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Abstract: Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings.
A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for
developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants
or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous
heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential
elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important
for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either
crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate
the uptake, transport, and accumulation of Cd in plants mainly include members of the natural
resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc
and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like
(YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay
the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake,
transport, and accumulation in plants.

Keywords: Cadmium; transporters; Nramp; HMA; ABC; ZIP; YSL

1. Introduction

Cadmium (Cd) is a heavy metal that is highly toxic to animals and plants, ranking
first among inorganic pollutants. Cd enters the soil–plant environment through natural
processes and anthropogenic activities [1]. Natural processes include volcanic eruptions
and soil erosion, and anthropogenic activities include power stations, heating systems, and
urban transportation [2,3]. Soil pollution by heavy metals, including Cd, is essentially an
irreversible process that may take hundreds of years to recover from. Cd accumulation
in plants inhibits Fe(III) reductase activity, leading to Fe(II) deficiency that in turn affects
photosynthesis [4]. Plants affected by Cd toxicity in polluted soils usually present retarded
growth, chlorotic leaves, and brown root tips. Compared with other heavy metals, such as
Pb, Cd is more soluble and easily absorbed by plants, and is subsequently accumulated
in their edible parts, thus entering the food chain and posing a threat to humans [1]. An
excessive intake of Cd in humans can damage the kidneys, leading to rhinitis, emphysema,
and osteomalacia [5]. In recent years, Cd has become one of the major soil pollutants
worldwide due to uncontrolled industrialization, unsustainable urbanization, and intensive
agricultural practices. The itai—itai disease is the most serious chronic Cd poisoning
caused by long-term oral consumption of Cd in Japan [6]. In China, Cd is the most severe
pollutant in agricultural soils, with a site-level rate as high as 7.0% [7–9], and Cd soil
pollution further shows an increasing trend from North to South China [10]. Field surveys
showed that Cd concentrations in a considerable proportion of rice grains, especially in
those grown in South China, exceeded the recommended food safety standard in the
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country [11–13]. One strategy to prevent Cd food contamination is to find and create
more Cd low-accumulating cultivars of crops and vegetables using genetic breeding,
and alleviation of Cd soil pollution can be achieved through phytoremediation utilizing
high-accumulating plants. Therefore, understanding the physiological and molecular
mechanisms of Cd uptake, transport, and accumulation by plants is of great significance
for formulating strategies for phytoremediation of Cd-contaminated soils or prevention of
Cd accumulation in crops.

An increasing number of studies have been conducted on the Cd migration pathway
in plants, providing detailed information on the mechanism of Cd transport. There are four
major processes that mediate Cd transport from roots to shoots: (1) root uptake; (2) loading
into the root xylem; (3) long-distance translocation via the xylem and phloem pathways;
(4) phloem re-translocation [14,15]. Plants absorb heavy metals by either active or passive
absorption, with the root tips being the main Cd-absorbing area [16]. As a non-essential
element, Cd2+ can enter the root through ion channels permeable to essential elements such
as Ca2+ and K2+ [17,18]. It can also enter plant cells actively via uptake systems for essential
elements such as Zn and Fe [19]. After root absorption, loading into the root xylem is one
of the most critical steps for Cd transport [14]. Cd2+ or various Cd chelates can complete
xylem loading through the symplast or the apoplast pathways [16]. The symplast pathway
uses plasmodesmata to transport heavy metals between the cells, finally transporting them
to the central column. The apoplast pathway transports water and heavy metals through
the intercellular spaces or the cell wall continuum [14,20]. After Cd is loaded into the root
xylem, it needs to be transported through the xylem and phloem for long-distance transport
to the shoots. Phloem can serve as a major transport route for long-distance source-to-sink
Cd transport via Cd–phytochelatin (PC) and Cd–glutathione complexes [21]. In addition,
the phloem is primarily responsible for nutrient re-translocation, and in the Sedum alfredii
Hance hyperaccumulating ecotype (HE), efficient phloem transport retransfers Cd from
old to young organs [22].

