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Background
Connectomics, a concept proposed by Sporns [1], aims to comprehensively map the 
structure of neuronal networks in the nervous system to improve our understand-
ing of how the brain works. Connectomics can be conducted at different spatial scales 

Abstract 

Background: Nanoscale connectomics, which aims to map the fine connections 
between neurons with synaptic-level detail, has attracted increasing attention in recent 
years. Currently, the automated reconstruction algorithms in electron microscope vol-
umes are in great demand. Most existing reconstruction methodologies for cellular and 
subcellular structures are independent, and exploring the inter-relationships between 
structures will contribute to image analysis. The primary goal of this research is to con-
struct a joint optimization framework to improve the accuracy and efficiency of neural 
structure reconstruction algorithms.

Results: In this investigation, we introduce the concept of connectivity consensus 
between cellular and subcellular structures based on biological domain knowledge 
for neural structure agglomeration problems. We propose a joint graph partitioning 
model for solving ultrastructural and neuronal connections to overcome the limita-
tions of connectivity cues at different levels. The advantage of the optimization model 
is the simultaneous reconstruction of multiple structures in one optimization step. The 
experimental results on several public datasets demonstrate that the joint optimization 
model outperforms existing hierarchical agglomeration algorithms.

Conclusions: We present a joint optimization model by connectivity consensus to 
solve the neural structure agglomeration problem and demonstrate its superiority to 
existing methods. The intention of introducing connectivity consensus between differ-
ent structures is to build a suitable optimization model that makes the reconstruction 
goals more consistent with biological plausible and domain knowledge. This idea can 
inspire other researchers to optimize existing reconstruction algorithms and other 
areas of biological data analysis.
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corresponding to the observational scale of brain imaging, these scales can be roughly 
divided into the microscale, mesoscale, and macroscale [2]. Nanoscale connectomics, 
which aims to map the fine connections between neurons with synaptic-level detail, has 
attracted widespread interest from researchers. Electron microscopy (EM) is currently 
the only imaging technique with the required synapse-scale resolution and the ability 
to obtain a sufficiently large data set to encompass a significant number of local neural 
circuits. Since Sydney began manual mapping of the complete connectome of C. elegans, 
an effort that lasted over a decade [3], the throughput of EM imaging has increased by 
several orders of magnitude [4, 5], substantially advancing the field of connectomics. 
Automated analysis of the EM data is crucial due to the vast data volume. However, the 
automation of image analysis is insufficient at this time. Currently, the main bottleneck 
is that automatic reconstruction results still require heavy manual editing [6–8]. The pri-
mary goal of this research is to improve the accuracy and efficiency of neural structure 
reconstruction algorithms.

As shown in Fig. 1, the goal of image analysis in connectomics is to reconstruct cellu-
lar and subcellular structures on three-dimensional (3D), i.e., the instance segmentation. 
The sparse distribution of subcellular structures, also known as ultrastructures, includ-
ing synapses and mitochondria, reduces the reconstruction difficulty to some extent. 
Due to being well-isolated, most reconstruction algorithms adopt a bottom-up approach 
and emphasize the acquisition of semantic segmentation [9–13]. To obtain the recon-
struction result, Li et al. [14] propose a coarse-to-fine 3D connection algorithm based 
on intersection-over-union (IoU) to assign the segmentation label. Two straightforward 
and efficient connection algorithms, a watershed-based method and connected compo-
nent labeling, are introduced in MitoEM challenge [15]. Despite satisfactory results, the 
generalization ability of the above methods for complex cases remain unknown, espe-
cially in practical applications with random factors such as sample wrinkle and imaging 
damage.

Compared with ultrastructures, reconstructing neurons proved more challenging 
lie in: densely intertwined, irregularly-shaped and non-differential staining. Existing 

Raw image Probability map Reconstruction map 3D Rendering

Fig. 1 The representative pipeline for the image analysis in electron microscopy images. Top neuron 
reconstruction. Bottom ultrastructure reconstruction
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methods mainly distinguish them by membrane boundaries, but local minor detec-
tion errors may lead to severe merging errors that are time-consuming to correct. 
Therefore, the prevailing workflow typically consists of two stages [16–19]. Semantic 
segmentation of the membrane boundary is performed first, followed by generating 
over-segmented fragments and determining the connection relationships between 
the segments [17]. Membrane boundary detectors have demonstrated the ability to 
provide satisfactory results due to recent advances in convolutional neural network 
(CNN) [20–23]. Agglomeration algorithms for determining the connections between 
fragments have attracted extensive research. Most works perform greedy merging of 
segments based on the highest probability of similarity [18, 24–26]. Others regard the 
agglomeration as a graph partition problem with globally constrained mathematical 
properties [16, 27–30]. Another type of reconstruction algorithm called flood-filling 
networks [31], tracks from the seed points and uses a recurrent neural network to 
grow the neuron iteratively by moving the receptive field.

We focus on the agglomeration algorithms in this paper. In this scope, the multicut 
algorithm [28] is widely used due to its clear mathematical formulation and graceful 
properties [16, 27]. As stated in [32], compared to other greedy algorithms [24], mul-
ticut brings better results due to the global objective and without external stopping 
criteria. On the other hand, since solving multicut is NP-hard, some works are opti-
mized on local search algorithms in order to produce the high quality and fast solu-
tions for large-volume data in the field of connectomics, including the greedy additive 
edge contraction (GAEC) solver, the Kernighan–Lin solver [33], the Fusion-Move 
solver [34], and the Block-Wise solver [35]. Agglomerative clustering with average 
linkage criteria (GASPavg) [25] and mutex watershed (MWS) [30] are signed graph 
partitioning algorithms and two well-known neuron agglomeration algorithms in 
connectomics. Specifically, GASPavg uses average linkage as the newly formed edge 
weight update criterion, replacing the sum linkage update criterion in GAEC, while 
MWS uses absolute maximum linkage. It is pointed out in [25] that different edge 
update criterion has a significant impact on the results.

