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Introduction
Capsule endoscopy (CE) is a prime modality for 
diagnosis and follow-up in Crohn’s disease (CD). 
Complete evaluation of the entire small bowel 
using CE or cross-sectional modality is recom-
mended in all newly-diagnosed CD patients, or 
patients in need of re-evaluation for non-
explained symptoms.1,2 CE is an accurate predic-
tor of pending relapse in CD patients in clinical 
remission,3 and can change disease classification 

in over 50% of CD patients.4 Location of the 
lesions is of importance as well, as jejunal CD was 
demonstrated to be associated with worse long-
term prognosis and higher risk of surgery.5

Artificial intelligence (AI) and deep learning tech-
niques are being rapidly implemented in both 
research and clinical practice gastroenterology, 
mostly for real-time polyp detection during colo-
noscopy.6–8 Additional fields for evaluation of AI 
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Background: Deep learning techniques can accurately detect and grade inflammatory findings 
on images from capsule endoscopy (CE) in Crohn’s disease (CD). However, the predictive 
utility of deep learning of CE in CD for disease outcomes has not been examined.
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therapy based on complete CE videos of newly-diagnosed CD patients.
Design: This was a retrospective cohort study. The study cohort included treatment-naïve 
CD patients that have performed CE (SB3, Medtronic) within 6 months of diagnosis. Complete 
small bowel videos were extracted using the RAPID Reader software.
Methods: CE videos were scored using the Lewis score (LS). Clinical, endoscopic, and 
laboratory data were extracted from electronic medical records. Machine learning analysis 
was performed using the TimeSformer computer vision algorithm developed to capture 
spatiotemporal characteristics for video analysis.
Results: The patient cohort included 101 patients. The median duration of follow-up was 
902 (354–1626) days. Biological therapy was initiated by 37 (36.6%) out of 101 patients. 
TimeSformer algorithm achieved training and testing accuracy of 82% and 81%, respectively, 
with an Area under the ROC Curve (AUC) of 0.86 to predict the need for biological therapy. In 
comparison, the AUC for LS was 0.70 and for fecal calprotectin 0.74.
Conclusion: Spatiotemporal analysis of complete CE videos of newly-diagnosed CD patients 
achieved accurate prediction of the need for biological therapy. The accuracy was superior to 
that of the human reader index or fecal calprotectin. Following future validation studies, this 
approach will allow for fast and accurate personalization of treatment decisions in CD.
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in Gastrointestinal tract (GI) assist in early detec-
tion of gastric neoplasia,9,10 Barrett’s esophagus,11 
endoscopic ultrasound,12,13 and grading of 
mucosal inflammation in ulcerative colitis.14–18 

An additional field with fast development of AI 
research is CE, with several publications evaluat-
ing deep learning for automated detection of 
inflammatory lesions,19–26 vascular lesions,27,28 
protruding lesions and masses,29 and scoring of 
bowel cleanliness.30 The accuracy for most of 
these tasks was reported to be at least 90% and 
frequently much higher.

However, to date the AI research in GI was mostly 
focused on identification of individual lesions, 
and this goal seems to be quite successfully 
achieved in luminal endoscopy. However, the 
bigger and perhaps more important challenge is 
the potential utilization of AI for prognostication 
and personalization of treatment approach. Such 
evidence is still extremely scarce.

In CD, predictors of disease prognosis and 
response to treatment are still severely lack-
ing.31–33 The impact of mucosal healing and the 
lesion size on disease outcomes in CD has been 
well described.34,35 It is likely that the vast abun-
dance of visual data contained in the complete 
videos of endoscopic procedures such as CE 
(containing up to 12,000 still images per film) 
may contain factors and subtle findings that 
escape the human eye, however, could be picked 
by AI algorithms. We hypothesized that AI analy-
sis of CE videos performed at diagnosis could be 
an accurate predictor of treatment outcomes.

The main aim of our study was to evaluate the 
utility of AI analysis of complete CE videos of CD 
patients at inception for prediction of the need for 
biological therapy.

Methodology

Cohort definition
This was a retrospective cohort study. The report-
ing of this study conforms to the Strengthening 
the Reporting of Observational Studies in 
Epidemiology (STROBE) statement. In this 
study, we included CD patients followed by the 
gastroenterology department of Sheba Medical 
Center between January 2011 and March 2021. 
Only patients who performed CE within 6 months 

of diagnosis and before initiation of immunomod-
ulator or biological therapy were included. 
Patients with less than 6 months of follow-up after 
CE were excluded. Demographic, clinical, and 
endoscopic data were extracted from patients’ 
electronic medical records.

