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Multivariate pattern analysis of brain structure predicts
functional outcome after auditory-based cognitive training
interventions
Lana Kambeitz-Ilankovic1,2, Sophia Vinogradov3, Julian Wenzel1,2, Melissa Fisher3, Shalaila S. Haas 4, Linda Betz 1, Nora Penzel 1,2,5,
Srikantan Nagarajan6, Nikolaos Koutsouleris 2,7,8 and Karuna Subramaniam9✉

Cognitive gains following cognitive training interventions are associated with improved functioning in people with schizophrenia
(SCZ). However, considerable inter-individual variability is observed. Here, we evaluate the sensitivity of brain structural features to
predict functional response to auditory-based cognitive training (ABCT) at a single-subject level. We employed whole-brain
multivariate pattern analysis with support vector machine (SVM) modeling to identify gray matter (GM) patterns that predicted
higher vs. lower functioning after 40 h of ABCT at the single-subject level in SCZ patients. The generalization capacity of the SVM
model was evaluated by applying the original model through an out-of-sample cross-validation analysis to unseen SCZ patients
from an independent validation sample who underwent 50 h of ABCT. The whole-brain GM volume-based pattern classification
predicted higher vs. lower functioning at follow-up with a balanced accuracy (BAC) of 69.4% (sensitivity 72.2%, specificity 66.7%) as
determined by nested cross-validation. The neuroanatomical model was generalizable to an independent cohort with a BAC of
62.1% (sensitivity 90.9%, specificity 33.3%). In particular, greater baseline GM volumes in regions within superior temporal gyrus,
thalamus, anterior cingulate, and cerebellum predicted improved functioning at the single-subject level following ABCT in SCZ
participants. The present findings provide a structural MRI fingerprint associated with preserved GM volumes at a single baseline
timepoint, which predicted improved functioning following an ABCT intervention, and serve as a model for how to facilitate
precision clinical therapies for SCZ based on imaging data, operating at the single-subject level.
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INTRODUCTION
Occupational and social functioning are impaired in patients with
schizophrenia (SCZ) and are associated with a range of neural
system and clinical impairments1–3. Cognitive training (CT)
interventions can drive neural system changes4,5 that are in turn
associated with functional improvement6–8. Previous studies have
shown training-induced restoration of neural activation patterns in
the medial prefrontal cortex and anterior cingulate cortex (mPFC/
ACC) that were associated with improved performance on a
reality-monitoring task4,9,10, and which in turn predicted durable
gains in real-world social functioning 6 months later. We have also
shown enhanced activation in the dorsal lateral prefrontal cortex,
which was associated with improved performance on a working
memory task, and predicted better occupational functioning at
6-month follow-up11.
Although these findings are promising at the group level, it is

clear that there is a large amount of inter-individual variability in
neural systems and functional response to various forms of CT.
Previous group-based studies have shown that baseline structural
anatomical integrity12–14 is associated with greater responsiveness
to CT, suggesting that certain individual neurobiological char-
acteristics might determine who will benefit most from CT
interventions, but individual-level predictions have not yet been
demonstrated. In particular, prior research indicates that patients
with SCZ show most prominent deficits in auditory processing,

which contributed to higher-level cognitive impairments and poor
functioning15–17. Promisingly, we have also found that the most
prominent gains in auditory/verbal functions were induced after
auditory-based CT (ABCT) interventions18–22. This work prompted
us to investigate multivariate pattern analyses (MVPA) to identify
baseline patterns in gray matter (GM) volume in patients with SCZ
that predicted improved functioning after an ABCT intervention,
operating at the single-subject level. Multivariate analyses of
neuroanatomical brain properties have revealed high specificity of
predicting improved functioning in clinical high-risk individuals
with psychosis in single-site studies at the individual level23,24, and
have also shown remarkable multisite generalizability25. However,
no study has yet examined the critical question of which structural
features at baseline most predict responsiveness to ABCT in
chronically-ill SCZ, in terms of improving real-world functioning at
the single-subject level.
Group-based studies have shown that greater GM volume has

been predictive of improved functioning in SCZ patients and also
associated with stronger resilience to functional deterioration1,12.
Informed by these prior group-based studies and meta-
analyses1,12,13, we hypothesized that patients who had greater
GM volumes at baseline, particularly in prefrontal, thalamic, and
temporal regions1,12–14, would show improved functioning at the
single-subject level in response to 40 h of ABCT. We further
explored the relationship between the decision values of the
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functioning classifier generated in SCZ patients and their clinical
characteristics at baseline and at follow-up to test whether clinical
symptom severity or medication dose were associated with
individual level of functioning after 40 h of CT. Finally, we
investigated whether our original GM machine learning model
was sufficiently generalizable to an independent training cohort
who also underwent ABCT.