Indeed, the neural structures are highly correlated. How to combine multi-level 
information in the reconstruction process has recently attracted great attention. In 
particular, Krasowski et  al. [32] incorporate sparse biological priors and boundaries 
to extend the existing agglomeration algorithms. On this basis, Pape et al. [36] intro-
duce a more general approach to leverage domain-specific knowledge to improve the 
segmentation result. Recently Wolf et al. [37] propose the semantic mutex watershed 
for joint graph partitioning and labeling. Out of connectomics, the correlation co-
clustering (Co-Clustering) [38] utilizes both low-level and high-level cues to jointly 
address trajectory-level motion segmentation and multiple object tracking, which 
is similar to our methods. Levinkov et  al. [39] define a combinatorial optimization 
problem, a general algorithm of lifted multicut algorithm that produces both decom-
position and node labeling. Furthermore, several studies utilize prior knowledge in 
the post-processing step to improve existing results. Some publications underline the 
morphological characteristics of the reconstructed results [40–42], whereas others 
focused on sub-compartment category attributes [43] or specific labeled membrane 
data [44].
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Nevertheless, the above approach retains a major drawback of a lack of joint con-
nectivity of the different hierarchies. In other words, the reconstruction of each struc-
ture is independent and fails to form an overall optimization framework. As the most 
complex system known, neural structures do not exist in isolation, but have unique 
affiliations. Specifically, mitochondria, responsible for energy production, are com-
monly used to estimate the neuronal activity level, which always exists within a neu-
ron. Meanwhile, synapses, which provide information transmission between neurons, 
quantify the neuronal connectivity strength. Since their advantages are complemen-
tary, it is reasonable and desirable to perform joint optimization of the reconstruction 
results based on different levels of connectivity priors.

To address this issue, we propose a joint optimization model for neural structure 
agglomeration in connectomics. The model can inherently integrate the connectivity 
consensus of both types of structures through constraints while yielding significant 
advantages in optimality (for an overview see Fig.  2). More precisely, the contribu-
tions of this paper are threefold:

• First, to the best of our knowledge, we introduce the concept of connectivity consen-
sus and demonstrate its effectiveness for neural agglomeration in connectomics for 
the first time.

• Second, we propose a novel and bio-inspired graph partitioning model for joint opti-
mization of neuron and ultrastructure reconstructions.

• Third, two structural linkage patterns, including mitochondria and synapses, are 
explicitly encoded and readily extended to other subcellular structures.

Fig. 2 Overview of the proposed method. Most current reconstruction pipelines consist of two-step, 
ignoring the joint connectivity of the different hierarchies. We extend this pipeline by introducing the 
connectivity consensus to create an overall optimization framework. Consecutive steps from left to right: 
given the semantic input map of three structures, we perform segmentation to obtain the 2D instance and 
construct the graph. Then we combine the hierarchy graph and build the joint optimization model to obtain 
the connectivity and the reconstruction map simultaneously
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Methods
Motivation

Connectomics aims to reconstruct the fine connections between the neural structures 
of biological tissues. The image content is rich at the nanoscale, where fine subcellular 
structure such as mitochondria and synapse are clearly visible, while neurons are spread 
all around and distinguished by membrane boundaries (as shown in Fig. 1). Exploring 
the inter-relationships between structures will help EM image analysis. The core idea of 
this paper is to jointly optimize neuronal segments with boundary cues and ultrastruc-
tural regions with structural cues, which has the advantage of complementing the limita-
tions of single connection cues. The flowchart of the method is shown in Fig. 3. The idea 
underlying joint optimization is that local single connectivity cues are not always reliable 
due to uncertainties, such as unclear imaging or poor alignment of EM images, whereas 
introducing inter-relationships can jointly optimize the reconstruction results by incor-
porating multiple cues.

Connectivity consensus

For neural reconstruction, we introduce the concept of connectivity consensus between 
each structure. Specifically, mitochondria, as organelles of cellular energy supply, exist in 
the same cell. Therefore, beside their own connection relationship, the additional prior 
is that the 3D instance mitochondria are located in the same neuron. The synapse act 
as a hub for information transmission between different cells, where the pre-synapse is 
the axon terminal of the previous neuron and the post-synapse is usually the cell body 
or dendrite of the next neuron. Likewise, in addition to the connection relationship of 
the synapse itself, the extra connection information is that the neuron connected by 

Fig. 3 The flowchart of the method
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the synapse comes from different instances. One of the benefits of connectivity consen-
sus is that sparse ultrastructure connectivity is often more accurate than dense neuron 
structures.

Based on the connectivity consensus, we define two link patterns shown in Fig. 4, to 
represent the neuron-mitochondria and neuron-synapse hierarchical relationships. 
Noted that, we categorize the synapses into pre-synapses and post-synapses according 
to [12], which is in line with the connectome as well as the proposed method (such as 
Fig. 1). In Fig. 4, green, blue, orange and grey circles indicate the neuron fragment, mito-
chondria, pre-synapse and post-synapse, respectively. The dashed green line indicates 
edges connecting two nodes between neuron fragments. The dashed yellow line indi-
cates edges connecting the ultrastructure to the neuronal nodes. The dashed blue and 
purple lines indicate edges connecting two nodes between mitochondria and synapse, 
respectively. The connectivity consensus among the various structures implies that the 
final reconstruction results need to satisfy the connectivity consistency described above. 
As illustrated in Fig. 4, assuming that the three original neuron edges have two inaccu-
rate edge weights (common but unknown in advance), then the existing method often 
fails to partition ideally due to the high reliance on local edge cues. On the contrary, the 
final graph partitioning result produced by our method still meets the plausibility expec-
tation in this case, which is based on the advantage of the connectivity consensus among 
the structures. Although the forms of the two link patterns are similar, the final feasi-
ble solution differs significantly. The difference is that mitochondria bring link informa-
tion, whereas synapses additionally contain not-link information. Note that although the 
blue circles both represent mitochondria, these may come from different neurons, which 
should be partitioned into two categories according to the connectivity consensus. Only 
when two mitochondria are located within the same neuron, that mitochondrion will be 
classified into one class.