Many transporter protein families are involved in the process of plant Cd uptake
from the soil to be re-transported through the phloem. Clarifying the functions of these
transporters regulating Cd and its chelates is important to understand the molecular
mechanisms of plant responses to Cd. Thus far, the identified Cd transporters mainly
include members of the natural resistance-associated macrophage protein (NRAMP), heavy
metal-transporting ATPases (HMA), zinc and iron regulated transporter protein (ZIP),
ATP-binding cassette (ABC), and yellow stripe-like (YSL) families.

2. Natural Resistance-Associated Macrophage Proteins

Nramps represent a class of metal transporters widely present in plants that are mainly
involved in the absorption and transport of Fe2+, Mn2+, Cd2+, and other metal ions [23,24].
The involvement of Nramp genes in Cd transport was first reported in the model plant
Arabidopsis thaliana. In recent years, research has been focused on food crops such as Oryza
sativa, Triticum polonicum and Fagopyrum esculentum, and hyperaccumulator plants have
also been explored. These proteins have also been identified in other plants.

In A. thaliana, four Nramp genes have been found to be related to Cd transport. Over-
expression of AtNramp1 increased Cd sensitivity and accumulation in yeast (Table 1) [25].
AtNramp3 and AtNramp4 encode tonoplast-localized proteins, and yeast expressing the
two genes showed an increased sensitivity to Cd (Figure 1, Table 1). Overexpression of
AtNramp3 in Arabidopsis conferred hypersensitivity to Cd [25–28], but overexpression of
AtNramp4 in A. thaliana only conferred a slight hypersensitivity to Cd [25,29]; AtNramp3
and AtNramp4 can also mediate the transport of Cd out of the vacuoles in Arabidopsis [25,28].
AtNramp6 is a Cd transporter that can either transport Cd out of its storage compartment
or into the toxic cellular compartment (Figure 1, Table 1) [30].
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Table 1. Genes encoding Natural Resistance-Associated Macrophage Proteins (Nramp) for Cd transport in plants.

Plant Species Genes Expression Sites Subcellular Location Function References

Arabidopsis thaliana

AtNramp1 Roots Plasma membrane - [25]

AtNramp3 Roots and aerial parts Tonoplast Cd transport [25–28]

AtNramp4 Roots and aerial parts Tonoplast Cd transport [25,28,29]

AtNramp6 Seed embryo, lateral roots and young
leaves Golgi/trans-Golgi network Cd transport [30]

Oryza sativa L.

OsNramp1 Roots and leaves Plasma membrane Cd uptake and translocation [31–33]

OsNramp2 Embryo of germinating seeds, roots, leaf
sheaths and leaf blades Tonoplast Cd retranslocation [34,35]

OsNramp5 Roots epidermis, exodermis, outer layers
of cortex and tissues around xylem Plasma membrane Cd uptake [36–39]

Triticum polonicum L.
TpNramp3

leaf blades and roots at the jointing and
booting stages, first nodes at the grain

filling stage
Plasma membrane Cd accumulation [40]

TpNramp5 Roots and basal stems of DPW Plasma membrane Cd accumulation [41]

Triticum turgidum L. TtNramp6 Roots Plasma membrane Cd accumulation [42]

Hordeum vulgare HvNramp5 Roots Plasma membrane Cd uptake [43]

Fagopyrum esculentum
Moench FeNramp5 Roots Plasma membrane Cd uptake [44]

Brassica napus BnNramp1b Vegetative tissue, flowers and siliques - - [45]

Brassica rapa L. BcNramp1 Roots Plasma membrane Cd uptake [46]

Noccaea caerulescens (Thlaspi
caeulescens)

NcNramp1 Roots and shoots Plasma membrane - [47]

TcNramp3 - Tonoplast - [48,49]

TcNramp4 - Tonoplast - [48]

Sedum alfredii Hance

SaNramp1 Young tissues of the shoots Plasma membrane Cd translocation [50]

SaNramp3 - - Cd translocation [51]

SaNramp6 Roots Plasma membrane Cd uptake or translocation [52,53]
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Table 1. Cont.