RESULTS
Participant characteristics
Table 1 summarizes the sociodemographic, clinical, and cognitive
characteristics of the two study samples, separated by their Global
Assessment of Functioning (GAF) score median split at the post-
training timepoint. No significant differences with respect to age,
years of education, illness duration, and antipsychotic medication
dosage (chlorpromazine equivalents) at baseline were found
between lower and higher functioning SCZ in the original sample
or in the independent validation sample (IVS) (all p > 0.05).

Behavioral analysis
Repeated measures analysis of variance (ANOVA) revealed a main
effect of time in almost all cognitive domains, including:
processing speed, attention, verbal learning, visual learning, and
global cognition (see Table 2). We found a significant interaction
of time and group in working memory (F= 8.4, p= 0.006) and
verbal learning (F= 4.34, p= 0.04) domains that are the main
treatment targets of the auditory CT.

Performance of original classification model
We found that SCZ subjects with GAF ≥ 45 after ABCT showed
significant improvement in GAF scores from baseline (t= 2.2, p=
0.05). Overall, the sMRI GM classifier correctly discriminated SCZ
patients in the original sample with higher functioning from lower
functioning responsiveness to the CT intervention with a cross-
validated balanced accuracy (BAC) of 69.4%, sensitivity= 72.2%,
specificity= 66.7%, negative predictive value (NPV)= 70.6%, and

number needed to diagnose (NND) of 2.6. Based on averaging 50
best test performance models (CV2), the 95% CI of our model
resulted in 67.2 ± 4.43. The permutation analysis showed that the
classification models produced by the binary GAF classifier in
response to ABCT were highly significant at p < 0.001.
Inspection of the mean feature weights generated within the CV

framework revealed that the classification of the higher function-
ing from lower functioning patients in response to the ABCT
intervention was driven by greater baseline GM volumes in
primarily temporal regions (i.e., in bilateral superior and inferior
temporal regions, including ventral visual word form area, and
parahippocampal gyri), thalamic and frontal regions in the ACC, as
well as greater GM volumes in the posterior cingulate cortex and
cerebellum (Fig. 1). Though the GM pattern was mainly
characterized by higher baseline volumes in the higher function-
ing patients, the lower functioning group also showed higher
volumes in primarily motor (i.e., premotor cortex and supplemen-
tary motor area) and caudate regions within the basal ganglia
(Fig. 1).

Out of cross-validation (OOCV) model performance
We next applied the original GM classification model to the IVS to
predict follow-up functioning after the ABCT intervention in order
to test whether the original GM classification model would
generalize to the IVS. The model was able to successfully
discriminate lower from higher functioning SCZ patients in the
IVS at post ABCT sufficiently above chance with a BAC of 62.5%,
sensitivity 90.9% and specificity 33.3%, NPV of 75.0 and NND
of 4.1.
Although the MRI classification model provided accurate

estimates (e.g., BAC= 69.4%) of correctly discriminating higher
vs. lower functioning in response to the ABCT, we also wanted to
ensure that the MRI-based classifiers did not predict generic
baseline variations in global functioning that were not specific to
the ABCT intervention. To investigate this possibility further, we
replaced the GAF post ABCT functioning labels of the SCZ patients
at follow-up with the respective classification labels derived from

Table 1. Demographic and clinical characteristics at baseline for SCZ participants in the original sample and in the independent validation sample,
separated by their GAF score median split at the post-training timepoint.

Original sample (training time= 40 h) Independent validation sample (IVS)
(training time= 50 h)

ORIG vs. IVS
for GAF < 45

IVS vs. ORIG
for GAF ≥ 45

GAF < 45
(N= 18)

GAF ≥ 45
(N= 18)

t/χ2 p GAF < 45
(N= 10)

GAF ≥ 45
(N= 10)

t/χ2 p t/χ2 p t/χ2 p

Age 47 (9.10) 47 (9.0) 0.05 0.95 38 (13.2) 41 (11.84) –0.45 0.65 –2.08 0.05 –1.52 0.14