Proposed graph Feasible solution Proposed graph Feasible solution

espanyS-norueNairdnohcotiM-norueN

Neuron graph Result of existing method

Only Neuron 

1.1 0.7 -0.9

Potential ideal result 1

Neuron Mitochondria Pre-synapse Post-synapse Neuron edge

Mito edge Synapse edge Affiliation edge Join edge Cut edge

Potential ideal result 2
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Fig. 4 Two link patterns are defined according to the connectivity consensus. Neuron-Mitochondria reflects 
the link pattern between neuronal fragments and 2D mitochondria region. Neuron-Synapse represents 
the link pattern between the neuronal fragments and 2D pre- and post-synapse. Existing methods tend 
to be sensitive to inaccurate local edge weights, while the entire graph contains a richer global link- and 
not-link-information, allowing the feasible solution to minimize partitioning errors caused by inaccurate local 
edge weights
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Optimization model

One of the contributions of this study is how to express the ultrastructures (mitochon-
dria and synapse) and structures (neuron) hierarchies in EM images, enabling joint opti-
mization of different neural structures. Based on connectivity consensus, we assume that 
the graph composed of neurons, mitochondria and synapses is defined as Gn = (Vn,En) , 
Gm = (Vm,Em) and Gs = (V s,Es) , respectively, where Vn is the set of nodes composed 
of neuronal fragments, and Vm and V s are the segmentation regions of the mitochon-
dria and synapse, respectively. The set of edges indicates that two connected nodes have 
the potential to belong to the same instance. Each edges with a cost w ∈ R reflects its 
strength. The detailed graph construction is described below.

We further define the entire graph G = (V ,E) containing above structures whose 
V = Vn ∪ Vm ∪ V s and E = En ∪ Em ∪ Es ∪ Ea , where Ea is defined as an additional 
edge set {u, v} ∈ Ea that connects a neuron fragment u ∈ Vn with an ultrastructure 
region v ∈ Vm ∪ V s , indicating the affiliation between them, i.e., belonging to the same 
object. Note that we try to construct a joint optimization model that obtains the con-
nectivity relationships of both structures through a single once optimization. The opti-
mization problem is expressed as an integer linear programming problem as follows to 
integrate the connectivity consensus and the hierarchy graphs:

where xe represents the binary indicator variable of each edge e ∈ E in the final parti-
tion (1 is cut and 0 is join), and the weight we ∈ R corresponds to each edge is the cost 
reflecting the attractive or repulsive strength. The objective function (2) is composed of 
four parts: the graph of neuron fragments, mitochondria and synapses, and the affilia-
tion edges connecting them. �n, �m, �s, �a ∈ [0, 1] are hyper-parameters derived from the 
domain knowledge to balance the reconstruction confidence level. cycles(G) denotes the 
set of all cycles in G. Inequality (2) constraint a consistent solution without “dangling 
edges”, i.e., a valid partition [45]. The feasible solution of the optimization problem is a 
decomposition of the graph G, where each component in the final solution represents 
the same class.

The primary difference that distinguishes the proposed method from previous 
approaches, such as asymmetric cuts [32, 46], correlation co-clustering [38] and seman-
tic mutex watershed [37], is the proposed model considers the connectivity of the 
ultrastructures themselves, i.e., edge connections are added between the nodes of the 
ultrastructures. This set has two advantages, one is to prevent errors in node assign-
ment, and the other is to overcome the limitations of a single connectivity. In other 
words, we overcome the fact that the neuron reconstruction relies too much on local 

(1)

min
x∈{0,1}E

�n

en∈En

wenxen + �m

em∈Em

wemxem

+ �s

es∈Es

wesxes + �a

ea∈Ea

weaxea ,

(2)
s.t. ∀Y ∈ cycles(G), ∀e ∈ Y : xe ≤

∑

e
′
∈Y \{e}

xe′ ,

(3)�n + �m + �s + �a = 1,
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boundary cues, while the ultrastructure reconstruction relies too much on local spatial 
information.

Graph construction method

This section describes the construction of the graphs Gn = (Vn,En) , Gm = (Vm,Em) 
and Gs = (V s,Es) and the definition of the affiliation edge set Ea . Figure 5 shows exam-
ples of the graph construction.

The construction method of neuron graph

The graph Gn = (Vn,En) is defined as the region adjacency graph (RAG) composed of 
the superpixels of neurons, where V is the set of neuronal fragments and E ⊂ V × V  rep-
resents the set of edges connecting any adjacent nodes. For each edge en := {u, v} ∈ En , a 
weight wen ∈ R is assigned to represent the similar strength of fragments u and v, which 
is usually obtained from the similarity pen ∈ [0, 1] via negative log-likelihood function, 
defined as:

where the bias hyper-parameter β ∈ [0, 1] controls the degree of over-segmentation. If 
β > 0.5 , then the edge weight wen decreases, otherwise the wen increases. In terms of 
object function (2), if the edge weights tend to be negative, it means that the stronger 
repulsive strength of nodes u and v corresponds to over-segmentation. Conversely, 

(4)wen = log
1− pen

pen
+ log

1− β

β
,

overlap → edge weight

boundary → edge weight

Fig. 5 Examples of graph construction. Top neuron graph neighborhood of a single node with local 
plane-edges (red lines) and cutting-edges (green lines), the edge weight mainly derived from the membrane 
boundaries. Bottom example of the ultrastructure graph, nodes are ultrastructural regions, edges are 
represented by red lines, and the edge weight derived from their segmentation overlap



Page 9 of 23Hong et al. BMC Bioinformatics          (2022) 23:453  

it means under-segmentation. Usually, β takes a default value of 0.5, which is adjusted 
according to the similarity pen correspondingly.