Plant Species Genes Expression Sites Subcellular Location Function References

Malus xiaojinensis MxNramp1 Roots Plasma membrane Cd uptake and translocation [54]

MxNramp3 Roots and leaves Tonoplast Cd uptake and translocation [54]

Malus hupehensis MhNramp1 Roots Cell membrane Cd uptake [55]

Spirodela polyrhiza

SpNramp1 - Plasma membrane Cd accumulation [56]

SpNramp2 - Plasma membrane Cd accumulation [56]

SpNramp3 - Plasma membrane - [56]

Crotalaria juncea CjNramp1 Leaves, stems, and roots Plasma membrane Cd uptake and translocation [57]

Nicotiana tabacum
NtNRAMP1 Roots - Cd uptake [58]

NtNRAMP3 Conductive tissue of
leaves Tonoplast Cd efflux [59]
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ment. AtHMA2 and AtHMA4 are involved in xylem loading to transport Cd to the shoots. Moreo-

ver, AtPDR8 mediates Cd efflux. (B) In O. sativa, OsNramp1, OsNramp5, OsZIP5, OsZIP6, OsZIP9, 
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Figure 1. Uptake and transport of Cd. (A) In Arabidopsis thaliana, AtIRT1 is involved in Cd uptake by
the roots. After Cd enters the root cells, it can be sequestered into the vacuole via AtHMA3, AtABCC1,
AtABCC2, AtABCC3, and AtMRP7. AtNramp3 and AtNramp4 mediate the transport of Cd from the
vacuole into the cytoplasm, while AtNramp6 transport Cd out of its storage compartment. AtHMA2
and AtHMA4 are involved in xylem loading to transport Cd to the shoots. Moreover, AtPDR8
mediates Cd efflux. (B) In O. sativa, OsNramp1, OsNramp5, OsZIP5, OsZIP6, OsZIP9, OsIRT1,
and OsIRT2 are involved in Cd uptake by the rice roots. After Cd enters the root cells, it can be
transported to the vacuoles, where it is sequestered, by OsHMA3 and OsABCC9. OsABCG43 also
aids the sequestration of Cd in the roots. OsHMA2 and OsZIP7 are involved in xylem loading to
transport Cd to the shoots. OsNramp2 mediates Cd re-translocation to the grains. Moreover, OsZIP1,
OsHMA9, and OsABCG36 mediate Cd efflux in roots.

Nramp genes involved in the transport of Cd are mainly studied in rice among food
crops. Three Nramp genes have been identified to be functionally associated with Cd.
OsNramp1, a transporter localized in the plasma membrane responsible for Cd uptake and
transport within plants, is mainly expressed in the roots and the leaves and is localized in all
root cells except the central vasculature and in leaf mesophyll cells (Figure 1, Table 1) [32,33].
Tiwari et al. [31] observed that OsNramp1 is involved in xylem-mediated loading and that it
increased the accumulation of As and Cd in plants by heterologous expression of OsNramp1
in Arabidopsis. However, Chang et al. [33] showed that OsNramp1 transported Cd and Mn
when expressed in yeast but did not transport Fe or As. Overexpression of OsNramp1 in
rice reduced Cd accumulation in the roots, but increased it in the leaves. Knockout of
OsNramp1 resulted in decreased Cd and Mn uptake by the roots and their accumulation in
the shoots and the grains [32,33].
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OsNramp2 is localized in the tonoplast and mainly expressed in the embryo of ger-
minating seeds, roots, leaf sheaths, and leaf blades (Figure 1, Table 1) [35]. The knockout
of OsNramp2 significantly decreased Cd concentration in the grains, but increased it in
the leaves and the straws, suggesting that it mediates Cd efflux from the vacuoles in the
vegetative tissues for translocation to the grains [34,35].