Sexa Male= 14 Male= 14 0.00 1.00 Male= 8 Male= 7 0.60 0.44 9.80 0.02 5.08 0.02

YoE 13 (1.7) 13 (1.9) 0.28 0.78 12.8 (2.0) 13.7 (3.1) –0.73 0.47 –0.81 0.42 0.46 0.65

CPZb 265 (129.4) 299 (212.5) –0.50 0.62 399 (354.9) 290 (188.2) 0.82 0.42 1.26 0.22 0.45 0.64

Illness duration 26 (15.4) 27 (10.1) 0.15 0.87 20.4 (14.4) 19.3 (11.1) 0.18 0.86 –0.90 0.34 0.98 0.33

Clinical baseline

PANSS positive 16.6 (5.3) 15.3 (5.8) 0.69 0.49 21.1 (6.1) 19.6 (6.4) 0.54 0.59 2.12 0.04 1.74 0.09

PANSS negative 16.7 (5.1) 15.9 (6.1) 0.38 0.70 21.9 (6.4) 16.1 (6.1) 2.06 0.05 2.44 0.02 0.06 0.95

PANSS general 35 (7.5) 30.6 (9.1) 1.57 0.12 41.8 (8.3) 36.0 (4.2) 1.24 0.23 2.28 0.03 1.27 0.21

PANSS total 68.2 (13.6) 61.8 (17.2) 1.23 0.22 84.8 (16.4) 71.7 (22.9) 1.49 0.15 2.94 0.00 1.27 0.21

GAF 42.9 (6.2) 48.8 (8.8) –2.29 0.02 43.4 (10.7) 49.6 (12.3) –1.10 0.28 0.14 0.88 0.18 0.85

Clinical post training

PANSS positive 17.3 (4.5) 13.5 (3.3) 3.70 0.00 19.4 (4.3) 17.8 (5.6) 0.71 4.82 1.19 0.24 3.12 0.00

PANSS negative 16.0 (4.7) 14.1 (5.6) 1.12 0.26 23.4 (5.5) 15.0 (7.5) 2.88 0.01 3.83 0.00 0.37 0.71

PANSS general 34.6 (7.9) 28.1 (7.5) 2.53 0.02 43.4 (10.9) 37.9 (11.9) 1.07 0.30 2.49 0.01 2.61 0.00

PANSS total 67.9 (13.4) 54.9 (13.9) 2.92 0.00 86.1 (14.6) 70.7 (23.6) 1.79 0.09 3.41 0.00 2.23 0.03

GAF 40.2 (3.1) 54.6 (8.07) –7.06 0.00 37.4 (7.3) 56.6 (7.4) –5.82 0.00 –1.47 0.15 1.71 0.09

YoE years of education, CPZ chlorpromazine equivalent, GAF Global Assessment of Functioning, PANSS Positive and Negative Syndrome Scale.
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Table 2. Cognitive measures at baseline and at the post-training timepoint in SCZ patients with poor and good functional outcome.

Poor (N= 21) Good (N= 19) Main effect
of time
F (p)

Interaction
(Group × Time)
F (p)

Cohen’s d

Baseline (SD) Post-training (SD) Baseline (SD) Post-training (SD)

Global cognition 32.1 (14.0) 34.4 (14.5) 30.1 (16.6) 35.1 (13.4) 11.0 (0.002)* 1.6 (0.2) –0.18

Attention 40.2 (15.8) 43.8 (12.8) 39.9 (14.0) 42.7 (12.6) 4.1 (0.05)* 0.0 (0.8) 0.05

Speed of processing 36.2 (14.0) 38.6 (17.8) 37.8 (15.4) 40.9 (14.4) 5.0 (0.03)* 0.008 (0.7) –0.04

Executive function 41.3 (11.8) 41.2 (11.3) 41.6 (13.4) 41.3 (9.6) 0.02 (0.86) 0.004 (0.94) 0.02

Working memory 44.5 (12.2) 40.9 (11.1) 36.8 (15.0) 40.3 (12.4) 0.0 (0.961) 8.6 (0.006)* –0.51

Verbal memory 31.6 (13.8) 31.4 (17.0) 30.5 (16.0) 30.8 (14.3) 0.003 (0.98) 0.53 (0.90) –0.03

Verbal learning 37.6 (7.1) 38.1 (9.0) 35.2 (9.3) 40.1 (8.7) 6.94 (0.01)* 4.34 (0.04)* –0.52

Visual learning 37.6 (14.4) 42.2 (12.3) 36.5 (15.5) 41.9 (14.4) 7.2 (0.01)* 0.04 (0.8) –0.07

*Level of significance p < 0.05.