Generally, there are two ways to calculate the similarity pen . It can be obtained from 
the mean affinity of the membrane prediction, with a assumption that the quality of con-
volutional network output is satisfied [26]. The other more complex method requires 
multiple steps [36]. First, several descriptions of each edge are extracted from the raw 
images, boundary predictions and corresponding filtered images (including gaussian fil-
ter, hessian filter and laplacian filter). Specifically, the feature set is the same as described 
in [16], where the extracted features include boundary appearance feature, region sta-
tistical feature and shape topology feature. Subsequently, the extracted feature vectors 
are fed into the classifier to predict whether the contact between two superpixels repre-
sents same neuron or not. The difference between these two methods is that the similar-
ity after classifier relearning is more accurate and reliable than the mean affinity value. 
However, the latter requires more time for feature extraction, and is more suitable for 
data with low cutting-axis continuity.

The construction method of ultrastructure graph

The definition of ultrastructure graph should consider the connectivity consensus; oth-
erwise, additional errors may be introduced, leading to model failure. Figuratively, a cell 
may contain several mitochondria, i.e., it is impossible to determine whether the con-
nectivity between different mitochondria is consistent with the connectivity between 
neuronal fragments. Since the 3D image stacks are aligned, we design a method for 
calculating the edge weights according to strong context clues. Specifically, for graph 
Gm = (Vm,Em) , we only add edges that potentially belong to the same instances of mito-
chondria. For graph Gs = (V s,Es) , we expect the edges between the pre- or post-syn-
apses to be repulsive, whereas the edges within the pre- or post-synapses are attractive.

For present, we take Gm as an example, where synapse graph Gs is built in a similar way 
to mitochondria. Formula, we assume image volumes has M sequential slices. For every 
pair of segmentation region u, v ∈ Vm in Mu slice and Mv slice with |Mu −Mv| ≤ 2 , we 
define the probability puv ∈ [0, 1] of their plain bounding boxes du, dv IoU and segmen-
tation area su, sv overlapping belonging to the same object as:

where Duv =
du∩dv
du∪dv

 measures the similarity of the spatial position, Suv = su∩sv
su∪sv

 char-
acterizes the invariance of the segment shape, � ≥ 0 is a regularization param-
eter to balance the coefficients of the boxes and segment. We define the edge set as 
Em := {(u, v) | puv > 0, |Mu −Mv| ≤ 2} , which means that only ultrastructures in close 
contact are considered as potential links. Then, for each edge em := {u, v} ∈ Em , the edge 
cost wem is derived from puv via negative log-likelihood function, similar to Eq. (4). The 
default set of the bias hyper-parameter β is 0.5. If the image volumes is highly aniso-
tropic, then β decreases. Note that more sophisticated methods have been proposed to 
characterize the ultrastructural similarity [14], but they have higher computational com-
plexity. The experimental results show that the proposed similarity formula is sufficient 
to bring about performance improvements due to the constraints of the other edges.

(5)puv =
Duv + �Suv

1+ �
,
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The construction method of affiliation edges

For every neuronal segments u ∈ Vn and every ultrastructures region v ∈ Vm ∪ V s , 
we define the affiliation edge set Ea based on the maximum overlap area as:

where A(·) denote the pixels numbers of overlap area, At represent the area threshold. 
Regarding affiliation edge definition, we only retain edges with a certain confidence level 
once the maximum overlap area exceeds At . Since this step may filter out some small 
regions, we believe it can reduce the invalid information resulting from detection errors, 
which is important for graph construction. In another aspect, it can decrease the model’s 
complexity because it contains fewer nodes and edges.

Assume Pi|Mi=1 is the ultrastructure probability map sequences. We calculate the 
probability puv ∈ [0, 1] reflecting the strength of the affiliation as:

where t is the overlap regions and Mv denote the corresponding probability map 
sequence. That is, the probability puv is defined as mean response of network output in 
t. Then for each edge ea := {u, v} ∈ Ea , the edge weight wea is also transformed from puv 
by Eq. (4). Similarly, the default bias parameter β depends on the segmentation perfor-
mance of the ultrastructure and has a default value of 0.5. Intuitively, if the segmentation 
quality of the ultrastructure is satisfactory, then β > 0.5 ; otherwise, β < 0.5 . Notice that 
all above parameters are hyper-parameters, which can be verified through a grid search 
in the validation dataset.

Greedy solver

After the above steps, we have constructed multiple undirected graphs and estab-
lished an optimization problem, the next step is to solve the model. Since cycle 
constraints increases exponentially with the number of nodes, finding the optimal 
solution of the optimization problem is NP-hard. Most existing solvers use greedy 
heuristic algorithms to generate feasible solutions with good results, although estab-
lish neither lower bounds nor approximation certificates [33, 35]. In this paper, we 
employ the greedy additive edge contraction (GAEC) solver [29], which is a fast local 
search heuristic, although it operates directly on the nodes without any local pre-
clustering. This solver runs only once to monotonically produce deterministic fea-
sible solutions, thus providing low computational cost even for large-volume data. 
GAEC always makes the greedy choice that most decreases the objective function 
(2). Specifically, GAEC merges the edges with the highest weights in each loop, con-
tracts the edges and shrinks the graph, and re-computes the cost of the changed 
edges with sum linkage. These steps are repeated until all edges in the contracted 
graph have a negative value, then the algorithm terminates. We implement this pro-
cedure by query sorting, and the time complexity of the solution is O(V 2 logV ).

