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StructureDistiller: Structural 
relevance scoring identifies the 
most informative entries of a 
contact map
Sebastian Bittrich   1,2,3*, Michael Schroeder2 & Dirk Labudde1

Protein folding and structure prediction are two sides of the same coin. Contact maps and the related 
techniques of constraint-based structure reconstruction can be considered as unifying aspects of both 
processes. We present the Structural Relevance (SR) score which quantifies the information content 
of individual contacts and residues in the context of the whole native structure. The physical process 
of protein folding is commonly characterized with spatial and temporal resolution: some residues are 
Early Folding while others are Highly Stable with respect to unfolding events. We employ the proposed 
SR score to demonstrate that folding initiation and structure stabilization are subprocesses realized by 
distinct sets of residues. The example of cytochrome c is used to demonstrate how StructureDistiller 
identifies the most important contacts needed for correct protein folding. This shows that entries of a 
contact map are not equally relevant for structural integrity. The proposed StructureDistiller algorithm 
identifies contacts with the highest information content; these entries convey unique constraints 
not captured by other contacts. Identification of the most informative contacts effectively doubles 
resilience toward contacts which are not observed in the native contact map. Furthermore, this 
knowledge increases reconstruction fidelity on sparse contact maps significantly by 0.4 Å.

Proteins are chains of amino acids which adopt complex, three-dimensional structures. This particular arrange-
ment allows proteins to catalyze chemical reactions, transmit signals between cells, or recognize other mole-
cules. The connection of protein sequence and structure is unclear and constitutes the protein folding problem. 
One promising technique to gain detailed insights into the process of protein folding (Fig. 1) are pulse-labeling 
hydrogen-deuterium exchange (HDX) experiments1–3. In the process of protein folding, a denatured protein 
chain adopts a native, functional conformation. HDX allows to study the process with spatial and temporal res-
olution and folding events of particular residues can be related to particular time steps. Early Folding Residues 
(EFR, blue in Fig. 1) initiate the formation of stable local structures starting from the denatured protein chain1,2,4,5. 
In contrast, Highly Stable Residues (HSR, green in Fig. 1) constitute regions in the native conformation6 which 
are resilient to unfolding events (e.g. as natural phenomenon7 or change in temperature or pH8). Both EFR and 
HSR are key aspects to understand the protein folding process3,9; standardized data is provided by the Start2Fold 
database10. The defined-pathway model was proposed based on these observations. It considers protein folding 
to be a deterministic process where defined regions initiate the folding process and fragments assemble stepwise 
to form the native conformation2,11,12 by establishing tertiary contacts2,13–15. EFR constitute the folding nucleus 
and seem to determine the order in which certain sequence fragment fold. However, the relevance of EFR on the 
structural integrity of a protein structure is little explored. One reason is that it is currently not possible to assess 
the role of a contact or residue regarding the structural integrity of a protein; especially an in silico approach suit-
able for large-scale studies is needed to assess the relevance of EFR and HSR. Closely related to the protein folding 
problem are protein design and the prediction of structures from sequence16.

Coevolution techniques17–20 propose an elegant approach to predict the structure of proteins from the abun-
dance of sequences known today. For a given sequence, homologous sequences are retrieved and subsequently 
aligned via multiple sequence alignment (Fig. 2a). Therein, some residues at defined sequence positions are 
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conserved while others may change freely. A small number of residues are coupled to other positions: when one 
position changes the coupled position will change accordingly. This constraint implies the spatial proximity of 
both residues: even if they are separated at sequence level, they show a signal of coevolution because they are in 
contact at structure level (Fig. 2b)17. The predicted contacts constitute a contact map (Fig. 2c) which can be used 
as set of constraints for a subsequent structure reconstruction (Fig. 2d). Conformations are sampled by a stochas-
tic process in order to fulfill as many constraints as possible21.

A contact map comprises the set of gathered constraints. Contact maps are matrices encompassing all pairs 
of sequence positions and usually contain a binary annotation whether two residues are in contact or not22,23. 
They are used to design and train coevolution techniques and are also their output. Subsequently, these predicted 
contacts are used as constraints for reconstruction algorithms21,24,25 in order to find conformations which fulfill 
the maximum number of constraints. Thus, coevolution techniques are capable of ab initio structure predictions 
which is not feasible by e.g. homology modeling approaches26. Predicted contacts used as constraints have also 
been demonstrated to speed-up molecular dynamics simulations by allowing for faster convergence27.

The success of coevolution techniques continues to revolutionize structural biology18,28 and spawned a com-
prehensive ecosystem of related methods revolving around contact maps. The recent iteration of the CASP 

Figure 1.  Studying protein folding by hydrogen-deuterium exchange. Most proteins adopt a native 
conformation autonomously in the process of protein folding16,68. A small number of Early Folding Residues 
(EFR, depicted in blue) initiate the folding process as their surroundings change before that of other residues3. 
Analogously, folded proteins can be analyzed with respect to their stability. Highly Stable Residues (HSR, 
depicted in green) comprise regions which are particularly resilient to unfolding events6.

Figure 2.  Protein structure prediction by coevolution techniques. (a) For a given sequence, homologous 
sequences can be used to create a multiple sequence alignment. Some positions coevolve (depicted by an 
orange asterisk): where for a change at one position a suitable change at the second position can be observed. 
(b) This connection at sequence level implies spatial proximity of both residues. (c) Coevolving residues can 
be represented by a contact map. (d) The predicted contacts are used as constraints of a subsequent structure 
reconstruction in order to find an optimal three-dimensional structure. Figure adapted from17.
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experiment emphasizes the coming of age of contact prediction and the improvement of ab initio protein fold-
ing protocols29–31. Dedicated methods for the visualization and interpretation of contact maps were created32–34. 
Quality assessment of the predicted contacts becomes increasingly important as well. False positive predictions 
(i.e. non-native contacts not observed in the native structure of a protein) are common. They have detrimental 
effects on the usefulness of contact maps22,23. Peculiarly, such false positive predictions are difficult to spot17 and 
in reconstruction they impair the feasibility of all other contacts35. Thus, dedicated methods were designed to 
validate contact maps34,36. Other studies23 tried to elucidate the optimal contact definition by assessing its influ-
ence on reconstruction performance. Commonly, contacts stabilizing secondary structure elements (i.e. residues 
separated by less than six positions on sequence level) are ignored in the context of contact maps37. The range 
of the remaining contacts are considered short-range (sequence separation of 6–11), medium-range (12–23), or 
long-range (>23)38.