Fig. 1 Structural MRI-based classifiers predict functional response to auditory-based cognitive training. a. The reliability of predictive
pattern elements in significant outcome classification models was measured in terms of a cross-validation ratio (CVR) map (CVR = mean(w)
/standard error(w), where w is the normalized weight vectors of the SVM models. Warm color scales indicate greater vs. lower GM volumes in
the SCZ subsample with post-training GAF < 45 vs. GAF ≥ 45. Cool colors indicate greater vs. lower GM volumes in the GAF ≥ 45 vs. GAF <
45 subsamples. b. Receiver-operator-curve of the class probability values obtained from the trained model in unseen SCZ persons, as
determined by nested cross-validation.
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the baseline GAF scores and repeated the SVM analyses with the
same machine learning pipeline as described previously. The MRI
classifier differentiated lower from higher functioning SCZ with a
non-significant classification at chance level with a BAC 44.4%.
These convergent results indicate the robustness and reliability of
our results and reveal that despite the use of different scanners
and different samples of patients in the original sample and the
IVS, we found that individual structural GM features strongly
predicted a specific therapeutic response to the ABCT intervention
in both the original and IVS samples, and were no due to general
baseline differences in functioning levels.

Decision scores and correlational analysis
The decision values of the discriminative GM signature for lower vs.
higher functioning after ABCT were not associated with the baseline
functioning levels (all p> 0.05), indicating that the prediction of
response to ABCT was not confounded by baseline patterns but was
specific to predicting response to the intervention.
We investigated the relationship between decision scores in

both the original and OOCV models with Positive and Negative
Syndrome Scale (PANSS) symptoms and illness duration as well as
decision scores with sex, in order to exclude the possibility that
the original classification was biased by respective differences
within and between the two samples. None of the associations
yielded significant results (all p > 0.05).
We also correlated decision scores with antipsychotic medica-

tion dosage as assessed via CPZ equivalents, and found significant
associations (r= 0.42, p < 0.02) in the original sample, suggesting
that higher doses of medication were associated with better
functioning after the ABCT intervention. No such correlation
between decision scores and CPZ medication was observed in the
IVS (r= 0.08, p= 0.53).

DISCUSSION
This study applied MRI-based machine learning to predict
individual functional responses to an intensive course of ABCT
in chronically-ill SCZ patients. The original classification model
provided accurate estimates of 69.4% in correctly discriminating
higher vs. lower functioning in response to the ABCT intervention.
Importantly, the MRI-based classifiers did not predict baseline
variations in functioning, indicating that the individual structural
features were therapeutically specific to predicting response to
the ABCT intervention. The original classification model general-
ized to an IVS with an accuracy of 62.5%. These results confirm
that GM volumes have high predictive specificity for individual
therapeutic functional response to our ABCT intervention in SCZ
patients, and demonstrate that MVPA methods provide great
potential to use neuroanatomical biomarkers to predict functional
response to therapeutic interventions at the individual level24,25.
We used a median split of GAF score of 45, which significantly

differentiated the SCZ who showed higher versus lower functioning
in response to the CT intervention. Two prior studies have shown
that, at the group level, SCZ patients with higher GM volumes at
baseline showed a stronger response to CT1,12. GM volumes have
also been shown to increase in response to CT interventions13.
However, group-level analyses cannot take into account the
substantial individual neuroanatomical heterogeneity that occurs at
the individual level in SCZ26. The goal of precision-medicine is to
select and adapt therapeutic approaches based on each patient’s
individual neural and clinical characteristics27,28. In order to take into
account individual neuroanatomical heterogeneity at baseline and
reliably validate the origin of the predictive information, we replaced
patients’ GAF scores at post ABCT with their baseline scores and
repeated the sMRI GM analysis. Strikingly, we were not able to find
significant GM patterns that successfully discriminated patients with
lower from higher functioning at baseline. Moreover, the decision

values of the discriminative GM signature for lower vs. higher
functioning were not associated with baseline functioning levels.
These convergent results together indicate that the neuroanatomical
classifier accurately predicted functional response that was specific to
the ABCT therapeutic intervention, and was not due to general non-
specific differences in baseline GM patterns or functioning.
Accurate discrimination of participants with higher functioning