(6)Ea := {(u, v) | A(su ∩ sv) > At},

(7)puv =
∑

j∈t

P
Mv
j ,
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Post‑processing method

After obtaining the edge state in the entire graph G, we assign a unique label to each 
connected component. All nodes of each component are assigned the same label. We 
map the node label to the subgraph Gn , Gm , and Gs correspondingly. The proposed 
model may partition different instances of the ultrastructure into the same category 
according to the high-level prior information of the neurons, which facilitates the 
detection of specific neural structures such as multi-contact synapses [47]. Since oth-
ers research focus on 3D instances of the ultrastructure itself, separating incorrectly 
merged ultrastructures is necessary for the final reconstruction results in this case. 
We design a simple post-processing strategy to distinguish ultrastructures without 
edge connections in graph Gm or Gs . Specifically, if two nodes in Gm are in the same 
partition in the final solution of G, but there are no paths connecting them in graph 
Gm , a new label is assigned to one of the components. This procedure is iterated until 
there are no more violations of the node assignments. Using this approach, incor-
rectly merged ultrastructure can be effectively partitioned into several classes based 
on primary edge priors.

Experiments and results
Datasets

We use the Harris dataset and Snemi dataset for comparison, as described below:
Harris dataset comes from the hippocampus of adult rats with a resolution of 

2× 2× 50 nm3 , including the apical dendrite dataset and the spine dataset [48]. Due 
to the background region and incomplete annotation, we only select the region with 
neuron groundtruth labeling to facilitate the evaluation of algorithm performance. 
For apical dendrite dataset, we cut a subvolume of 1536× 1536× 100 voxels , and 
divided the data into train set (sections 1-50) and test set (sections 51-100). For spine 
dataset, we cut a subvolume of 904 × 865× 42 voxels , and divided the data into train 
set (sections 1–21) and test set (sections 22–42).

Snemi dataset is created by Kasthuri et  al. [7] and contains labeled subvolumes 
from the mouse somatosensory cortex. The dataset contains 100 consecutive slices 
for training and 100 slices for testing. Each slice has a size of 1024 × 1024 and a reso-
lution of 6× 6× 30 nm3.

Error metrics

Two common error metrics are used to evaluate the reconstruction performance: 
variation of information (VI) [49] and adapted rand error (ARE) [50]. A lower value 
corresponds to higher segmentation quality in both metrics. The background was 
ignored when evaluating. The expression of the VI is as follows:

where S and T are the automatic reconstruction and gold standard respectively, H(·) 
represents the conditional entropy, and H(S|T) and H(T|S) quantify over- and under-
segmentation, respectively.

(8)VI(S,T ) = H(S|T )+H(T |S),
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Baseline methods

We evaluate the reconstruction metrics from two aspects. For comparing the neuron 
reconstruction results, we adopt six representative methods with the same input data 
and graphs, including:

MC the standard multicut algorithm with same GAEC solver [28] is used as a 
baseline, it is a well-known agglomeration algorithm without needing to specify 
the number of clusters, but relies only on boundary cues.
GASPavg agglomerative clustering with average linkage criteria [25] use average 
linkage as the newly formed edge weight update criterion, which is a more robust 
method of updating edge weights for inaccurate edge.
MWS mutex watershed [30] is an efficient algorithm for signed graph partitioning, 
it adopt absolute maximum linkage by encode both attractive and repulsive cues 
with nearly linearithmic complexity.
MC w/ KL the standard multicut algorithm with Kernighan-Lin solver [33], where 
Kernighan-Lin solver starts from any initial cluster and transforms the nodes in 
each iteration to reduce the decomposition cost.
MC w/ FM the standard multicut algorithm with Fusion-Move solver [34], where 
Fusion-Move solver iteratively fuses the current and the proposal solutions and 
empirically produces lower objective function for multicut problem.
Co-Clustering correlation co-clustering [38], a model that can combine multi-level 
information but ignore the domain knowledge.

All methods have been used for the partition of signed graphs [27–29, 33, 34] 
and have been widely used in neuron reconstruction [16, 25, 30]. For the proposed 
method (Ours), we report two versions that without mitochondria information (Ours 
w/o mito) and without synapse information (Ours w/o syn), to demonstrate the effec-
tiveness of integrating various connectivity relationships.

For comparing the ultrastructure reconstruction results, we employ the popular 3D 
connected component labeling (CC labeling) [15]. In particular, we propose a base-
line (Ours w/o neuron), i.e., when �n, �a = 0 in Eq. (2) and Gn = ∅ , this objective 
function can be treated as a special case to solve only the partition problem of the 
ultrastructure.

Experiments on Harris dataset

Experimental setting

In this experiment, we investigate the effect of the proposed model on Harris dataset. 
The semantic maps of neurons, mitochondria and synapses as a prerequisite to apply 
the joint optimization model of the neural structure. We train a 3D U-net for mem-
brane/non-membrane pixel-wise semantic segmentation, and use manually annotated 
masks as ultrastructural semantic maps on Harris dataset. The network architecture 
is similar to [26], which differs from the standard 3D U-net in three ways: first, the 
residual module is employed to improve the model network representation; second, 
the feature maps of different levels are fused by element-wise summation operation, 
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replacing the concatenation operation; third, the network never downsamples the 
z-axis resolution, in order to adapt to anisotropic data. For the neuron membrane, 
the output is nearest neighbor affinities as described in [18, 51]. We use binary cross-
entropy as the network loss function, and adopt the Adam optimizer for stochastic 
optimization. The obtained probability map is then smoothed by a Gaussian func-
tion, where the local minima serve as seeds for the watershed algorithm to gener-
ate the superpixels of the neuron over-segmented fragments. Due to the anisotropy 
of the data, the superpixels are generated by each 2D image in the stack singularly. 
From above steps, we set up the optimization problem as follows: we build the region 
adjacency graph Gn from the superpixels, that is, edges are also introduced between 
superpixels in adjacent slices. We train two random forest classifier to calculate the 
edge weight based on edge and region appearance features following [16]. One of the 
classifier learn the plane-axis edges (edges between superpixels in same slices) and 
the other learn the cutting-axis edges (edges between superpixels in adjacent slices), 
shown in Fig. 5. Since the classifier is supervised learning, to obtain the edge labels 
required for the training process, the edge is labeled as 0 if the two regions connected 
by this edge in groundtruth belong to the same neuron, otherwise labeled as 1. Then 
the features and the corresponding labels are fed into the random forest classifiers. 
The hyper-parameter of classifiers can be determined by classification accuracy via 
grid research. After training, those random forest classifiers are used to infer the sim-
ilarities pen in test dataset.