Contact maps do not only contain the information needed for protein structure prediction, but they also are 
potential tools to describe the fundamentals of protein folding. In 2007, Chen et al.39 pioneered the search for 
the most relevant contacts of a contact map and wanted to determine the minimal set of contacts which captures 
the fold of a protein. Therefore, they represented proteins by contact maps and selected random subsets with 
varying coverage. These subsets were then used as constraints in a structure reconstruction algorithm, the result 
was aligned to the native structure, and its fidelity was assessed by the root-mean square deviation (RMSD). As 
the number of constraints increased (i.e. more contacts of the native contact map are considered), the RMSD 
decreased because the reconstructs resembled the native structure increasingly well. A reconstruction is con-
sidered successful when the RMSD to the native structure is below a certain threshold and likely to resemble 
the correct fold17,22,39,40: in our study, we use the threshold of 4.0 Å by Marks et al.17. Good reconstructions have 
been shown to depend on a delicate balance of sequentially neighbored and sequentially separated contacts39. 
Sathyapriya et al.40 extended the study of Chen et al. and coined the term structural essence for the minimal set 
of fold defining contacts. They demonstrated that 8% of all contacts allow for the reconstruction of the correct 
fold of a protein because most information in a contact map is redundant. Furthermore, a rational selection of 
contacts can outperform a random selection of equally many contacts with respect to reconstruction quality. 
However, such a configuration is difficult to compose40. Duarte et al. showed that consideration of all contacts 
leads to reconstruction qualities around 2 Å23.

The annotation of EFR and HSR provided by the Start2Fold database10 is valuable information to understand 
the protein folding problem and has also implications for the prediction of protein structures. Contact maps are 
the cornerstone of contemporary structure prediction methods. The surrounding ecosystem of reconstruction 
algorithms may elucidate the protein folding process by pinpointing the most important contacts for structural 
integrity. Additionally, the relevance of EFR and HSR in the context of protein structure prediction provides 
qualitative insights. Several studies identified a small number of key residues for the in vitro folding process. It has 
also been shown that the information content of experimentally determined NMR restraints varies drastically41. 
Is the same true for in silico folding: do some contacts convey more structural information than others? For a 
long time, in silico folding simulations improved the understanding of the protein folding process42,43, potentially 
contact maps provide an even more tangible connection of both aspects. To address these questions, we propose 
the Structural Relevance (SR) score which quantifies the amount of information an individual contact or residue 
provides for an in silico reconstruction process.

Results
A subset of proteins from the Start2Fold database10 was analyzed. The folding and stability characteristics of the 
corresponding proteins have been determined by HDX experiments8,10,44 and these properties may relate to the 
most relevant contacts of a contact map and constitute a direct connection of protein folding in vitro and struc-
ture prediction in silico. We only considered entries for which both EFR and HSR were annotated, totalling in 30 
proteins. For this dataset of proteins with known in vitro folding characteristics, we aimed to identify the most 
informative contacts in silico by extending previous studies22,39–41 and assess if our findings correlate with the 
experimentally determined folding characteristics.

Currently, no strategy exists to quantify the information provided by a single contact. We argue that 
constraint-based reconstruction algorithms such as CONFOLD21 can access this information when employed 
in a modified setting. Using structures deposited in the PDB archive45, native contact map representations of all 
proteins were computed (consult the method section for details). All-atom models can be reconstructed from 
these reduced representations using CONFOLD21. The fidelity of these reconstructs was assessed by a structure 
alignment46 to the native structure and is considered the reconstruction error39,40. The average RMSD of these 
reconstructions approaches 2 Å (Fig. 3), as described in literature40. Detailed identifiers and results are given in 
Supplementary Fig. 1 which also shows that no successful reconstructions could be achieved for Start2Fold entry 
STF0009 (PDB:1a64_A). In general, knowledge of 100% of entries in the native contact map leads to good recon-
structs which resemble the native structure (Fig. 3). Structural constraints are redundant41 and, thus, it is not pos-
sible to directly assess the information conveyed by a single contact39–41. Therefore, we decreased the coverage of 
the native contact map in 5% steps which leads to an increase in reconstruction error. Sparse contact maps using 
a random selection of 5% of all contacts do not yield good reconstructs below the threshold of 4 Å for which the 
reconstruct would successfully resemble the native fold. The reconstruction process using more contacts becomes 
more robust as the distributions decrease in variance. Generally speaking, there is a sweet spot at 30% coverage 
where the yielded reconstructs resemble the fold of the native structure and are also sensitive to the removal or 
addition of individual contacts.

The idea of the StructureDistiller algorithm is to exploit the sweet spot at 30% coverage (Fig. 3) to quantify 
the information provided by a single contact. The reconstruction error for the so-called baseline reconstructs 
with a coverage of 30% can be determined. A contact is removed from the selection if it is present in the random 
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selection of 30% of all contacts (and added otherwise) and so-called toggle reconstructs are computed for this 
slightly changed contact maps. Similar to the approach of Nabuurs et al.41, the information content of a contact is 
the decrease in RMSD which knowledge of a particular contact provides in relation to the absence of that contact. 
Supplementary Figure 1 shows that the optimal coverage is structure-specific and the determined default value of 
30% is not generally the best choice, as also discussed in literature17. It would be possible to address this issue by 
determining the structure-specific value (e.g. sample a range of numbers and determine when reconstructs with 
RMSD below 4.0 Å or TM-scores above 0.5 are achieved) and using this value for all subsequent calculations. In 
summary, the StructureDistiller algorithm quantifies the Structural Relevance (SR) of a contact by disentangling 
it from other contacts mandatory for a meaningful reconstruction in the first place (details are described in the 
method section).

