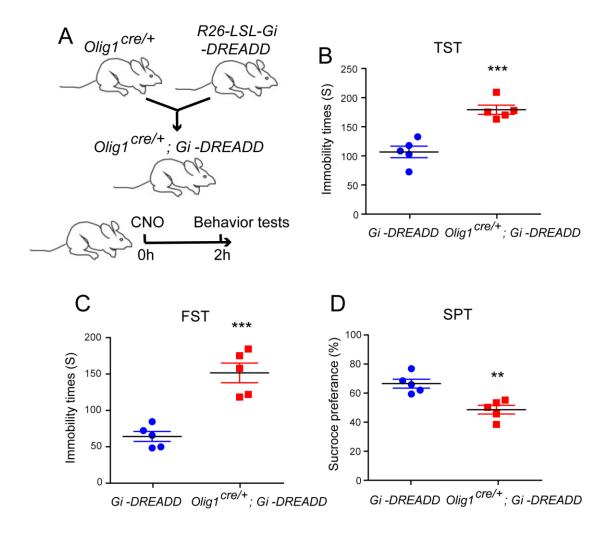


Supporting Information

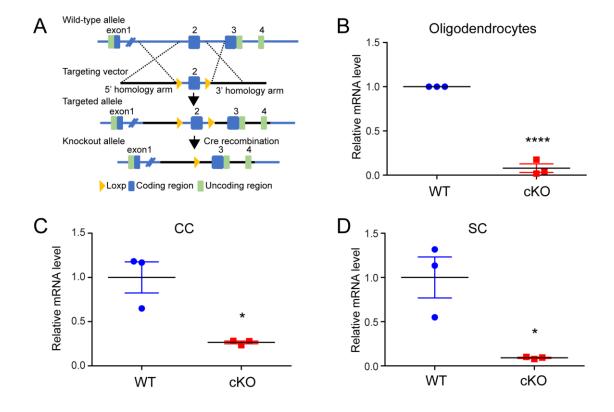
for Adv. Sci., DOI: 10.1002/advs.202103065

Dysmyelination by oligodendrocyte-specific ablation of *Ninj2* contributes to depressive-like behaviors

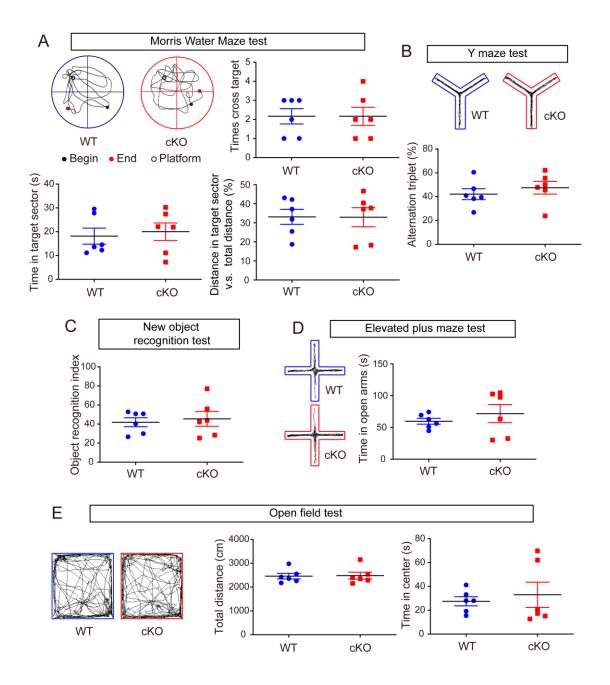

Yuxia Sun, Xiang Chen, Zhimin Ou, Yue Wang, Wenjing Chen, Tongjin Zhao, Changqin Liu*, Ying Chen*

Supporting Information

Dysmyelination by oligodendrocyte-specific ablation of ${\it Ninj2}$ contributes to depressive-like behaviors

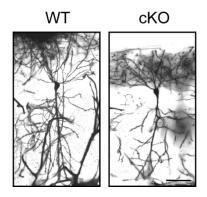

Yuxia Sun, Xiang Chen, Zhimin Ou, Yue Wang, Wenjing Chen, Tongjin Zhao,

Changqin Liu*, Ying Chen*

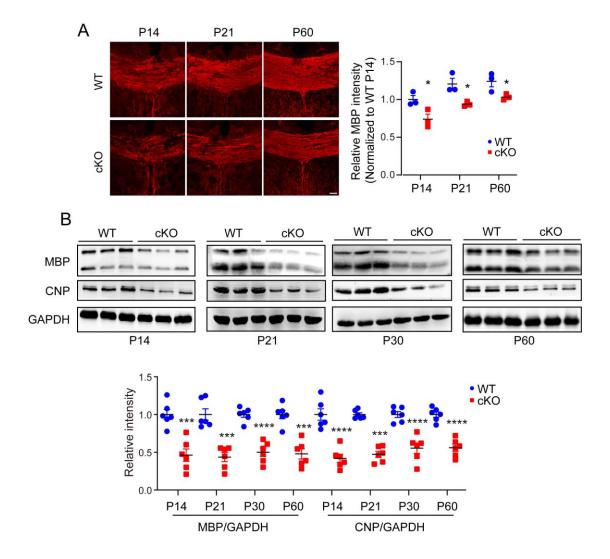

Supplementary Figure 1. Oligodendrocytes play a role in depression. Related to Figure 1.