Capsule endoscopy
All CE procedures were performed using PillCam 
SB2 or SB3 small bowel capsules (Medtronic, 
Yokneam, Israel) and reviewed using the Reader 
software version 8 or 9 (Medtronic, Yokneam, 
Israel). The CE videos were graded using the 
Lewis score (LS).36 We extracted complete small 
bowel videos starting with the first duodenal 
image and ending with the first cecal image using 
the RAPID Reader software v9.0 (Medtronic, 
Yokneam, Israel). The videos were saved in 
MPEG format.

Study outcome
The study outcome was the initiation of biologi-
cal therapy within the duration of follow-up.

Machine learning algorithm
Machine learning analysis was performed by Intel 
Israel. For analyzing videos, we used the 
TimeSformer, Facebook Research,  Menlo Park, 
California architecture.37 An overview of the 
TimeSformer architecture is presented in Figure 1. 
This is a state-of-the-art algorithm introduced by 
Facebook. It is based on the Transformer para-
digm from the natural language processing 
domain37,38 (Supplemental Section A). 

We used a fivefold cross-validation train-test ran-
dom split: in each split four folds were used as the 
train set and the fifth fold was used as the valida-
tion set. The raw training videos were augmented 
(Supplemental Table 1) after the train-test split.

Detailed hyperparameters of the experiments are 
presented in the supplements. Three TimeSformer 
models were experimented upon: FT K400, 
8 × 32 × 224; FT K600, 8 × 32 × 224; and FT 
K400, 16 × 16 × 448 (Supplemental Section B).

Model interpretability
To understand the influence of spatial and 
temporal features, respectively, we used Intel 
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Labs’ InterpreT toolbox. This toolbox allows us 
to investigate the model behavior and under-
stand its internal structure (Supplemental 
Section C).

Statistical methods for clinical data
Descriptive statistics were presented as 
means ± standard deviations/medians with inter-
quartile ratios (IQRs) for continuous variables 
and percentages for categorical variables. 
Continuous variables were analyzed by t-test/
Mann–Whitney test and categorical variables 
by chi-square/Fisher’s exact test. A receiver 
operator curve (ROC) analysis was performed 
for the models, and LS and fecal calprotectin 
predictions of the study outcome were ana-
lyzed. A two-tailed p-value < 0.05 was consid-
ered statistically significant. The analysis was 
performed using IBM SPSS statistics (version 
27.0) (Armonk, NY, USA).

Results

Cohort description
One hundred and one patients were recruited. 
Clinical and demographic characteristics of the 
patients appear in Table 1. The median LS was 
450 (IQR 225-1012).

Figure 1. An overview of the TimeSformer architecture. On the right side: the video self-attention block, 
applied on the embedded patches. On the left side: the end-to-end architecture. A multilayer perceptron (MLP) 
is applied both at the end of each block and to the projected and concatenated vectors from all heads.

Table 1. Clinical and demographic characteristics of the included patients.

Characteristics Median N (%)

Age, years (median, IQR) 27 (23–42)  

Age at diagnosis, years (median, IQR) 25 (20–40)  

Gender, women 54 (53.5)

CD location

 Ileal 88 (87.1)

 Colonic 1 (1)

 Ileocolonic 12 (11.9)

CD phenotype

 Non-stricturing non-penetrating 92 (91.1)

 Penetrating 6 (5.9)

 Stricturing 3 (4)

Smoking

 Never 66 (73)

 Active 17 (19)

 Previous 8 (9)

Lewis score (median, IQR) 450 (225–1012)  

Fecal calprotectin, mg/g stool (median, IQR) 233 (99–656)  

CD, Crohn’s disease; IQR, interquartile ratio.
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Thirty-seven patients (36.8%) initiated biological 
therapy within the duration of follow-up with a 
median time of 17 months (4.7–38.5) for therapy. 
The initiated biological treatments included adal-
imumab (18, 48.6%), infliximab (13, 35.1%), or 
vedolizumab (6, 16.2%).

On univariate analysis, CD phenotype, LS, and 
fecal calprotectin were associated with initiation 
of biological therapy; however, on multivariate 
analysis, none retained significance (Table 2). 
For LS, the AUC for predicting biological treat-
ment was 0.70 and for calprotectin 0.74.

Machine learning results
The optimal model achieved AUC 0.86 with 
accuracy 0.81. Below is a summarization of 
the TimeSformer experiments with respect to 

the different model configurations (Table 3, 
Figure 2).