after the CT intervention (GAF scores of ≥45) was specifically shown
by greater baseline GM volume pattern in superior temporal gyrus
(STG), ventral visual form areas, thalamus, and parahippocampal gyri.
Longitudinal studies indicate progressive decreases in STG volume
after the first psychotic episode, and this neuroanatomical abnorm-
ality is consistently reported in people with established SCZ29,30.
These results are consistent with our prior group-based studies
showing the functional importance of the STG during ABCT, and its
responsiveness to our ABCT interventions18,22. We have previously
shown increased recruitment of the primary auditory cortex and the
prefrontal cortex mediating improved auditory learning after ABCT22.
In addition, the results from our recent study indicate that at baseline,
even chronically-ill SCZ suffering from hallucinations were able to
recruit the STG, extending into ventral occipital temporal regions
within the visual ventral word form area, which correlated with
auditory and verbal working memory31. Our data suggest that an
intact GM reserve particularly in the STG at baseline drives plasticity
in response to auditory CT interventions, and is likely to predict
which SCZ patients will receive most benefit from auditory training
interventions.
We have previously shown at a group level that the intact

structure of thalamic-prefrontal regions was also an important
determinant of successful responsivity to CT interventions in
SCZ14. In addition, Ramsay et al. demonstrated the mechanisms of
how improved recruitment of thalamic-prefrontal activity and
connectivity after CT predicted overall improvements in cognitive
functions32. Importantly, previous studies have also consistently
shown that the ACC/mPFC plays a critical role in supporting
higher-order cognitive control functions that are important for
conflict resolution and reality-monitoring functions33–35. For
example, we have previously delineated how increased recruit-
ment of the ACC/mPFC induced by our CT regimen predicted
successful reality-monitoring performance that generalized to
improvements in long-term social functioning at a group level9.
These prior studies support the data in the present study, in which
we found that greater GM volume in the thalamic-ACC regions at
baseline predicted better functioning after our CT regimen.
Interestingly, we also found that SCZ who showed greater GM

volume in the cerebellum at baseline also revealed better overall
functioning induced by ABCT. The cerebellum is important for
mediating sensory prediction-errors for updating an internal model
of implicit learning and action-outcome behaviors that are funda-
mental for improving real-world functioning in SCZ36–38. These data
are consistent with the neuroplasticity principles of our ABCT
intervention, which specifically trains SCZ to improve auditory
detection, temporal integration, prediction-error and learning, which
have shown to directly contribute to higher-level functioning18,39.
The low and the high functioning groups also differed with respect

to their cognitive response to ABCT. In particular, the neuroimaging
pattern showing patients with higher baseline GM reserve in STG
that is critical for verbal learning is consistent with the cognitive
improvements in verbal learning observed in the high functioning
group induced by the ABCT intervention. Similarly, patients who had
greater thalamic-prefrontal and cerebellum baseline reserve in GM
pattern that are critical for updating prediction-error learning for
working memory9,11,32,39 also showed improved working memory
observed in the high functioning group that was induced by the
ABCT intervention. These results reveal the functional importance of
greater GM preserve in particular within STG, thalamic-PFC, and
cerebellar regions at baseline that predict responsiveness to our
ABCT intervention.

L. Kambeitz-Ilankovic et al.

4

npj Schizophrenia (2021)    40 Published in partnership with the Schizophrenia International Research Society



In summary, SCZ patients who exhibit a pattern of greater GM
structural volumes at baseline in STG, thalamus, ACC, and
cerebellum, in particular, may possess the needed neurological
infrastructure to maximally benefit functionally from intensive
ABCT. Together, our present findings are consistent with these
prior meta-analyses and group-based studies, indicating that the
individual predictive value of recruitment of regions particularly in
the cerebellum, STG, and thalamic-prefrontal areas is important
and critical targets for CT interventions4.
It must also be noted that we found that accurate discrimina-

tion of SCZ participants with lower functioning (i.e., GAF score of
<45) was characterized by greater GM volumes in premotor and
basal ganglia regions. Aberrant connectivity in the motor system
and disturbances in motor behavior have been observed in SCZ
patients with lower functioning29,30. Higher basal ganglia volumes
(hypothesized to be due to striatal hyperdopaminergia) have also
been shown in both medicated and antipsychotic-naive patients
in meta-analytic studies37 concurrent with motor disturbances as
one of the central clinical features of SCZ.
Some studies have raised the question as to whether GM