The structural relevance of individual contacts and residues.  We computed the SR score for all 5,173 
contacts in the dataset by the presented StructureDistiller algorithm. The outputted score captures the average 
performance increase in Å, when a particular contact is considered for the reconstruction process compared to a 
reconstruction without knowledge of this contact (ΔRMSD). Positive SR scores indicate contacts which favorably 
contribute to reconstruction fidelity, whereas negative scores indicate native contacts which hinder or at least 
not substantially improve the process. The removal of an individual contact results in (negative) change in SR by 
0.012 ± 0.253 Å (throughout the manuscript the standard error is given). In contrast, the addition of a contact 
leads to an increase by 0.022 ± 0.253 Å. Most contacts contribute positively to reconstruction performance. Only 
a small number of contacts is of high SR with similar tendencies shown by studies on contact maps39,40, NMR 
restraints41, and protein folding in general47. Correctly folded protein structures depend on a small number of key 
contacts. The high variance of the SR scores is the result of both the contact map sampling as well as the recon-
struction routine21 being stochastic processes. Both operations are performed with ten-fold redundancy to limit 
this issue. The presented SR scores are the average values over all redundant runs.

We used several features (Table 1) to describe contacts in the dataset in more detail and assess their relation 
to the SR score. First, residue contacts are distinguished according to their sequence separation38. Short-range 
contacts (6–11) exhibit a significant decrease in the SR score. In contrast, long-range contacts (>23) of sequen-
tially highly separated residues are more common and feature increased SR scores. The change is insignificant for 
medium-range contacts. Previously it has been shown that contacts within as well as between secondary structure 
elements are required for optimal reconstruction performance39,40. Commonly, reconstructions only consider res-
idue pairs at least six positions apart at sequence level38, though there are cases where the usually ignored contacts 
may contribute valuable information pertaining the structure of loops48.

Furthermore, we investigated the SR scores of non-covalent interactions such as hydrogen bonds and hydro-
phobic interactions. The PLIP algorithm49 was employed to detect non-covalent interactions, the tool also reports 
which atoms interact. A significant change in SR can be observed when a non-covalent interaction was detected 
between both partners of a contact. Hydrogen bonds exhibit lowered SR scores, whereas an increase can be 
observed for hydrophobic interactions. Hydrogen bonds primarily occur between backbone atoms of amino acids 
where they define and stabilize interactions between secondary structure elements. Some amino acids such as ser-
ine or threonine feature polar side chains which allow them to engage more flexibly in this type of non-covalent 
interaction. The importance of hydrogen bonds furnished by side chains for protein folding and stability has 
been shown16,50. Hydrogen bonds may feature lower SR scores because of their propensity to occur between 
polar amino acids at positions exposed to the solvent. In contrast, hydrophobic interactions primarily occur in 
the buried hydrophobic core of a protein where they are surrounded by many other residues which reduces the 
degree of freedom. Especially, the importance of tertiary contacts furnished by hydrophobic interactions has been 
shown5,14. Such interactions provide information on the correct assembly of distant parts of the protein and, thus, 
are relevant for structural integrity both during protein folding and for structure prediction.

Figure 3.  Reconstruction error by percentage of contacts. When more contacts are considered, the average 
reconstruction error decreases39 and the same is true for the variance of each bin. For the assessment of the 
SR of contacts, 30% of all native contacts (box plot filled dark gray) were chosen as compromise because it 
ensures reconstructs of average quality while the corresponding contact maps are still sensitive to the removal 
or addition of individual contacts (as indicated by a big shift in reconstruction error with respect to the 
neighboring bins). Renderings of four structures are provided to make the influence of the coverage of the 
native contact map more tangible. They resemble knowledge of 5%, 30%, and 100% of all native contacts as well 
as the native structure (PDB:1hrc_A, isolated on the right).
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Potentially the contact prediction method EVfold17,51 captures contacts with high SR scores and ignores those 
carrying little information. However, we do not observe a significant association with the SR score. Yet, a slight 
increase in SR can be observed, when two positions are evolutionarily coupled. A selection of the 0.4L top-scoring 
contacts (L refers to the sequence length) results in a more substantial, though still insignificant, change in SR. 
Many predicted couplings are not actually present in the native contact map due to the strict distance cutoff. Also, 
potential false positive predictions by the direct coupling analysis are not evaluated, which can be expected to 
have a negative effect on reconstruction quality22.

All previous results consider the SR scores of individual contacts. Properties of individual residues can be 
analyzed with the same reasoning (Table 2) by summing up the SR scores of all the contacts they participate 
in. Residues in loop regions have significantly lower SR than those in α-helices and β-strands. For secondary 
structure elements, backbone angles and hydrogen bonding patterns are used as additional constraints during 
reconstruction21 which may explain an overall performance increase. The previous association of hydrophobic 
interactions and SR score may be explained by a bias for buried residues; however, no significant association is 
observed at residue level. The annotation of EFR does not influence SR scores significantly, while the opposite is 

feature present n μSR [pm] σSR [pm] trend p-value

short-range contact 
(6–11)

yes 1,120 1.4 8.1
↓ 0.025

no 4,053 2.2 8.6

medium-range contact 
(12–23)