Model interpretability
Hidden state representations in a two-dimen-
sional space. Supplemental Figure 1 shows the 
t-distributed stochastic neighbor embedding 
(t-SNE) representations of the CLS token of each 
video. This figure shows how positive and nega-
tive videos are clustered differently throughout 
the network’s layers. Especially, two distinct clus-
ters are seen at the last layer.

Then, we focused on the t-SNE representation of 
the regions of each frame. In Figure 3, pixel id 
represents the same region in each image, and 
example ID represents the video level.

Table 2. Comparison of clinical characteristics between patients that did or did not initiate biological therapy within the duration of 
follow-up. 

Characteristics Received biological therapy p (univariate) p (multivariate)

 No (N = 37) Yes (N = 64)

 Median, IQR (N %) Median, IQR (N %)

Age, years (median, IQR) 27 (23–41) 27 (22–44) 0.78  

Age at diagnosis, years (median, IQR) 26 (21–38.5) 24 (20–41) 0.64  

CD location

 Ileal 59 (90.6) 30 (81.1) 0.19  

 Colonic 1 (1.5) 1 (2.6)  

 Ileocolonic 5 (7.7) 7 (18.9)  

CD phenotype

 Non-stricturing non-penetrating 62 (96.9) 30 (81.1) 0.48  

 Penetrating 1 (1.5) 5 (13.5)  

 Stricturing 1 (1.5) 2 (5.4)  

Smoking

 Never 44 (80%) 21 (60%) 0.11  

 Active 7 (12.7%) 10 (28.6%)  

 Previous 4 (7.3%) 4 (11.4%)  

Lewis score (median, IQR) 393 (225–900) 618 (450–1350) 0.01 0.46

Fecal calprotectin, mg/g stool (median, IQR) 130 (93–350) 360 (203–1000) 0.02 0.67

CD, Crohn’s disease; IQR, interquartile ratio.
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Table 3. Machine learning algorithms performance for prediction of biological therapy in CD patients.

Machine learning model AUC Precision/positive 
predictive value

Sensitivity/true 
positive rate/recall

Specificity/true 
negative rate

Fall-out/false 
positive rate

Miss rate/false 
negative rate

FT K400, 8 × 32 × 224 0.80 0.71 0.78 0.87 0.12 0.29

FT K600, 8 × 32 × 224 0.85 0.82 0.71 0.92 0.07 0.28

FT K400, 16 × 32 × 448 0.86 0.81 0.75 0.84 0.15 0.25

Figure 2. The ROC AUC plots for models FT K400 8 × 32 × 224, FT K600 8 × 32 × 224, and FT K400 
16 × 32 × 448, respectively.
AUC, Area under the ROC Curve.

Attention heatmap for ulcer detection. When 
comparing our results to ResNet101 Convolu-
tional Neural Network classifier trained on a set 
of colonoscopy images, the TimeSformer atten-
tion mechanism was better focused on the ulcers 
and their localization (Figure 4), as seen in the 
Grad-CAM heatmaps.

Discussion
Our study demonstrates that machine learning 
analysis of complete CE videos of CD patients 
performed at initial diagnosis can accurately 
predict the need for biological therapy. The per-
formance of TimeSformer algorithm was supe-
rior to that of the traditional LS or of fecal 
calprotectin.

In the recent years, AI algorithms achieved excel-
lent accuracy in identification of findings on still 
images in multiple fields in gastroenterology, 
including CE.19,20,22,26,39,40 Moreover, real-time 
diagnosis of colonic polyps on colonoscopy is cur-
rently possible and was demonstrated to be asso-
ciated with an improved polyp detection rate6–8; 
AI technology for colonoscopy has already 
matured into clinically available and FDA-
approved tools such as GI Genius (Medtronic, 
Dublin, Ireland).

However, it is quite plausible that the full-fledged 
potential of the use of AI in Inflammatory bowel 
disease (IBD) is yet to be realized. Prediction of 
disease course and outcomes is among the crucial 
challenges in CD; despite the massive abundance 
of research targeting personalization of treatment 
approach, the practical implication for the daily 
practice is still scarce.31,41–43 One of the corner-
stones of the modern treatment approach in IBD 
is the achievement of mucosal healing1,2,44; striv-
ing for complete mucosal healing in IBD is well 
justified as patients in mucosal healing have con-
sistently better long- and short-term disease out-
comes.45 CE is a valuable diagnostic and 
monitoring tool in CD1,2 as it allows for accurate 
panenteric assessment of bowel inflammation. In 
established CD patients, proximal disease loca-
tion is positively associated with a risk of intesti-
nal resection.5 CE identifies mild to moderate 
mucosal inflammation in over 80% of CD patients 
in clinical remission, including the majority of 
patients in both clinical and biomarker remis-
sion46; such smoldering inflammation was an 
accurate predictor of relapse within 24 months.3