OsNramp5 encodes a plasma membrane protein polarly localized at the distal side of
both exodermis and endodermis cells, and responsible for the influx of Mn and Cd into root
cells from external solutions (Figure 1, Table 1) [37,38]. Knockout of OsNramp5 significantly
reduced Cd concentration in the roots and shoots [38,39]. In a Cd-contaminated paddy
field experiment, it was found that Cd concentration in the grains of the knockout line
was much lower than that of the wild-type (WT) [39]. Surprisingly, the overexpression
of OsNramp5 enhanced Cd root uptake, but significantly reduced its accumulation in the
shoots and grains. Xylem loading was also disturbed in OsNramp5-overexpressing plants,
with a reduced translocation from the roots to the shoots [36].

In Triticum polonicum L and Triticum turgidum L, TpNramp3, TpNramp5, and TtNramp6
encode plasma membrane proteins (Table 1). Overexpression of TtNramp6 increased Cd
concentration and its accumulation in the whole plant of Arabidopsis [42]. Overexpression
of TpNramp3 or TpNramp5 also increased the concentrations of Cd, Co, and Mn in the
whole plant [40,41]. In Hordeum vulgare, HvNramp5 encodes a plasma membrane-localized
transporter required for the uptake of Cd and Mn, but not Fe (Table 1), that presents
84% identity with OsNramp5. HvNramp5 was mainly expressed in the roots, with higher
expression levels in the root tips than in the basal region [43]. Knockout of HvNramp5 in
barley resulted in reduced concentrations of Mn and Cd in the roots and shoots but did
not change the concentrations of other metals [43]. In Fagopyrum esculentum Moench, the
plasma membrane-localized transporter FeNramp5 is responsible for the uptake of Mn and
Cd (Table 1). FeNramp5 can also complement the phenotype of an AtNramp1 Arabidopsis
mutant in terms of growth and accumulation of Mn and Cd [44]. BnNramp1b is localized in
the plasma membrane and can transport Cd (Table 1) [45]. Yue et al. demonstrated that
BcNramp1 plays a role in Cd influx of Arabidopsis root cells using noninvasive microelectrode
ion flux measurements (Table 1) [46].

Studies on Nramp Cd-transporting genes in hyperaccumulator plants are mainly
focused on Noccaea caerulescens (Thlaspi caerulescens) and Sedum alfredii Hance. In N.
caerulescens, NcNramp1 participates in the influx of Cd across the endodermal plasma
membrane and thus may play an important role in the Cd flux into the stele and its root-to-
shoot translocation (Table 1) [47]. TcNramp3 and TcNramp4 are localized in the tonoplast
(Table 1). TcNramp3 or TcNramp4 expression rescued Cd and Zn hypersensitivity induced
by the inactivation of AtNramp3 and AtNramp4 in Arabidopsis [48]. Additionally, in over-
expression tobacco lines, the roots were found to be more sensitive to Cd [49]. In the S.
alfredii Hance, the plasma membrane-localized SaNramp1 transporter is highly expressed
in the young tissues of the shoots (Table 1), and its overexpression in tobacco significantly
increased Cd concentration at this location [50]. Ectopic expression of SaNramp3 in Brassica
juncea enhanced Cd root-to-shoot translocation (Table 1), thus increasing Cd accumulation
in the shoots [51]. Overexpression of SaNramp6, localized in the plasma membrane, in-
creased Cd uptake and accumulation in A. thaliana (Table 1) [52]. Employing site-directed
mutagenesis and functional analysis of mutants in yeast and Arabidopsis, the conserved
L157 site in SaNramp6h was found to be critical for metal transport [53].