yes 1,271 1.8 8.6
— 0.161

no 3,902 2.1 8.5

long-range contact (>23)
yes 2,782 2.4 8.6

↑ 0.002
no 2,391 1.6 8.4

hydrogen bond
yes 563 1.1 8.3

↓ 0.018
no 4,610 2.1 8.5

hydrophobic interaction
yes 541 2.9 9.5

↑ <0.001
no 4,632 1.9 8.4

evolutionarily coupling
yes 1,461 2.2 8.4

— 0.203
no 3,246 1.8 8.7

top-scoring coupling
yes 1,020 2.4 8.3

— 0.059
no 3,687 1.8 8.7

Table 1.  Contact-level features influencing the SR (ΔRMSD) score. Contact length refers to the sequence 
separation of the contact38. Hydrogen bond and hydrophobic interaction refers to contacts for which the 
respective interaction type was observed49. Evolutionary couplings by direct coupling analysis17,51, for some 
proteins no data could be computed. Top-scoring couplings are the first 0.4L contacts sorted by their coupling 
rank. n describes the number of observations, μ the corresponding average, and σ the respective standard 
deviation. The trend is given, i.e. does presence of this feature decrease (↓) or increase (↑) the SR scores. 
Insignificant change is represented by a dash (–).

feature present n μSR [pm] σSR [pm] trend p-value

early folding
yes 414 2.6 6.1

— 0.543
no 2,115 2.5 6.2

highly stable
yes 688 3.0 6.2

↑ <0.001
no 1,731 2.1 6.1

functional
yes 119 2.8 6.2

— 0.919
no 2,078 2.6 5.9

coil
yes 996 1.9 6.4

↓ <0.001
no 1,533 2.9 6.0

buried
yes 1,105 2.7 5.5

— 0.075
no 1,424 2.4 6.7

evolutionarily coupled
yes 1,975 2.6 6.2

— 0.754
no 503 2.6 6.4

top-scoring coupled
yes 1,117 2.6 5.7

— 0.492
no 1,361 2.5 6.6

Table 2.  Residue-level features influencing the average SR (ΔRMSD) score. Residues in coil regions and 
residues buried according to their relative accessible surface area were evaluated. Residues were assessed 
regarding their early folding and highly stable characteristics10. Annotation of functional residues from 
UniProt69. Considers evolutionary couplings and the 0.4L top-scoring positions according to the cumulative 
coupling strength17,51. n describes the number of observations, μ the corresponding average SR, and σ the 
respective standard deviation. The trend is given, i.e. does presence of this feature decrease (↓) or increase (↑) 
the SR scores. Insignificant change is represented by a dash (–).
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true for HSR (see below). Functional residues may not be of high SR, because binding sites tend to be exposed 
to the solvent and commonly have unfavorable conformations52. Residues for which evolutionary couplings are 
predicted by EVfold17,51 do not exhibit increased SR. This is probably because couplings are distributed uniformly 
and at least one coupling is present for most residues. However, filtering for the 0.4L top-scoring positions (i.e. 
regarding their cumulative coupling strength) does not lead to a significant change either.

Analysis of early folding and highly stable residues.  A direct connection to particular folding and sta-
bility characteristics is provided by the annotation of EFR which initiate and guide the folding process. However, 
according to the SR score we observe no change for EFR (Table 2). Contacts of HSR exhibit a significant increase 
in SR compared to unstable contacts. It is remarkable that contacts of EFR show no increase in SR despite their 
presumed role for the protein folding process4,44. A possible interpretation is that EFR primarily define stable, 
local structures4,44 due to their occurrence in sequence regions associated to high backbone rigidity. They form 
defined sequence regions with fewer possible backbone conformations and produce pivotal secondary structure 
elements. Therefore, EFR define the folding nucleus of a protein and sequentially encode the ordered secondary 
structure elements formed first. However the obtained SR scores suggest that crucial contacts between these sec-
ondary structure elements may be mediated by other residues which are not necessarily EFR themselves, but may 
occur in secondary structure elements containing EFR1.

Another aspect of the experimental data by Pancsa et al. is the annotation of residues which are strongly 
protected in stability measurements10. Such residues occur in ordered secondary structure elements and their 
contacts are beneficial to reconstruction performance. Rather than initiating the formation of the native structure 
(like EFR), HSR seem to manifest the native conformation. The differences in SR scores between EFR and HSR 
imply that two distinct process are realized by these two distinct sets of residues.

The defined-pathway model2,11,12 describes protein folding as a deterministic, hierarchic process. EFR occur 
in regions which autonomously fold first relative to the rest of a protein. Furthermore, this tendency does not 
depend on tertiary contacts in a protein structure, but is rather the direct consequence of the local sequence com-
position1,10,44. These stable, local structures may be secondary structure elements3 or larger autonomously folding 
units also referred to as foldons2. In a stepwise process, such local structures will subsequently establish tertiary 
contacts and assemble the native conformation of a protein2,15,53. The employed reconstruction method directly 
considers secondary structure elements, which are used to derive additional constraints. Therefore, most second-
ary structure elements should be represented successfully which may explain why we observe long-range contacts 
to be particularly important for structural integrity. It is also reasonable that the SR score of a contact increases 
with the distance at the sequence level: potentially, such constraints do not only enforce the correct placement of 
both residues but also have an indirect positive impact on the correct conformation of all residues in between.

The dataset of EFR and HSR10 provides valuable information to converge on the protein folding problem3,9. 
The Start2Fold dataset10 enables the direct connection of protein folding and structure prediction which is fur-
nished by contact map representations. It is implied that EFR may initiate protein folding and determine the order 
in which local structures are assembled2,12 but they are of average relevance in terms of the SR score. HSR may not 
fold early but constitute regions of a protein which prevent spontaneous unfolding. Interestingly, regions of HSR 
are of high relevance for the formation and stabilization of the correct protein fold. David Baker54 showed that 
short-range contacts lead to fast folding whereas a high ratio of long-range contacts leads to a slow down. EFR ini-
tiate the folding process by establishing contacts to neighbors at the sequence level2,44. Furthermore, hydrophobic 
interactions, contacts of ordered secondary structure elements, as well as long-range contacts promote structural 
integrity. In a previous study5, we showed that EFR occur in ordered secondary structures and are embedded in a 
network of hydrophobic interactions. This implies that EFR may initiate the formation of local structures which 
can then assemble to actually stabilize the global structure of a protein by HSR.