An average complete CE video may include up to 
10,000 images. The existing indices for grading 
inflammation on CE36,47–52 are based on a small 
number of semiquantitative parameters such as 
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Figure 3. The evolved clustering of the frame regions after t-SNE embedding through the layers. The first row of the figure shows 
the evolution of the regions’ representation colored by the pixel id while the second row shows this evolution colored by the example 
ID. These figures show that in the first layers, the clusters are location-specific: pixels of the same part of any different frames will 
be closer. However, at the end of the network, the clusters are example related. This implies that location embedding is represented 
in the first layers. In contrast, prediction is at the example level and not at region one, and it is represented in the last layers of the 
network. The third row shows that there is a separation between positive and negative videos in the last layer, while at the first 
layers, they were completely mixed and overlapping.

the number of ulcers (none/few/multiple), disease 
of ulceration (based on eye-balling of the extent), 
and presence of structures. Clearly, only a small 
amount of the available optical information is 
incorporated and processed in any of these scores. 
Thus, AI analysis of the entire available visual 
data may hold additional promise for the com-
plete assessment of mucosal inflammatory bur-
den. However, we assumed that not only the 
complete extent and morphology of the ulcera-
tions and strictures may be of prognostic impor-
tance but the anatomical distribution of the 

pathologies, which can only be gauged by the 
temporal location in relation to the first and last 
images, should also be of importance. Thus, a 
mere segmentation of videos to individual still 
images may not have been sufficient for the 
purpose.

Our approach is unique in that it classifies videos 
using both space and time features. To this end, 
we capture the sequential context by learning spa-
tiotemporal features from the video capsule data, 
giving balanced representations to the local pixel 
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Figure 4. Ulcer detection – comparison of Grad-CAM visualizations to attention head visualizations to the CLS 
token in the spatial dimension. As can be seen, in the first two examples, the Grad-CAM method succeeds in 
detecting the lesions but with a diffused heatmap that might not be precise enough. The second two examples 
show how Grad-CAM also fails to detect ulcers correctly. Focusing on the attentions to the CLS token in the 
spatial dimension at the head (layer = 3, head = 8), we can see how the model indirectly learned to prioritize the 
ulcers. Compared to the Grad-CAM heatmaps, we can see how the detection is better focused on the ulcers, 
and we also see that even when Grad-CAM fails to detect the lesion, our model and this specific attention head 
succeed in localizing it.

structure as well as relationships across the video 
frames in time. TimeSformer algorithm was 
developed in order to capture and identify motion, 
such as sports activity, so we assumed that could 
be well suited to address the task of spatiotempo-
ral video analysis.

Our study has several limitations. Primarily, a 
larger sample size could have resulted in 

improved accuracy. For classification, we used a 
relatively ‘soft’ outcome of biological initiation. 
It is clear that the decision to initiate biological 
therapy is very heterogenous and could be influ-
enced by a multitude of parameters such as 
patient and physician preferences, extraluminal 
disease characteristics (perianal disease, 
extraintestinal manifestations, etc.). It would 
have been preferable to select a less-biased 
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outcome such as need for surgery; however, such 
a cohort would be almost impossible to compile 
as patients with intestinal strictures are usually 
excluded from performing CE after evaluation of 
small bowel patency. In our cohort that included 
patients followed in a large tertiary center for 
9 years, only one patient required surgery. In 
addition, our cohort included patients with rela-
tively mild disease, as signified by LS and fecal 
calprotectin levels. In addition, our study 
focused on prediction of the outcome and did 
not suggest an algorithm for mucosal burden 
quantification. Such an algorithm would be of 
great practical utility and should be investigated 
in future studies.

Our current effort lays the groundwork for the 
creation of automated AI-based predictive sys-
tems for CE in CD. In fact, completely auto-
mated reading of AI can be easily feasible with 
the currently available tools for detection of 
pathologies, as they have already matured for 
excellent accuracy; nonetheless the ultimate 
goal of any diagnostic tool in early CD would 
be to predict the treatment outcome and the 
risk of complications, and for that purpose it 
appears that a spatiotemporal algorithmic 
approach that is able to incorporate disease dis-
tribution and location as well as the potential 
impact on GI motility is capable of catering to 
the task. The current algorithm requires further 
validation in extensive prospective cohorts, 
either as a standalone solution or as a compo-
nent in a multiomic predictive model poten-
tially incorporating multiple biological and 
visual inputs.
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