(A) The strategy of generating $Olig1^{cre/+}$; Gi-DREADD mice, and the timeline of the behavioral tests. (B-D) Tail suspension test (TST), force swimming test (FST) and sucrose preference test (SPT) were performed in CNO-treated Gi-DREADD and $Olig1^{cre/+}$; Gi-DREADD mice, n=5 mice/genotype. All the quantification data are presented as mean \pm SEM, p-values are calculated using two-tailed unpaired Student's t-test, ** p < 0.01, *** p < 0.001.

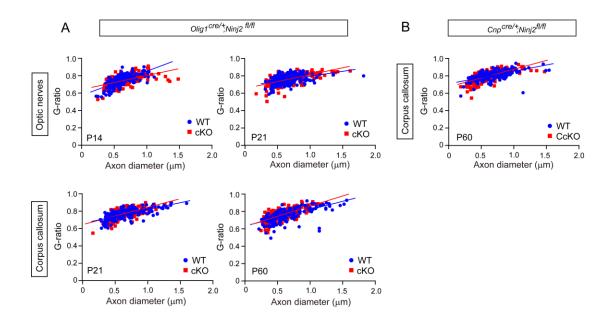
Supplementary Figure 2. Confirmation of *Ninj2* knockout in oligodendrocytes, corpus callosum and spinal cord. Related to Figure 1.


(A) The strategy of generating $Olig1^{cre/+};Ninj2^{fl/fl}$ and $Cnp^{cre/+};Ninj2^{fl/fl}$ mice. (B-D) Real-time PCR analysis on the mRNA level of Ninj2 in oligodendrocytes (B) (n=3) independent experiments), corpus callosum (CC) (C) and spinal cord (SC) (D) from WT or $Olig1^{cre/+};Ninj2^{fl/fl}$ (cKO) mice (n=3) mice/genotype). All the quantification data are presented as mean \pm SEM, p-values are calculated using two-tailed unpaired Student's t-test, *p < 0.05, ****p < 0.0001.

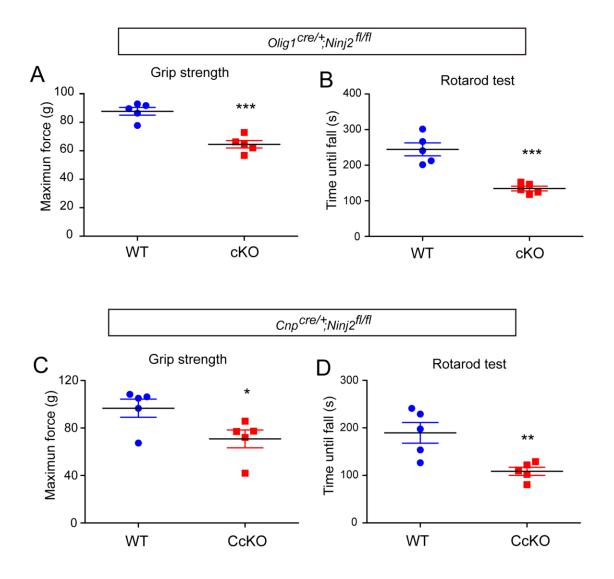
Supplementary Figure 3. Loss of *Ninj2* in oligodendrocytes has no effect on memory, recognition, or anxiety-like behaviors. Related to Figure 1.


WT and $Olig1^{cre/+};Ninj2^{fl/fl}$ (cKO) mice at P60 were subjected to (A) Morris water maze test, (B) Y maze test, (C) Novel object recognition test, (D) Elevated plus maze test, (E) Open field test to evaluate their status on memory, recognition, or anxiety-like behaviors. n=6 mice/genotype. All the quantification data are presented