Nramp genes have also been identified in other plants. MxNramp1 (localized in the
plasma membrane) and MxNramp3 (localized in the tonoplast) can transport Cd in yeast
(Table 1) [54]. In Malus hupehensis, overexpression of MhNramp1 increases Cd uptake and
accumulation, thereby exacerbating cell death (Table 1) [55]. SpNramp1, SpNramp2, and
SpNramp3 are plasma membrane-localized transporters in Spirodela polyrhiza (Table 1),
and overexpression of SpNramp1 or SpNramp2 increased Cd accumulation [56]. Similarly,
overexpression of CjNramp1 in Arabidopsis resulted in high tolerance to Cd (Table 1) [57].
Furthermore, overexpression of NtNramp1 in tobacco could promote Cd uptake and Fe
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transportation (Table 1) [58], and the tonoplast-localized NtNramp3 transporter was found
to be involved in the regulation of Cd transport from the vacuole to the cytoplasm using
CRISPR/Cas9 technology (Table 1) [59].

3. Heavy Metal Transporting ATPases

HMAs play an important role in absorbing and transporting essential metal ions, such
as Cu2+, Co2+ and Zn2+, by ATP hydrolysis; they can also transport Cd2+ and Pb2+. HMAs
can be divided into two classes: those transporting monovalent cations (Cu, Ag) and those
transporting divalent cations (Zn, Co, Cd, Pb) [60]. First described in A. thaliana, they have
been studied more in food crops and hyperaccumulator plants in recent years due to their
strong capacity to transport Cd; they have also been slightly less researched in other plants.

Table 2. Genes encoding Heavy Metal transporting ATPases (HMAs) for Cd transport in plants.

Plant Species Genes Expression Sites Subcellular
Location Function References

Arabidopsis thaliana

AtHMA2 - Plasma membrane Cd translocation [61,62]

AtHMA3 Root apex Tonoplast Cd sequestration [63,64]

AtHMA4 tissues surrounding the
root vascular vessels Plasma membrane Cd translocation [61,65–67]

Oryza sativa L

OsHMA2
in the mature zone of the

roots at the vegetative
stage

Plasma membrane Cd translocation [68–70]

OsHMA3 Roots Tonoplast Cd sequestration [71–76]

OsHMA9 vascular
bundles and anthers Plasma membrane Cd

efflux [77]

Triticum aestivum L. TaHMA2 Nodes Plasma membrane Cd translocation [78]

Glycine max GmHAM3w Roots Endoplasmic
reticulum (ER) Cd sequestration [79]

Sedum
plumbizincicola

SpHMA1 Leaves Chloroplast
envelope

Cd
efflux [80]

SpHMA3 Leaves Tonoplast Cd sequestration [81]

Sedum alfredii
Hance SaHMA3 Shoots Tonoplast Cd sequestration [82]

Thlaspi caerulescens
TcHMA3 Roots and

shoots Tonoplast Cd sequestration [83]

TcHMA4 Roots - [84]

Brassica juncea BjHMA4 Roots, stems and leaves Cytosol Cd translocation [85]

Iris lactea IlHMA2 Roots Plasma membrane Cd translocation [86]

Populus tomentosa
Carr. PtoHMA5 - - Cd translocation [87]