Disruption to cytochrome c induces molten globule state.  Ground truth on the structural impor-
tance of individual contacts is difficult to find – we used the dataset entry for cytochrome c as a case study. 
Cytochrome c (Fig. 4) contains two Ω-loops which are stabilized by a hydrogen bond between HIS-26 and PRO-
44. The importance of this contact has been shown as disruptions induce a molten globule state55,56. Particularized 
folding studies8 have also identified the N- and C-terminal helices as foldons, i.e. autonomously folding units 
which initiate and guide the folding process. Besides that, wide parts of the structure are constituted of coil 
regions and fixate a heme ligand, thus potentially exhibiting increased structural flexibility.

The SR score computed by StructureDistiller of many residues of cytochrome c is neutral or even negative. 
Especially coil regions feature contacts which tend to decrease reconstruction fidelity. Remarkable are the high 
SR scores of HIS-26 and GLY-45 as well as their direct contact for which the score amounts to 0.172 Å (mak-
ing it the fifth most relevant contact). No SR is reported for PRO-44 as it does not participate in any contacts 
according to the employed contact definition, though both groups are positioned in a way which would allow 
them to form a hydrogen bond. In literature55, the contact between HIS-26 and PRO-44 is reported as crucial for 
the correct conformation of cytochrome c. Disruptions will result in a loss of structure55, though the relevance 
of PRO-44 may also be attributed to the backbone rigidity introduced by the proline residue. The detection of 
relevant contacts and positions is fuzzy57, but the high scoring contact between HIS-26 and GLY-45 implies the 
importance of a contact between both Ω-loops for successful protein folding as well as structure reconstruction. 
Between GLY-29 and MET-80 the most relevant contact (with the highest SR) is located, it increases reconstruc-
tion fidelity by 0.563 Å on average. Furthermore, this contact is unique (i.e. no combination of contacts provides 
distance constraints transitively) and isolated from all other contacts in the map (Fig. 4c). This contact also occurs 
between two unordered coil regions, which implies that this structural information capturing the correct arrange-
ment of these unordered protein parts is crucial for a successful reconstruction. Mutations to HIS-33 have been 
demonstrated to show no effect55 which is also captured by slightly negative SR score of −0.015 Å. Both N- and 
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C-terminal helix contain residues with high relevance, especially in regions where both helices interact. The 
importance of these helix contacts has been shown previously58. The role of both helices as foldons8 points to high 
intrinsic stability. The SR score successfully spots contacts and residues crucial for structure integrity as shown 
in experiments8,55,58. The previously described contact between HIS-26 and PRO-4455 is absent as the result of a 
too strict contact definition, yet the necessity of structural information in this region is captured nevertheless.

Knowledge of the most relevant contacts can increase reconstruction performance.  The subset 
of contacts with high SR scores should lead to good reconstructs when combined. To test this hypothesis, proteins 
were reconstructed using various subset selection strategies equal to 30% of all native contacts (Fig. 5). A baseline 
is obtained by selecting 30% of the contacts randomly (gray). Rational selections are based on sorting all contacts 
in a protein by its SR scores. The 30% top-scoring contacts represent the most relevant contacts (green). The 
bottom 30% represent the least relevant contacts (red). Other interesting aspects are contact distance and type: 
therefore short-range (6–11), long-range (>23) contacts, hydrogen bonds, and hydrophobic interactions were 
assessed (Supplementary Fig. 2).

The RMSD is used to quantify the fidelity of a reconstruct by aligning it to the native structure – high recon-
struction errors occur for bad reconstructs. A random selection of 30% of contacts achieves 3.839 ± 0.599 Å. A 
combination of contacts by the most relevant strategy significantly outperforms the random strategy with an 
average reconstruction error of 3.479 ± 0.625 Å. Consideration of the least relevant contacts results in an increase 
in reconstruction error to 4.311 ± 0.687 Å.

Chen et al. assumed that no rational selection of contacts can surpass a random selection in terms of recon-
struction fidelity39. Later, Sathyapriya and coworkers40 provided an algorithm capable of doing just that. It is 
especially remarkable that their approach merely evaluates which neighborhood is shared by a pair of residues. 
The main aspect of their algorithm is the selection of non-redundant contacts which can provide the maximum 
amount of information for a reconstruction when combined. Nabuurs et al.41 demonstrated the possibility to 
identify unique NMR restraints by a information-theory based approach. The selection of the most relevant con-
tacts as determined by StructureDistiller constitutes a different approach to compose a set of contacts which allow 
for better reconstructs than a random selection. Of all native contacts two selections can be readily made. One is 
significantly better suited for reconstruction purposes than a random selection and whereas the other one per-
forms significantly worse. It is also remarkable that a combination of long-range contacts performs significantly 

Figure 4.  Cytochrome c (PDB:1hrc_A) colored by Structural Relevance (ΔRMSD). (a) Residues with high 
SR scores are depicted in green, those with negative SR are rendered in red. For gray residues no contacts were 
observed and no SR scores are reported. Disruptions to the hydrogen bond between HIS-26 and PRO-44 
will induce a molten globule state when the association between both Ω-loops is lost55,56. StructureDistiller 
reports high SR for HIS-26, GLY-45, and the contact both share (yellow dashed line), though no direct contact 
is detected between HIS-26 and PRO-44 due to strict distance threshold of the employed contact definition. 
HIS-33 has been described as variable position lacking any structurally relevant contacts55 and this observation 
is manifested in the low SR score of this residue. The N- and C-terminal helices have been shown to initiate 
folding8 and exhibit high SR, especially for residues which constitute their interface. Other parts of the structure 
are primarily composed by coil regions, fixate a heme ligand, and show low SR. (b) Per residue SR as line chart. 
The standard deviation is given for each point. Residues without contacts exhibit a relevance of 0 Å. (c) Heatmap 
of the computed SR scores. Contacts of low relevance tend to be clustered together with high relevance contacts. 
The contact between GLY-29 and MET-80 has the largest SR score.
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worse than the negated selection (Supplementary Fig. 2), despite individual long-range contacts exhibiting high 
SR scores (Table 1). This emphasizes the context-specificity of individual contacts39–41 and substantiates previous 
findings39, wherein both short- and long-range contacts are needed for good reconstructions.