Since this dataset contains few ultrastructures, we use ImageJ software [52] to anno-
tate the binary mask in order to clarify the effect of the the joint optimization idea. We 
annotate 45 mitochondria and 50 synapses in the apical dataset, and 12 mitochondria 
and 8 synapses in the spine dataset. We use 2D connected component labeling of the 
binary mask to obtain the ultrastructure node set. Follow, the graphs Gm and Gs are con-
structed. The affiliation edge set Ea is derived from the binary mask with an area thresh-
old At = 50.

Results

We compare the neuron reconstruction results and ultrastructure reconstruction results 
separately. We record the quantitative analysis of neuron reconstruction in Table  1. 
The best result are highlighted in bold. Overall, introducing additional ultrastructural 
connectivity constraints show a clear improvement in performance over the previ-
ous method. Specifically, our method outperforms the standard MC by 0.90% (for VI 
metric) on apical dataset (0.7307 versus 0.7373) and by 5.66% on spine dataset (0.4084 
versus 0.4329). Compared with other popular signed graph optimization strategies, our 
method performs better in most cases. Although the KL and FM approximate solvers 
empirically yield lower objective function solutions in multicut problem, this outcome 
does not always correspond to better reconstruction performance for the neuron task, 
e.g., for the apical dataset. The main reason may be the inaccurate edge weights since 
existing methods are sensitive to edge weights. In the spine dataset, the VI of the KL 
solver is lower than that of the GAEC solver (0.4156 versus 0.4329), but our model can 
compensate for the discrepancy caused by the approximate solution error and produces 
better reconstruction performance. The results of ablation studies integrating different 



Page 14 of 23Hong et al. BMC Bioinformatics          (2022) 23:453 

structures show that neuron reconstruction performance benefits continuously with the 
introduction of synapses, mitochondria and full structure. Notice that the result of Ours 
w/o syn and Ours are consistent in the spine dataset, which may be attributed to two 
factors: (1) different ultrastructure may be related to the same neuron nodes resulting 
in the same performance gains, and (2) the edge weights of the synapses in this dataset 
fail to accurately reflect the connection strength. Unlike the Co-Clustering, the proposed 
model adds confidence factor derived from domain knowledge to balance the connec-
tion strength of each hierarchy. The error metrics confirm that the confidence factor is 
beneficial to the reconstruction results.

As intuitively shown in Fig.  6, we further qualitatively analyze in which cases our 
model brings benefits in neuron reconstruction. We observe that ours model can effec-
tively reduce connection errors than the other methods. Observing patches from the 
spine dataset, it makes sense that the structural information of the mitochondria pre-
vents split errors. While observing patches from the apical dataset, although this neu-
ron does not contain ultrastructure, the nearby mitochondria are constrained in the 
optimization model, resulting in a reasonable overall result. More examples of neuron 
segmentation are given in Fig. 7, where each row shows the visualization results of the 
proposed method in consecutive 9-layer slices. Table 2 illustrates the algorithm advan-
tages, where the metric improvement is measured separately in regions with/without the 
ultrastructure. The joint optimization model contributes to significant improvements 
over the baseline in regions with ultrastructure, whereas the other regions exhibit lim-
ited improvement due to global optimization. What’s more, the robustness results of the 
model to hyper-parameters on the Harris dataset are shown in Fig. 8. We record the VI 
and ARE of the proposed method with MC under different parameters. In most cases, 
the proposed model outperforms the baseline model.

The results of ultrastructure under the same hyper-parameter are shown in Table 3. 
Note that we used manually labeled ultrastructural data based on the 2D binary mask 
information, and our goal is to obtain the 3D label, which is not against our original 
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intention. All error metrics are low because only connection errors exist in the recon-
struction results. The result of CC labeling is close to the proposed method, but prone 
to introduce merge errors for the mitochondria and split errors for the synapse, as indi-
cated by VI-Merge and VI-Split in Table 3. The reason is that CC labeling is more sensi-
tive to changes in the cutting-axis and morphology because it determines whether the 
binary regions are the same instance by 26-neighborhood connectivity. By the way, the 
performance of the proposed baseline (i.e. Ours w/o neuron) is comparable to that of the 
joint optimization (i.e. Ours).