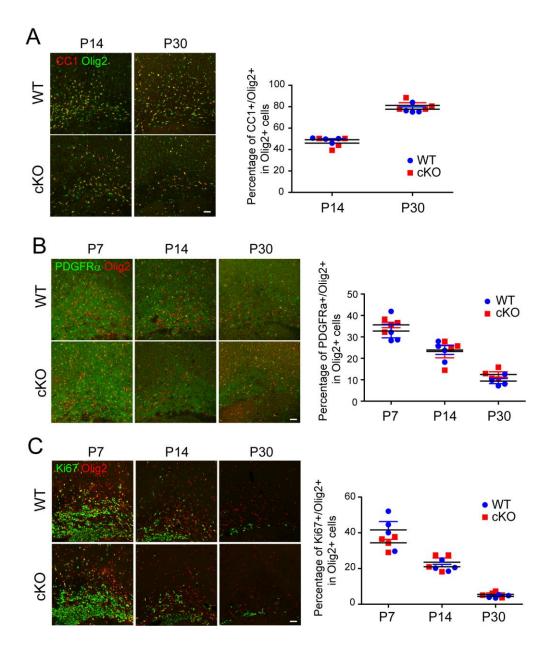
as mean \pm SEM, p-values are calculated using two-tailed unpaired Student's t-test.


Supplementary Figure 4. Loss of *Ninj2* reduces dendritic complexity of pyramidal neurons in the hippocampus CA1 area. Related to Figure 1E.

Golgi staining of WT and *Olig1*^{cre/+};*Ninj2*^{fl/fl} (cKO) mice at P60. Scale bar, 50 μm.

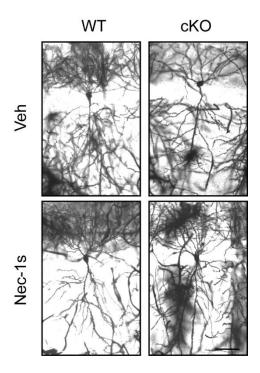

Supplementary Figure 5. Loss of *Ninj2* reduces the expression of myelin-related proteins in corpus callosum. Related to Figure 1.

(A) Immunofluorescent visualization and quantification of MBP expression in the corpus callosum from WT or $Olig1^{cre/+}$; $Ninj2^{fl/fl}$ (cKO) mice at P14, P21 and P60, respectively. n=3 mice/genotype. (B) Western blot analyses of MBP and CNP in the corpus callosum from WT or cKO mice at P14, P21, P30 and P60, respectively. n=6 mice/genotype. All the quantification data are presented as mean \pm SEM, p-values are calculated using two-tailed unpaired Student's t-test, * p < 0.005, *** p < 0.001, **** p < 0.0001.


Supplementary Figure 6. Loss of *Ninj2* has no effect on myelin thickness. Related to Figure 2.

(A-B) G-ratio of the optic nerve at P14 and P21, the corpus callosum at P21 and P60 from WT or $Olig1^{cre/+}$; $Ninj2^{fl/fl}$ (cKO) mice. (C) G-ratio of the corpus callosum at P60 from WT or $Cnp^{cre/+}$; $Ninj2^{fl/fl}$ (CcKO) mice. n=3 mice/genotype, at least 50 axons/mouse had been analyzed. All the quantification data are presented as mean \pm SEM, p-values are calculated using two-tailed unpaired Student's t-test.

Supplementary Figure 7. Loss of *Ninj2* leads to motor defect in mice. Related to Figure 2.


(A-B) Forelimb grip strength and rotarod test on WT or $Olig1^{cre/+}$; $Ninj2^{fl/fl}$ (cKO) mice at P60. (C-D) Forelimb grip strength and rotarod test on WT or $Cnp^{cre/+}$; $Ninj2^{fl/fl}$ (CcKO) mice at P60. n=5 mice/genotype. All the quantification data are presented as mean \pm SEM, p-values are calculated using two-tailed unpaired Student's t-test. * p < 0.05, ** p < 0.01, *** p < 0.001.

Supplementary Figure 8. Loss of *Ninj2* has no effect on oligodendrocyte proliferation or differentiation. Related to Figure 3.

(A-C) Immunofluorescent staining against CC1 (A), PDGFR α (B), and Ki67 (C), were performed in the corpus callosum sections from WT or $Olig1^{cre/+}$; $Ninj2^{fl/fl}$ (cKO) mice at P7, P14 and P30, the percentages of the double-positive cells in total $Olig2^+$ cells were quantified and shown on the right panels. Scale bar, 50 μ m. n=4

mice/genotype, All the quantification data are presented as mean \pm SEM, p-values are calculated using two-tailed unpaired Student's t-test.

Supplementary Figure 9. Nec-1s treatment restores dendritic complexity of pyramidal neurons in the hippocampus CA1 area of *Ninj2*-deficient mice. Related to Figure 7A.

Golgi staining of WT or $Olig1^{cre/+}$; $Ninj2^{fl/fl}$ (cKO) mice at P60, which received i.p. injection with vehicle or Nec-1s (10 mg/kg) from P60 to P90. Scale bar, 50 μ m.