRPα axis Applied in OC.

Treatment Agent Target Model Reference

Monotherapy B6H12 CD47 SK-OV-3 OC Cell Lines 46

Anti-47 mAb CD47 TOV-112D and TOV-21G
EAOC Cell Lines

87

Anti-47 mAb CD47 Ovarian CSCs 87

Hu5F9-G4 CD47 Ovarian/Fallopian Tube
Cancer

89,90

BI 765063 SIRPα OC 121

AO-176 CD47 Epithelial Ovarian
Carcinoma

108–110

Combined with Tumor-targeting
Antibodies/Adaptive ICIs

Hu5F9-G4 + Avelumab (PD-L1) CD47+PD-L1 Platinum-resistant/
Refractory OC

122

Bispecific Antibodies PF-07257876 CD47+PD-L1 OC NCT04881045
SL-172154 SIRPα+CD40 L NCT04406623116

Other Combination Therapies Anti-CD47 mAbs + Chemotherapy
+ Photodynamic Therapy

CD47 Ovarian carcinoma
OVCAR-3 cell Lines

123

Dual CAR-T Cells CD47+TAG-
72

Ovarian carcinoma
OVCAR-3 cell Lines

124

OV-αCD47 CD47 OC Cell Line A2780 125

TTI-662+ PLD CD47 OC NCT05261490

Abbreviations: CAR-T, chimeric antigen receptor T; OV, oncolytic virus; PLD, PEGylated liposomaldoxorubicin; TAG-72, tumor-associated glycoprotein 72.
The related references cited in Table 2 can be found in Anonymous Main Document.
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Other Combination Therapy

The strategy of anti-CD47/SIRPα monotherapy combined
with chemotherapy relies on a pro-phagocytosis effect rather
than an Fc-dependent effect. Almost all chemotherapies can
cause inflammatory reactions and further increase macrophage
infiltration in the TME.131 As aforementioned, CRT is an
essential pro-phagocytic signal, and some chemotherapy
drugs, such as anthracyclines, can induce additional CRT
translocation to the cell surface, which might enhance the
activity of anti-CD47 mAbs. Notably, normal cells also highly
express CRT with these chemotherapies, suggesting that this
strategy may increase toxicity.60,78 Hongrapipat et al. found
that the combination of chemotherapy and photodynamic
therapy drugs with the Fab’ segment of anti-CD47 antibody
might improve the reactivity of OC OVCAR-3 cells to
drugs.123

CAR-T cells have revolutionized anti-tumor therapy for
hematological malignancies but have shown disappointing
activity in most solid tumors.132 Shu et al generated dual
CAR-T cells co-targeting CD47 and TAG-72. TAG-72 is an
aberrantly glycosylated glycoprotein overexpressed in ade-
nocarcinomas, including ovarian, colorectal, and gastric ad-
enocarcinomas. These dual CAR-T cells effectively
eliminated OVCAR-3 cells in vitro and suppressed tumor
growth in OC xenografted mice. Furthermore, the damage to
normal tissues was reduced owing to the specific targeting of
TAG-72.124 The ability of oncolytic virus (OV) to infiltrate
drugs into the TME makes it an attractive alternative for anti-
tumor therapy.133 Researchers constructed OV-αCD47, which
delivered anti-CD47 mAb. OV-αCD47, especially those with
the IgG1 skeleton, prolonged survival in OC-engrafted mice
by enhancing innate immunity (NK cell cytotoxicity and
macrophage phagocytosis) and performing an oncolytic
function.125

Most of these studies are in the preclinical stage, and
additional efforts are warranted to promote the early appli-
cation of research results to clinics.

Limitations and Future Perspectives

Although preclinical data on CD47-SIRPα axis blockade
has highlighted the promising therapeutic potential of
blocking the “don’t eat me” signal to recover phagocy-
tosis, the development of related drugs is not all plain
sailing. The most common AE of anti-CD47 mAbs is the
off-target effect caused by widespread expression of
CD47 in normal cells, among which hematotoxicity is the
most intractable.