Increased resilience to non-native contacts.  The sensitivity of a contact map to non-native contacts 
has been discussed before – even a small number of contacts not present in the native structure is detrimental to 
reconstruction performance22. As shown in the previous section, contacts with high SR allow for better recon-
structs when sparse native contact maps are considered. Interestingly, the selection of the 30% most relevant 
contacts also can compensate the moderate introduction of non-native contacts (Fig. 6). This selection performs 
significantly better than a random selection in all considered cases. The introduction of non-native contacts 
quickly leads to reconstructions with errors above 4 Å as larger fractions of non-native contacts dilute the infor-
mation captured by native contacts. When more than 7% non-native contacts are introduced to the most relevant 
selection, the majority of reconstructions is of bad quality. When 30% of all contacts are selected randomly, only 
3% non-native contacts can be introduced before the error exceeds the threshold of 4 Å. The consideration of the 

Figure 5.  Impact on reconstruction performance by strategy. Three strategies were used to reconstruct 
structures of the dataset using a number of constraints equal to 30% of contacts in the native map. A random 
selection of contacts (gray), the most relevant ones by SR score (green), and the least relevant ones (red). The 
most relevant contacts yield the lowest reconstruction error when combined. This configuration outperforms a 
random selection of contacts significantly (p-value: <0.001). Previous studies39,40 have shown the difficulties in 
finding combinations of contacts yielding better reconstructs than a random selection. Using the least relevant 
contacts results in an increased error compared to the random selection (p-value: <0.001). When only a subset 
of all entries of a contact map can be considered (as it is commonly the case34 and reasonable for efficiency40), 
the subset of contacts chosen is crucial for reconstruction performance. This also shows that some contacts 
convey more information than others, as previously shown for NMR restraints41.

Figure 6.  Influence of non-native contacts. The reconstruction error is given of for 30% of all contacts in the 
most relevant (green) and random (gray) bins with an increasing fraction of non-native contacts. In all cases, 
the most relevant contacts perform significantly better than a random selection when it comes to compensating 
non-native contacts (p-value < 0.001). E.g., the median performance of a random selection without non-native 
contacts is comparable to that of the best selection with 6% non-native contacts. When more than 3% non-
native contacts are introduced into the random selection, the error of the majority of reconstructions lies above 
4 Å, whereas the best selection can compensate more than double the number of non-native contacts before 
surpassing this threshold. Knowledge of the most relevant contacts as quantified by the StructureDistiller 
algorithm increases the resilience to non-native contacts as well as the overall reconstruction performance.
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most relevant contacts buffers the negative influence of non-native contacts (Table 3): median performance is 
comparable between reconstructions based on a random selection without non-native contacts and the selection 
of the best contacts diluted by 6% of non-native contacts.

Since even those native contacts can hinder reconstruction (as indicated by negative SR scores), it becomes 
evident that the correct ranking of contacts21,36 has a serious influence on reconstruction quality when subsets of 
contacts are considered. This knowledge also has implications for the design and training of contact prediction 
techniques. The insignificant association of evolutionary couplings and SR scores suggests that the most relevant 
contacts may not be easy to predict but can contribute significantly more information needed for the successful 
reconstruction of a protein.

Coevolution or supervised machine learning techniques are the basis for the prediction of contact maps20,28,51. 
Conventionally, contact predictors are designed and trained on collections of all native contacts in a dataset. 
Subsequently, the most reliable contacts are selected from all predictions; the size of this subset depends on 
sequence length34. This study shows that these subsets drastically change in meaningfulness as indicated by recon-
struction fidelity. An implication is that it is not the optimal strategy to consider a random subset of contacts; 
reconstruction fidelity and information content per contact could increase when the contacts with the highest SR 
scores are considered. This would decrease the number of predicted contacts but may increase the reliability of 
their prediction by avoiding both false positive predictions and emphasizing contacts which promise to improve 
reconstruction fidelity the most while ignoring those which contribute only marginally. StructureDistiller enables 
this fine-grained interrogation of contact maps for the first time.

Discussion
Contact maps are one of the most prominent tools in today’s structural bioinformatics18,28, though mere knowl-
edge of residue contacts can neither describe all events of the protein folding process59 nor is it the optimal basis 
of structure prediction techniques37. Our study demonstrates that native contacts in a protein structure are not of 
equal importance for the reconstruction of the tertiary structure from this reduced representation. Similar obser-
vations have been made for NMR constraints41. StructureDistiller allows a more fine-grained analysis of contact 
maps and may pinpoint properties of contacts which can be associated with high Structural Relevance. Contacts 
of high Structural Relevance tend to be unique contacts for which no redundant backup exists as it is the case for 
the contact between two Ω-loops in cytochrome c55. The importance of this contact for the structural integrity 
also implies that high Structural Relevance scores may capture crucial positions for structure stability as shown 
by Highly Stable Residues.