preservation or loss can be attributed to cumulative exposure to
antipsychotic medications, rather than to aberrant neural develop-
mental processes40. Importantly, the decision values of our SVM
analysis that accurately predicted higher functioning in response to
the CT intervention showed a significant relationship with medica-
tion dosage. Specifically, SCZ patients who had a higher medication
dosage at baseline as well as lower positive symptoms also had
better functioning following the intervention. Taken together, these
findings suggest that structural features together with medication
dosage provide useful determinants of individual functional respon-
siveness to CT interventions at the single-subject level.
The present findings provide the founding basis for the

prediction of functional response to ABCT interventions that
may be reliably enhanced using neuroanatomical pattern
recognition at a single baseline timepoint operating at the
single-subject level. Here, rather than investigating MRI GM
volume change at multiple time-points from pre-to-post interven-
tion to predict functional outcome change, we use MRI-based
biomarkers solely at the single baseline timepoint to test if we are
able to identify predictive biomarkers in individuals who show
greatest functional response to ABCT interventions. The limitation
of the present study is that the findings here do not account for
the heterogeneity associated with additional neurophysiologic,
environmental, and genetic factors at baseline that may play a role
in the response to ABCT. In order to develop a more robust and
definitive baseline predictive model, future studies will require: (1)
a wide variety of behavioral and neurophysiologic data analyzed
in a multivariate fashion to develop more accurate predictive
baseline biomarkers, so that meaningful signals are less likely to
be lost due to noise from highly variable and heterogeneous
metrics; (2) larger study samples from a wide variety of multisite
studies, in order to provide more extensive geographical general-
izability; and (3) participants with a range of illness durations. The
patients in our study had been ill for more than 20 years, limiting
the generalizability of our findings to only older people with
chronic illness (4) implementation of multimodal imaging data
(e.g., that combines structural and functional neuroimaging data)
for neuromonitoring of early response to interventions41–43.
Using whole-brain MVPA analyses, we have identified a

structural MRI fingerprint associated with preserved GM volumes
within particular regions in the STG, thalamus, ACC, and
cerebellum that predicted improved functioning following an
ABCT intervention, and that serves as a model for how to facilitate
precision clinical therapies for SCZ based on imaging data. Future
studies should investigate if the individuals with greatest GM loss
in these regions (who may also have the greatest vulnerability for
more subsequent and severe psychotic episodes) can benefit from
more intensive and integrative therapies of combined

pharmacotherapy, CT44 and neuromodulation45. If identified early
in young adulthood, cerebellum-temporal-thalamic-prefrontal GM
loss may reflect an important indicator to provide early and
intensive interventions to mitigate and reduce the impact of
future and more severe psychotic episodes on functioning46,47.

METHODS
Participants and procedure
Two independent samples of SCZ participants who had structural imaging
data were drawn from two larger clinical trials (ClinicalTrials.gov Identifier:
NCT02105779)48,49 and (ClinicalTrials.gov NCT00312962)11. As is customary in
predictive analytics, the MVPA model was constructed from the first set of
subjects (the original sample, N= 44) and then applied to a different set of
subjects (the independent sample, N= 23) using an OOCV approach. This
process produces an unbiased estimate of the method’s predictive accuracy
on new individuals rather than merely fitting the current study population50.
The study was carried out in accordance with The Declaration of Helsinki, and
reviewed by the Institutional Review Board at the University of California, San
Francisco. All participants provided written consent.
All SCZ subjects were recruited from community mental health centers

and outpatient clinics. Inclusion criteria were: Axis I diagnosis of SCZ,
schizoaffective disorder, or psychosis not otherwise specified (determined
by the Structured Clinical Interview for DSM-IV [SCID])51. All participants
provided written informed consent and then completed structural imaging
and assessments measuring clinical and real-world functioning at baseline
and after the CT intervention. Participants with poor signal-to-noise ratio in
their neuroanatomical images were excluded from the final analyses for
the original (N= 5) and IVS (N= 1). In addition, three participants from the
original sample and two participants from the IVS cohort did not complete
functioning assessments at the follow-up timepoint. An overview of our
procedures can be found in Fig. 2.