As early as 2017, the phase 1 clinical trial of Ti-
061(CD47 mAb) was prematurely terminated owing to
unexpected case deaths.134 Subsequently, CD47 mAb CC-
90002 was declared to have failed the phase I clinical trial
(NCT02641002) owing to severe hemagglutination.92 The
repetitive failures have resulted in the uncertain future of

such drug development. The superior phase 1b results of
Magrolimab in combination with azacitidine in patients
with MDS and AML promoted the enthusiasm for CD47-
targeted drug development to a high priority until 2019. A
low priming dose (1 mg/kg) was used to remove the aged
erythrocytes and induce compensatory hematopoiesis to
overcome anemia. Moreover, newborn erythrocytes can
tolerate the maintenance (30 mg/kg) dose.127,135 Unfor-
tunately, the FDA suspended some clinical trials (i.e.,
NCT04313881) of the Magrolimab in combination with
azacitidine owing to apparent imbalances of suspected
unexpected serious adverse reactions across study arms in
January 2022. However, most experts have posited that
these SUSARs may be more related to the hematotoxicity
of Magrolimab or the additive toxicity of azacitidine than
to affecting the overall CD47 mAbs. As expected, the FDA
quickly lifted the restrictions after reviewing the combined
safety data from each trial in April. Pharmaceutical
companies have different attitudes toward CD47-targeted
drugs. The recent discontinuation of several CD47-
targeting programs by AbbVie and Zai Lab has been at-
tributed to strategic reasons rather than safety concerns. By
contrast, Innovent and Akesobio are actively advancing
CD47-related projects.

In summary, within controlled AEs, CD47-targeted drugs
remain the focus of tumor immunotherapy. Notably, strategies
have been developed to overcome these limitations, such as
anti-SIRPα mAbs, SIRPα-fusion proteins, BsAbs, dual ICIs
BsAbs, dual CAR-T cells, and OC-CD47. Alternatively, re-
searchers have engineered TAX2, the first-ever antagonist of
the TSP-1/CD47 axis. TAX2 selectively targets tumor-
overexpressed TSP-1 and inhibits tumor angiogenesis while
activating the anti-tumor immune system without destroying
blood cells.136

Although blocking the CD47-SIRPα axis has shown
promising activities in OC preclinical models, based on the
experience with PD-1/PD-L1,137 this novel therapy might
have use as an adjunctive therapy or in combination with other
therapies to maximize efficacy. In the future, with the dis-
closure of the complete upstream and downstream pathways
of the CD47-SIRPα axis, more potent blocking CD47-SIRPα
axis therapies with fewer side effects will be certain to the
clinical application of OC treatment.

Conclusion

In conclusion,CD47-SIRPα axis plays a notable role in in-
hibiting macrophage phagocytosis, promoting tumors to
evade immune surveillance through sending “don’t eat me”
anti-phagocytic signals. Therapeutic approaches that inhibit
the CD47-SIRPα axis are novel, promising treatments for OC.
However, the limitations of these therapies cannot be ignored,
and further studies and clinical trials are necessary for con-
tinuous improvement.
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Appendix

Abbreviation

ADCC antibody-dependent cytotoxicity
ADCP antibody-dependent phagocytosis
ALL acute lymphoblastic leukemia
AML acute myeloid leukemia
APCs antigen-presenting cells
BsAbs bispecific antibodies
CAR-T chimeric antigen receptor T
CD47 cluster of differentiation 47
CDT China drug trials
CLL chronic lymphatic leukemia
CML chronic myeloid leukemia
CRT calreticulin
CSC cell stem cell
CTLA-4 cytotoxic T-lymphocyte-associated protein-4
DCs dendritic cells
DLBCL diffuse large B cell lymphoma
Fc fragment crystallizable
FDA Food and Drug Administration
FIGO Federation International of Gynecology and

Obstetrics
HER2 human epidermal growth factor receptor 2
HIF-1 hypoxia-inducible factor-1
HL Hodgkin’s lymphoma
ICIs immune checkpoint inhibitors
ICs immune checkpoints
IgG immunoglobulin G
IHC immunohistochemistry
IL-1β interleukin-1β
ITIM immunoreceptor tyrosine inhibitory motif
M1 M1-like macrophage
M2 M2-like macrophage
mAbs monoclonal antibodies
MDS myelodysplastic syndromes
MM multiple myeloma
NA not available
NCT national clinical trials
NF-κB nuclear factor kappa-B
NHL non-Hodgkin’s lymphoma
NK cells natural killer cells
NSCLC non-small cell lung carcinoma
OC ovarian cancer
OS overall survival
OV oncolytic virus
PD-1 programmed cell death protein-1
PD-L1 programmed cell death ligand-1
PtdSer phosphatidylserine
PLD pegylatedliposomaldoxorubicin
SCLC small cell lung carcinoma
SHP-1 Src homology 2 containing tyrosine phosphatase 1
SHP-2 Src homology 2 containing tyrosine phosphatase 2
SIRPα signal regulatory protein α

SIRPγ signal regulatory protein γ
SLAMF signaling lymphocyte activation molecule family
TAG-72 tumor-associated glycoprotein 72
TAMs tumor-associated macrophages
TCR T cells receptor
TME tumor immune microenvironment
TNF-α tumor necrosis factor α
TSP-1 thrombospondin-1
TLR7 Toll-like receptor 7
Treg cells regulatory T cells
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