Experiments on the Snemi dataset

Experimental setting

This experiment investigate the robustness and practicability of the proposed method 
under automatic ultrastructure segmentation algorithm. Similar to Harris dataset, we 

Fig. 7 Visualization of the proposed method on two datasets respectively

Table 1 The quantization performance of the neuron reconstruction on Harris dataset

Methods Apical Spine

VI VI‑Split VI‑Merge ARE VI VI‑Split VI‑Merge ARE

MC 0.7373 1.0487 0.4259 0.1431 0.4329 0.6218 0.2439 0.1087

GASPavg 0.7320 1.0489 0.4152 0.1389 0.4199 0.6067 0.2330 0.1067

MWS 0.7598 1.0780 0.4415 0.1460 0.4364 0.6252 0.2477 0.1111

MC w/ FM 0.7758 1.0797 0.4719 0.1594 0.4645 0.6760 0.2530 0.1228

MC w/ KL 0.7753 1.0741 0.4766 0.1657 0.4156 0.5915 0.2396 0.1058

Co-Clustering 0.7374 1.0498 0.4249 0.1430 0.4094 0.5746 0.2441 0.1037

Ours w/o mito 0.7329 1.0459 0.4198 0.1427 0.4230 0.6021 0.2440 0.1061

Ours w/o syn 0.7319 1.0439 0.4199 0.1418 0.4084 0.5726 0.2442 0.1035
Ours 0.7307 1.0421 0.4192 0.1418 0.4084 0.5726 0.2442 0.1035
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use the same method to generate the superpixels and RAG Gn . The neuronal fragment 
probability pen is the mean affinity value derived from the network output. For the ultra-
structure, we utilize the same network architecture as in membrane segmentation to 
obtain the probability result, except for slight differences in the settings. For the mito-
chondria, we add the 2D instance contour as the target output to distinguish the planar 
instance results, refer to [15]. For the synapse, we use a model with the target of three 
channels to train a semantic segmentation network, refer to [12]. The three channels 
include pre-synaptic region, post-synaptic region, and synaptic region (union of the first 
two channels). After obtaining the semantic map, we transform them into binary images 
by using the binarization threshold, and obtain the initial segmentation result using the 
2D connected component labeling. In this way, we can obtain pre/post synapses. We 
present the The input size of all the above networks is 256× 256× 8 , the optimizer is 
Adam, the training phase uses sufficient data augmentation to improve the generaliza-
tion performance, and the model is iterated 20,000 times under 2 NVIDIA Tesla V100 
GPUs with a batch of 8. The graphs Gm and Gs are similar to those in experiments on the 
Harris dataset, except that the binary mask is generated by binarization of the network 
output. The construction of the affiliation edges Ea was conducted with an area thresh-
old of At = 50.

Results

We summarize three experiments of neuron reconstruction in Table 4 , including (i) the 
performance of the six representative methods, (ii) the results of the ablation studies 
on different ultrastructural connectivity constraints, (iii) the robustness of the potential 
improvements. Table 4 indicates differences in the neuron reconstruction performance 
of the six unsigned graph agglomeration methods. Particularly, MWS has the lowest 
time complexity O(V logV ) but the results are not ideal. GASPavg, which adopts the 
new edge update criteria to increase the robustness of the weights, provides a good 
performance unsurprisingly. Compared to baseline MC, our approach integrates syn-
apses, mitochondria and full information to decrease VI metrics by 1.25 , 2.79 and 3.60% 
respectively, demonstrating the effectiveness of joint connectivity cues. Compared to 
baseline MC, the method of Ours w/o mito, Ours w/o syn and Ours VI metrics lower 
1.25 , 2.79 and 3.60% respectively, demonstrating the effectiveness of joint connectivity 
cues. Furthermore, as shown in Table 5, the VI of our method that considers only the 
fragments containing ultrastructures is 9.70% lower than that of the baseline. Ours also 

Table 2 Comparison of neuron reconstruction performance with and without ultrastructural 
mapping regions on Harris dataset

Apical Spine

Methods VI Decrease ARE Decrease Methods VI Decrease ARE Decrease

w/ MC 0.2926 0.0708 w/ MC 0.2139 0.0592

Co-Clustering 0.2969 +1.47% 0.0709 +0.14% Co-Clustering 0.1776 −16.97% 0.0531 −10.30%

Ours 0.2926 0% 0.0708 0% Ours 0.1758 −17.81% 0.0527 −10.98%

w/o MC 0.9359 0.3006 w/o MC 0.5133 0.1487

Co-Clustering 0.9329 −0.32% 0.2996 −0.33% Co-Clustering 0.5030 −2.01% 0.1470 −1.14%

Ours 0.9254 −1.12% 0.2964 −1.40% Ours 0.5025 −2.10% 0.1469 −1.21%
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outperforms the Co-Clustering, which only 6.54% lower than that of the baseline. The 
qualitative comparison of the reconstruction results in Fig. 6 illustrates the main perfor-
mance gains of the proposed method. Observation of the patches from Snemi dataset, 
we find that not-link-information of the synapses reduces the merge error, demonstrat-
ing the superiority of our method. The neuron segmentation performance of the pro-
posed method for consecutive 9-layer slices on the Snemi dataset can be seen in Fig. 7. 
The 3D rendering results of the different algorithms at the synaptic connections of the 
two neurons are depicted in Fig.  9, which intuitively indicates that our method is the 
closest to the groundtruth. More 3D rendering example of the other regions in Kasthuri 
dataset [7] are available in Fig. 10. We also compare the error metric of our method with 
different confidence factors (with steps of 0.05) as shown in Fig. 8. Our method results in 
lower errors than the baseline in most cases, indicating the robustness of the proposed 
method.

Meanwhile, the quantitative result of ultrastructure reconstruction is recorded in Table 3. 
Unlike the Harris dataset, the ultrastructure is predicted by CNN to simulate the appli-
cability and robustness of our method in real scenarios. From Table 3, the reconstruction 
performances differ greatly for the mitochondria and synapses. In most cases, the result of 
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Table 3 The quantization performance of the ultrastructure reconstruction on Snemi dataset and 
Harris dataset

Dataset Methods Mitochondria Synapse

VI VI‑Split VI‑Merge ARE VI VI‑Split VI‑Merge ARE

Apical CC labeling 0.0424 0.0076 0.0771 0.0382 0.0236 0.0468 0.0003 0.0065

Ours w/o neuron 0.0044 0.0076 0.0012 0.0003 0.0207 0.0411 0.0003 0.0044

Ours 0.0044 0.0076 0.0012 0.0003 0.0014 0.0024 0.0003 0.0001
Spine CC labeling 0.0012 0.0025 0 0 0.0454 0.0908 0 0.0061