Auditory-based CT intervention
The design of our neuroscience-informed computerized CT intervention is
based on 3 decades of research into known mechanisms of neural plasticity,
which have been shown to increase neuronal activity, synaptic connectivity,
and neuronal fiber integrity52,53. In particular, research has documented the
neural plasticity of cortical responses as an individual acquires new perceptual
and cognitive abilities54. A rich body of work shows that improved functioning
after our CT regimens specifically results from neuroplasticity (defined as
changes in neural structure and real-world functioning that are induced by
the CT intervention)9,10,28,54. Complete details of the ABCT exercises can be
found at http://www.positscience.com/our-products/brain-fitness-program. In
the original sample, each SCZ patient completed the same amount of
auditory training exercises for 1 h a day for a total of 40 h of training. Similarly,
each SCZ patient in the IVS sample completed the same amount of training,
performed for 1 h a day for a total of 50 h over the course of 10 weeks. In the
exercises, patients were driven to make progressively more accurate
discriminations and temporal integration about the spectro-temporal fine-
structure of auditory stimuli under conditions of increasing working memory
load under progressively briefer presentations, and to incorporate and
generalize those improvements into working memory rehearsal and decision-
making. The auditory exercises were continuously adaptive: they first
established the precise parameters within each stimulus set required for an
individual subject to maintain 80% correct performance, and once that
threshold was determined, task difficulty increased systematically and
parametrically as performance improved20.

Clinical and functional outcome assessments
The Structured Clinical Interview (SCID for DSM-IV) Axis I Disorders51 was
administered at baseline to all participants. In both the original GM
machine learning and the IVS samples, the GAF Scale of the DSM-IV55 was
used to assess functioning at baseline and after the CT intervention, and
the PANSS56 was used to assess severity of clinical symptoms at baseline
and after the CT intervention. Functional assessments such as the GAF
quantify measures of real-world day-to-day functioning on a scale of
0–100. Cognitive performance was assessed with the MATRICS Consensus
Cognitive Battery57. All cognitive outcome measures were distinct and
independent from tasks practiced during training. Clinical researchers who
conducted diagnostic and clinical interviews (SCID, PANSS, GAF) first
completed extensive training on testing, interviewing, and scoring criteria
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of individual items (e.g., including scored videotaped sessions; observed
sessions conducted by experienced psychiatrists and psychologist staff; as
well as several mock practice sessions). GAF ratings were made at the
conclusion of the interview using information obtained during the
symptom and functioning assessments, yielding excellent intraclass
correlation coefficients that were greater than 0.8511, in line with prior
studies58. All clinical researchers who were trained on diagnostic and
clinical interviews and scoring were blind to the condition that each
patient was assigned.

Machine learning strategy
Following our aims, we employed a nested cross-validated machine
learning pipeline to evaluate the sensitivity of GM volumetric features at
baseline to predict GAF functional response to CT at a single-subject level,
using a median split strategy as validated in our prior studies with the
machine learning analyses pipeline delineated below24,25. GAF scores were
used to determine labels of lower vs. higher functioning in response to CT
by setting a median split as a cutoff. Taking our chronic SCZ patient
populations into account (i.e., defined as patients with ~20 years of illness
duration), a GAF score of 45 indicated the most representative level of
functioning that the chronic SCZ patient population experienced (e.g., the
range of GAF scores in the chronic SCZ patients was from 29 to 67 in the
original sample and 23 to 70 in the OOCV sample at baseline). Thus, a
GAF ≥ 45 determined the selection criteria for patients with higher
functioning (n= 18) whereas GAF < 45 determined the selection criteria
for patients with lower functioning (n= 18). In our OOCV analysis, the
median split cutoff was identical, with 10 SCZ with lower and 10 SCZ with
higher functioning in the IVS. Demographic characteristics of the two
samples, separated by their GAF score median split at the post-training
timepoint, are presented in Table 1. GAF score distributions can be found
in Supplementary materials (Supplementary Figs. 1 and 2).

Neuroimaging protocol
In the original sample, imaging was performed on a 3 Tesla Siemens
Prisma MRI scanner with 64- and 20-channel head and neck coils at the
Neuroscience Imaging Center at University of California San Francisco. In
the IVS, high-resolution anatomical images were acquired from each
individual on a 3T General Electric Signa LX 15 scanner, utilizing 3D
magnetization prepared rapid gradient echo MRI. Imaging parameters
were: 160 1-mm slices; FOV= 256mm, matrix= 256 × 256, TE= 2ms,
TR= 7ms, flip= 15. The manual of the CAT12 toolbox, version r > 1200
(http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) details the pre-
processing steps applied to the structural images25.

MRI processing pipeline
The manual of the CAT12 toolbox, version r>1200 (http://www.neuro.uni-
jena.de/cat12/CAT12-Manual.pdf) details the processing steps applied to
the structural images25. These steps consist of:

(1) A 1st denoising step based on Spatially Adaptive Non-Local Means
filtering59.