The proposed strategy depends on some crucial assumptions and provides a number of points open for inves-
tigation in further studies. Residues in a protein are covalently bound and constraints on a residue will also affect 
neighboring residues. Thus, residue-specific information as complex as the Structural Relevance score should 
not be considered the absolute truth57. One of the most delicate aspects when handling contact maps is the used 
contact definition23,37. Particularly, the distance-based contact definition employed in this study does not imply 
chemically relevant contacts between atoms (such as hydrogen bonds or hydrophobic interactions). The chosen 
cutoff is rather strict and will ignore some meaningful contacts; a relaxation of this cutoff will encompass more 
contacts but also increases computation time. Our setup explicitly provides secondary structure information 
during reconstruction which has been shown to improve performance in general21 and allows employing this 
rather strict contact definition as well as ignoring contacts between sequence neighbors (with a sequence separa-
tion <6). In consequence, a personal computer can handle the needed computations but no direct comparison to 
other reconstruction algorithms is possible due to the secondary structure-specific set of used constraints directly 
depending on CONFOLD21. Also, it is natural that CONFOLD21, TM-align46, and the RMSD as chosen distance 
measure have an effect on the computed scores and may introduce some form of bias. It would be invaluable to 

non-native 
contacts [%] μbest x best μrandom xrandom

0 3.479 3.360 3.839 3.840

1 3.498 3.390 3.903 3.910

2 3.598 3.510 3.971 3.965

3 3.665 3.600 3.996 3.965

4 3.808 3.765 4.135 4.140

5 3.840 3.765 4.117 4.120

6 3.882 3.820 4.211 4.240

7 3.931 3.890 4.229 4.225

8 4.028 4.030 4.256 4.300

9 4.038 4.040 4.292 4.330

10 4.140 4.110 4.354 4.400

Table 3.  Reconstruction error introduced by non-native contacts. For increasing rates of non-native contacts 
the reconstruction performance using 30% of the native contacts are given. μbest refers to the average 
performance using the most relevant contacts, μrandom to that using a random selection of contacts. x  describes 
the median of the corresponding population. In all cases, the performance of the best bin is significantly better 
than that of a random selection.
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adapt the proposed strategy to other reconstruction algorithms such as Reconstruct23 or C2S25 and demonstrate 
the validity of StructureDistiller in a different setup. It is also an open question to what degree the most inform-
ative contacts identified in this study are also useful for independent reconstruction algorithms. The TM-score 
may be more suited to score reconstructs because it is independent of protein length60. Another advantage of the 
TM-score is that it is easy to interpret, especially in the context of deciding whether a reconstruct successfully 
resembles the fold of the native structure60,61. TM-scores are provided as alternative output score for the Structural 
Relevance. We chose the RMSD value to present results because the majority of readers is familiar with the score 
and it also provides a direct way to compare results of this study with that of previous publications23,39,40. The 
TM-score correlates well with the RMSD (see Supplementary Fig. 3) and the nature of the findings does not 
change when the TM-score is considered for analysis. Furthermore, the decision to use 30% of all native contacts 
to compute the Structural Relevance score is not generally applicable and if more suitable structure-specific values 
are known they should be used instead. The StructureDistiller algorithm may be improved by determining for 
each protein structure individually where the sweet spot lies between meaningful reconstructs and maximized 
sensitivity. Finally, our approach aims at quantifying the information conveyed by a single contact for the integ-
rity of the whole structure. It would be more elegant to express the relevance of a contact using a more rigorously 
defined, information-theory based approach as described by Nabuurs et al.41.

In summary, the StructureDistiller algorithm is presented as an approach to assess the structural relevance of 
individual contacts and residues. This constitutes a novel contribution of the toolkit available for the interpreta-
tion of contact maps and protein structures in general, while making the connection of contact maps and tertiary 
structure more concrete. Maybe the protein folding problem is not solvable without understanding how protein 
structures can be predicted reliably. In fact, both problems are often described to be two sides of the same coin16 
and structure prediction did provide new insights into the folding process before42,43. Additional tools are needed 
to make the connection of protein sequence and structure more tangible and StructureDistiller provides just that. 
The algorithm allows for a novel fine-grained interpretation of contact maps and may improve their interpreta-
bility. Applications of the proposed algorithm are not limited to the Start2Fold database10, it can be used for the 
analysis of arbitrary protein structures, e.g. to assess structural effects of mutations at certain residue positions. 
Following this new paradigm, the interface between protein folding and structure prediction16 can be explored 
in more detail.

Methods
Datasets used for evaluation.  The Start2Fold database10 provides results of pulse labeling hydrogen-deu-
terium exchange experiments. For the 30 proteins of the dataset (see Supplementary Fig. 1 and supplementary 
material of3 for a detailed definition), 5,173 contacts of 2,529 residues were evaluated. Positions without native 
contacts were ignored. The Start2Fold database was chosen because it provides a standardized annotation of EFR 
which initiate the folding process3,4,44 and HSR which exhibit significant resilience to unfolding events10. This 
dataset encompasses all major CATH and SCOP classes. Thus, the SR score was assessed using a dataset of pro-
teins for which the folding characteristics are fairly well understood. The size of proteins in the dataset varies from 
56–164, which emphasizes relatively small proteins. The covered fold classes are diverse, but present proteins tend 
to be single domain proteins with fast folding kinetics44. Entries without EFR annotation were ignored, even when 
information on HSR was present. Residues were considered buried when their relative accessible surface area was 
below 0.1662. Evolutionary couplings were computed by the EVfold web server17,51. BioJava63,64 implementations 
of the algorithm of Shrake and Rupley65 and DSSP66 were used for accessible surface area and secondary structure 
element computation respectively.

Annotation of residue contacts.  A pair of residues was defined to be in contact when the distance 
between their Cα atoms was less than 8 Å. Contacts maps were created based on this contact definition while 
ignoring contacts between residues less than six positions apart at sequence level. The remaining tertiary 
contacts were considered short-range (sequence separation of 6–11), medium-range (12–23), or long-range 
(>23)38. Non-covalent interactions (i.e. hydrogen bonds and hydrophobic interactions) were annotated by 
PLIP49.