Ours w/o neuron 0.0012 0.0025 0 0 0.0454 0.0908 0 0.0061

Ours 0.0012 0.0025 0 0  0.0233 0.0467 0 0.0031
Snemi CC labeling 0.2387 0.2220 0.2554 0.0695 1.4642 0.6634 2.2651 0.9134

Ours w/o neuron 0.2472 0.2390 0.2554 0.0728 1.4734 0.6816 2.2652 0.9184

Ours 0.2385 0.2218 0.2554 0.0695 1.4608  0.6472 2.2745 0.9129
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our algorithm and the proposed baseline are not inferior to those of CC labeling. Figure 12 
gives a visualization of the differences. Specifically, the proposed method prevents a split 
error for synapse reconstruction because the imaging damage causes a local shift in the EM 
image. Noteworthy, the proposed baseline (i.e. Ours w/o neuron) is inferior to CC labeling 
for synapse reconstruction. Our analysis is due to sensitivity to edge weights, fine-tuning 
the bias hyper-parameter may improve the performance. Meanwhile, the joint optimization 
approach (i.e. Ours) outperforms CC labeling due to the neuron’s connectivity constraint.

Note that the error metric in Table 3 includes pixel-wise error and connection error. Par-
ticularly, the performance of mitochondria is significantly higher than that of synapses due 
to distinct regional features and shape invariance. We find the lower VI of synapse recon-
struction mainly comes from pixel-wise errors, i.e., some synapses are not detected or inac-
curately segmented boundaries, which is intuitively represented in Fig. 12. We can conclude 
that ultrastructure reconstruction is still subject to errors but does not affect the improve-
ment of the neuron. This is based on the assumption that reconstructing subcellular 

Fig. 9 Quantitative comparison of two neurons with synaptic connections on Snemi dataset. Yellow and red 
arrows indicate major differences

3D rendering 3D renderingBaseline Baseline

Ours Ours3D rendering 3D rendering

Fig. 10 Examples of 3D renderings on Kasthuri dataset. Left: comparison of a single neuron with 
mitochondria. Buttom: comparison of two neurons at synaptic connections. Yellow and red arrows indicate 
major differences
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structures is less difficult than reconstructing cellular structures. Moreover, our method 
only relies on the connection information extracted from the ultrastructure and is therefore 
insensitive to pixel-level errors. In other words, with the same image quality, we assume the 
connectivity information of the ultrastructure is more reliable than that of neurons, which 
is necessary to increase the confidence factor. We confirm this assumption in Fig. 11, where 
better results are obtained when the confidence factor of the ultrastructural connectivity 
features is higher than that of the neurons.

Discussion and conclusion
In this paper, we investigate the joint optimization of ultrastructural and neuronal con-
nectivity. We introduce the concept of the connectivity consensus based on biological 
domain knowledge for 3D agglomeration. We propose a joint graph partitioning model 
to determine the ultrastructural structural connectivity and membrane boundary con-
nectivity. This method overcomes the limitations of using single connectivity cues. This 
optimization model has a single and well-defined mathematical objective, allows to pro-
duce the multiple structure reconstruction in a one optimization. We have demonstrated 
the advantage of joint optimization on several public datasets.

Fig. 11 Comparison of the neuron reconstruction performance for three structures with different confidence 
factors on Snemi dataset. Top: the VI metric. Down: the ARE metric
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The goal of image analysis in connectomics is the 3D reconstruction of neural structures, 
and the agglomeration algorithm is a fundamental step. However, the reconstruction of neu-
ral structures in electron microscopic images is a very challenging task. The main factors 
affecting the reconstruction performance include imaging resolution, z-axis resolution, data 
volume, acquisition region and imaging quality, which result in reconstruction performance 
that may vary greatly between different data. Existing methods have the limitation that single 
connectivity features are not always reliable. The primary purpose of introducing connectivity 
consensus between different structures is to build a suitable optimization model that makes 
the reconstruction goals more consistent with biological plausible and domain knowledge.

Compared with voxel-based, superpixel-based methods are less sensitive to local 
defects at the membrane boundary. The proposed solution is robust to the over-seg-
mentation issue. Specifically, if under-segmentation occurs in the neuron over-seg-
ment fragments, existing agglomeration algorithms are unable to correct such errors, 
so such errors are generally avoided at the watershed stage by adjusting hyper-param-
eters. If mitochondria occur under-segmented, this may only lead to performance 
degradation if two neurons in the plane to which the mitochondria originally belong 
are identified as one, because additional merge errors of neurons are introduced. 
However, as in Eqs. (2) and (3), we add the reconstruction confidence parameter � 
for different structures, which allows us to easily assign confidence levels based on 
the initial segmentation performance, as discussed in Fig. 11. In addition, we add 2D 
instance contour to the ultrastructure segmentation, which further reduces the possi-
bility of under-segmentation. Note that the additional connectivity information used 
in this paper comes from mitochondria and synapses, which contain link-informa-
tion and not-link-information that can be extended to other similar structures, such 
as cell bodies (same as mitochondria) and axon-dendrites (same as synapses). In the 
future, we plan to analyze the model’s performance for other biological structures and 
examine its generalization ability. Another important research direction is to extend 
the optimization model to integrate non-adjacent node relationships, i.e., long-range 
cues, such as lifted multicut algorithm.
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Abbreviations
EM  Electron microscopy
3D  Three-dimensional
CNN  Convolutional neural network
IoU  Intersection-over-union
RAG   Region adjacency graph
GAEC  Greedy additive edge contraction
VI  Variation of information
ARE  Adapted rand error
MC  Multicut
GASPavg  Agglomerative clustering with average linkage criteria
MWS  Mutex watershed
KL  Kernighan–Lin solver
FM  Fusion-Move solver
CC  Connected component
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