AtHMA2, AtHMA3, and AtHMA4 are reportedly associated with Cd transport in A.
thaliana. AtHMA3 encodes a tonoplast-localized transporter that plays a role in Cd, Zn, Co,
and Pb detoxification (Figure 1, Table 2) [64]. Overexpression of AtHMA3 enhanced Cd
tolerance and increased its accumulation [63,64]. AtHMA2 and AtHMA4, localized in the
plasma membrane, are responsible for the xylem loading of Zn/Cd and play a key role
in their accumulation in the shoots (Figure 1, Table 2) [61,62,65]. Ceasar et al. [66] found
that the di-cysteine residues at the C-terminus of HMA4 in A. thaliana were only partially
required for Cd transport. Furthermore, ectopic expression of 35S::AtHMA4 reduced Cd
accumulation due to the induction of the apoplastic barrier in tobacco [67].
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The study of the HMA family is predominantly focused on food crops. Three Cd-
transport associated HMA genes were identified in the genome of rice, one of the major
food crops. The plasma membrane-localized transporter OsHMA2 is involved in the root-
to-shoot translocation of Zn and Cd (Figure 1, Table 2). OsHMA2 is mainly expressed
in the mature zone of the roots at the vegetative stage, with the C-terminal region being
essential for Zn/Cd translocation into the shoots [68,69]. Moreover, at the reproductive
stage, OsHMA2 also showed a high expression in the nodes. Knockout of OsHMA2
resulted in reduced Zn and Cd concentrations in the upper nodes and reproductive organs
compared with the WT, suggesting that OsHMA2 participates in the transport of Zn and
Cd through the phloem to developing tissues [70]. OsHMA3 is localized in the tonoplast
and sequestrates Cd into the root vacuoles to reduce its translocation, thereby mitigating
Cd poisoning (Figure 1, Table 2) [71–74]. Silencing of OsHMA3 resulted in increased
root-to-shoot Cd translocation, whereas OsHMA3 overexpression markedly decreased
root-to-shoot Cd translocation and increased Cd tolerance, while greatly reducing its
concentration in the grains [72,75]. The C-terminal region, and particularly the region
containing the first 105 amino-acids, has an important role in the activity of OsHMA3 [76].
OsHMA9 encodes a heavy metal (Cd, Cu, Zn, and Pb) efflux protein present in the plasma
membrane (Figure 1, Table 2). Knockout of OsHMA9 results in higher Cd accumulation
in the shoots compared with that of the WT, thus making the mutant sensitive to Cd [77].
Moreover, in Triticum aestivum L., overexpression of TaHMA2 improved the root-shoot
Zn/Cd translocation (Table 2) [78]. In Glycine max (soybean), GmHAM3w restricts Cd to the
endoplasmic reticulum, where it is localized, and in the roots to limit translocation to the
shoots (Table 2). Overexpression of GmHMA3w increased Cd concentration in the roots
and decreased it in the shoots [79].

As a popular tool for the remediation of Cd-contaminated soils, there have been many
studies on HMA genes with Cd transport and sequestration functions in hyperaccumu-
lator plants in recent years. SpHMA1 is an important efflux transporter localized in the
chloroplast envelope and is responsible for exporting Cd from the chloroplast (Table 2),
thus preventing Cd accumulation in Sedum plumbizincicola. Significantly increased Cd con-
centration in chloroplasts in SpHMA1 RNAi transgenic plants and CRISPR/Cas9-induced
mutants compared to WT [80]. SpHMA3, localized in the tonoplast and expressed mainly
in the shoots (Table 2), plays an important role in Cd detoxification in young leaves by
sequestering Cd into the vacuole [81]. In S. alfredii, the tonoplast-localized transporter
SaHMA3 is mainly expressed in shoots (Table 2). Its overexpression in tobacco significantly
enhanced Cd tolerance and accumulation and greatly increased Cd sequestration in the
roots [82]. Increased amounts of Cd were sequestered in the roots, but not in the leaf
vacuoles, probably due to the heterologous expression. TcHMA3 is a tonoplast-localized
transporter responsible for Cd sequestration into the leaf vacuoles in Thlaspi caeulescens
(Table 2) [83]. TcHMA4 is involved in the active efflux of a large number of different heavy
metals (Cd, Zn, Pb, and Cu) out of the cell (Table 2), with the C-terminus of the TcHMA4
protein being essential for heavy metal binding [84]. Moreover, BjHMA4R can significantly
improve Cd tolerance and accumulation at low heavy metal concentrations by specifically
binding to Cd2+ in the cytosol (Table 2) [85]. In other plants, IlHMA2 is a plasma membrane
transporter involved in Cd root-to-shoot translocation (Table 2). The genes regulating Zn
homeostasis were significantly down regulated in IlHMA2-silenced lines, compared with
that in WT [86]. PtoHMA5 also participates in Cd root-to-shoot translocation (Table 2) [87].