Structure reconstruction and performance scoring.  Contact maps (or subsets thereof) were recon-
structed as all-atom models by CONFOLD21. Secondary structure information of the native structures was anno-
tated by DSSP66 and provided as input of the reconstruction routine. By default, CONFOLD creates a set of 
reconstructs and selects the five top-scoring ones as output. The selected reconstructs and the native structure 
were then superimposed and their dissimilarity was measured by the RMSD. TM-align46 was used for alignment.

The StructureDistiller algorithm.  The StructureDistiller algorithm (Fig. 7) evaluates the structural rel-
evance of individual contacts in the context of a set of other contacts. By selecting 30% of the native contacts 
of a map, baseline reconstructs can be created which resemble the protein fold and are highly sensitive to the 
toggling (removal or addition) of an individual contact. The performance of the baseline reconstructs can be 
quantified by a structural alignment to the native structure. Analogously, the performance can be measured for 
the toggle reconstructs, which represent the information conveyed by one particular contact. By comparing the 
performance of a toggle reconstruct with its corresponding baseline reconstruct, the SR score of all contacts is 
quantified.

The StructureDistiller algorithm is presented in Algorithm 1. A protein structure Snative in legacy PDB format 
is the input. Structure files should encompass single domains of a single chain. The corresponding contact map 
Cnative is created. Cnative constitutes the set of all contacts which will be evaluated.
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Fractions equal to 30% of Cnative are then randomly selected. The SR score of a contact depends on all other 
contacts used for a reconstruction. No effect can be expected when a contact is considered which contributes no 
additional, but only redundant information40. The creation of random subsets of Cnative is performed with a redun-
dancy r of 10. The resulting subset of contacts C ibaseline,  is used to create the baseline reconstructs S ibaseline, . The 
average RMSD ibaseline,  of each created subset C ibaseline,  is tracked with respect to Snative. These subsets are highly 
sensitive to the removal and addition of a single contact and the basis for all further computations.

All contacts of Cnative are now evaluated regarding their SR by pairing each contact to each baseline subset of 
contacts C ibaseline, . For each pair, it is determined whether the current contact c is element of C ibaseline, . If so, c is 
removed from C ibaseline, , else c is added to the corresponding subset. The change in reconstruction performance 
can be quantified by this toggling of a contact: the modified subset C itoggle,  is again used for a reconstruction and 
RMSD itoggle,  is used to describe its quality. The average improvement of the reconstruction with knowledge of the 
contact c is tracked by ΔRMSDc. −RMSD RMSDi ibaseline, toggle,  is evaluated when c was added to the subset, the 
expression is flipped when c was removed. The SR of individual residues is the average of all ΔRMSDc of contacts 
this residue participates in. Positive SR scores represent contacts which increase reconstruction fidelity while 
negative scores occur for contacts hindering reconstruction. The influence of individual residues can be com-
puted by summing up the SR scores of its contacts.

The runtime of StructureDistiller scales with the number of contacts in the initially created map Cnative. The 
individual reconstruction tasks are distributed among worker threads which allows for efficient parallelization. 
Using a conventional workstation, computation on proteins with up to 200 residues requires one day on average.

Definition of reconstruction strategies.  Various subset selection strategies were used to assess the rel-
evance of contacts in a contact map. In all cases, a number equal to 30% of the contact count in the native map 
was used. For the creation of the random bin, 30% of all native contacts were chosen randomly. The most relevant 
selection constitutes the 30% of all contacts sorted for highest SR, least relevant resembles 30% of all contacts with 
the lowest scores. All percentage numbers are relative to the number of contacts in the native structure. All oper-
ations on all definitions are performed with ten-fold redundancy. Contact distances were assessed: all short-range 

Figure 7.  Depiction of the StructureDistiller algorithm. In order to compute the SR score of individual 
contacts, the effect of their consideration on the reconstruction performance (ΔRMSD) is measured. This 
allows a novel, more fine-grained interpretation of contact maps. By using 30% of all contacts present in the 
native structure (N), baseline contact maps are created which provide maximum sensitivity to the removal 
or addition of a single contact. Baseline reconstructs (B) provide the context to assess the role of individual 
contacts. Within each baseline contact maps, all contacts of the native contact map are toggled: contacts already 
present are removed and those absent are added (depicted by orange circle of dots). Reconstructs are created 
based on these toggle contact maps (T). By superimposing reconstruct and native structure, the SR score of all 
contacts can be quantified as relative change in RMSD. The idea is that some contacts may provide information 
which is crucial for reconstruction fidelity, e.g. on the correct arrangement of secondary structure elements 
(depicted by orange fill).
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(sequence separation of 6–11) and long-range (>23) contacts38 were assessed. The same was done for hydrogen 
bonds and hydrophobic interactions. Because the number of contacts of a particular distance or type may be 
smaller than 30%, a dedicated bin (e.g. non-short) was created to match in size.

Introduction of non-native contacts.  Non-native contacts are contacts not present in the contact map of 
the native protein structure. Contact maps were created by the best and random strategy and in 1% bins up to 10% 
non-native contacts were introduced, replacing the initially selected native contacts. Analogous to the employed 
contact definition, non-native contacts were required to exhibit a sequence separation greater than five.

Statistical analysis.  Residues without any contacts (i.e. where no SR score can be computed) were ignored 
from statistical analysis. Notched box plots were used for visualization. The notch corresponds to the 95% con-
fidence interval around the median. When the notches of two distributions do not overlap, they can be assumed 
to be different. Significance was explicitly tested by a two-tailed Mann-Whitney U test. p-values < 0.05 were 
considered significant.

Data availability
A reference implementation of the StructureDistiller algorithm is available in the module structural-information 
at https://github.com/JonStargaryen/jstructure. A compiled version is deposited at https://doi.org/10.5281/
zenodo.1405369. All evaluated data is included in the manuscript and its Supplementary Information67.
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Algorithm 1.  StructureDistiller Pseudocode.
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