(2) An Adaptive Maximum A Posteriori (AMAP) segmentation techni-
que, which models local variations of intensity distributions as
slowly varying spatial functions and thus achieves a homogeneous
segmentation across cortical and subcortical structures.

(3) A 2nd denoising step using Markov Random Field approach that
incorporates spatial prior information of adjacent voxels into the
segmentation estimation generated by AMAP60.

(4) A Local Adaptive Segmentation (LAS) step, which adjusts the images for
white matter (WM) inhomogeneities and varying GM intensities caused
by differing iron content in, e.g., cortical and subcortical structures. The
LAS step is carried out before the final AMAP segmentation.

(5) A Partial Volume Segmentation algorithm that is capable of modeling
tissues with intensities between GM and WM, as well as GM and
cerebrospinal fluid and is applied to the AMAP-generated tissue
segments.

(6) A high-dimensional DARTEL registration of the image to a MNI-
template generated from the MRI data of 555 healthy controls in the IXI
database (http://www.braindevelopment.org). The registered GM
images were multiplied with the Jacobian determinants obtained
during registration to produce GM volume maps.

(7) GM images were smoother with a Gaussian smoothing kernel with a
4mm full width at half maximum.

The Quality Assurance framework of CAT12 was used to empirically
check the quality of the GMV maps. By computing the correlation of each
image to all other images, taking the original and independent sample
separately, we removed two images whose correlation exceeded
2 standard deviations from the sample mean due to MRI artifacts.

Machine learning preprocessing parameters
We regressed out the effect of the total GM volumes by entering the values
as a covariate. In the inner CV loop, zero-variance features were pruned.
Then, a dimensionality reduction procedure was applied through principal
component analysis (PCA) in order to minimize the generalization error.
PCA was applied to 62,188 voxels contained in GM volume images used in
the analysis. PCA projected the image information to a limited number of
80 eigenvariates (80 PCs) in the CV1 training data that were subsequently
scaled (0–1) and then forwarded to the SVM linear machine learning
algorithm described here: the optimal hyperparameter C was determined
using grid search defined by 11 parameters in the range C= [0.0156–16].

Fig. 2 Training design of the original and independent validation samples. The machine learning support vector model reliably predicted
GAF ≥ 45 vs. GAF < 45 in SCZ participants in response to auditory-based cognitive training (CT) at the single-subject level in both samples.
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Machine learning analysis pipeline
The in-house machine learning platform NeuroMiner, version 1.025 was used
to set up a machine learning analysis pipeline for the individual classification
ability (higher SCZ functioning vs. lower SCZ functioning) based on GM
volumes for the prediction GAF target. To strictly separate the training process
from the evaluation of the predictor’s generalization capacity and prevent the
leakage of information and overfitting, the pipeline was completely
embedded into a nested cross-validation (CV) framework61 with a 10-by-5
CV structure for both inner (CV1) and outer (CV2) cycles. All steps of SVM
training, including feature selection and parameter optimization, were
performed on the CV1 training and validation partitions, while the general-
ization error was exclusively estimated from the CV2 test samples. Importantly,
the SVM training does not reoccur on the outer cycle (CV2). This procedure
was applied to each fold for each permutation combination independently.
This analysis chain was applied to the outer CV cycle employing a linear SVM
algorithm that learns to separate hyperplane in the concatenated PC kernel
space that maximizes the geometric margin between the most similar
instances (=support vectors) of the low and high functioning groups. We
determined the patients’ membership to higher vs. lower functioning using
majority voting. The majority voting ensemble combines the predictions from
multiple CV2 folds to decide which class (high or low functioning) should be
considered as the winning predictive class for achieving better performance.
Model’s performance was measured by BAC, sensitivity, specificity, positive
predictive value, NPV, and NND. Statistical significance of the final prediction
set was assessed through permutation testing, with α= 0.05 and 1000
permutations. Further information on this approach can found in Koutsouleris
et al.61.

Statistical analysis
Sociodemographic differences between groups were examined using
ANOVA for parametric data, and by χ2 test for non-parametric data, as
implemented in Jamovi for Windows (0.9.5.12). We conducted repeated
measures ANOVA with time as the within-subject factor (baseline, follow-
up) and group as the between subject factor (high vs. low functioning) on
cognitive outcomes. Furthermore, potential interactions between subjects
SVM decision scores and their (1) GAF levels, (2) antipsychotic medication
doses (in chlorpromazine equivalents), and (3) clinical symptoms at
baseline and follow-up were assessed by means of correlational analysis
(Pearson’s r). Significance was defined at p < 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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