4. ATP-Binding Cassette

This protein superfamily is one of the largest known superfamilies, with over 120 mem-
bers in both A. thaliana and O. sativa. ABC transporters comprise four core domains (two
nucleotide-binding and two transmembrane domains) [88] and are located in the plasma,
vacuolar, and mitochondrial membranes, where they facilitate the transmembrane transport
of substances via active transport [89–92]. The ABC family is further divided into 13 sub-
families, according to the size and domains of their members; the subfamilies involved in



Toxics 2022, 10, 411 9 of 17

the transport of Cd and its chelates include the multidrug resistance-associated protein
(MRP), pleiotropic drug resistance (PDR), and ABC transporter of the mitochondrion (ATM)
subfamilies [93]. The current research on these three subfamilies is mainly focused on A.
thaliana and O. sativa.

In A. thaliana, AtABCC1 and AtABCC2—two important tonoplast transporters—play
an essential role in sequestering the PC–Cd(II) complexes to the vacuoles (Figure 1, Table 3),
thereby reducing the metal concentration in the root cells and its translocation to the
shoots [92]. AtABCC3 is involved in the vacuolar transport of the PC–Cd complexes
(Figure 1, Table 3), with its activity being regulated by Cd and coordinated with the function
of AtABCC1/AtABCC2 [94]. The expression levels of AtMRP6/AtABCC6 are significantly
upregulated under Cd stress (Table 3) [95]. Overexpression of AtMRP7, which is localized in
both the tonoplast and the plasma membrane (Figure 1, Table 3), increased Cd concentration
in the leaf vacuoles and its retention in the roots in tobacco [96]. AtPDR8, located in the
plasma membrane and the root epidermal cells, is an important efflux transporter that
increases Cd tolerance by effluxing Cd2+ out of the root epidermal cells (Figure 1, Table 3).
Overexpression of AtPDR8 improved Cd tolerance but did not affect its accumulation
or that of Pb [91]. AtATM3 is a transporter localized in the mitochondrial membrane
(Table 3), and its overexpression improved Cd tolerance and accumulation by increasing
the biogenesis of Fe-S clusters and exporting them from the mitochondria into the cytosol
in Arabidopsis [90]. Overexpression of AtATM3 in B. juncea conferred enhanced Cd and
Pb tolerance by inducing the expression of its glutathione synthetase II (BjGSHII) and
phytochelatin synthase 1 (BjPCS1) enzymes [97].

Table 3. Genes encoding ATP-Binding Cassette (ABC) for Cd transport in plants.

Plant Species Genes Expression Sites Subcellular
Location Function References

Arabidopsis thaliana

AtABCC1 - Tonoplast Cd sequestration [92]

AtABCC2 - Tonoplast Cd sequestration [92]

AtABCC3 - - Cd sequestration [94]

AtMRP6/AtABCC6

Xylem-opposite
pericycle cells

where lateral roots
initiate

- [95]

AtMRP7 - Plasma membrane
and tonoplast Cd sequestration [96]

AtPDR8 Root epidermal
cells Plasma membrane Cd efflux [91]

AtATM3 Roots Mitochondrial
membrane - [90,97]

Oryza sativa L.

OsABCC9 Root stele Tonoplast Cd sequestration [98]

OsABCG36 Roots Plasma membrane Cd efflux [99]

OsABCG43 Roots - Cd sequestration [100]

OsABCG48 - - - [101]

Triticum aestivum TaABCC13 - - Cd uptake and
transport [102]

Rehmannia
glutinosa RgABCC1 Roots - - [103]

Populus tomentosa PtoABCG36 Roots Plasma membrane Cd efflux [104]

In O. sativa, OsABCC9 was predominantly expressed in the root stele after Cd treatment
(Figure 1, Table 3). It mainly mediates Cd accumulation by sequestering of Cd into the
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root vacuoles, thereby reducing its translocation to the shoots and grains [98]. The plasma
membrane-localized OsABCG36 transporter functions as a Cd extrusion pump (Figure 1,
Table 3), thus increasing Cd tolerance by exporting it or its conjugates from the root
cells in rice. Compared with the WT, OsABCG36 knockout had a significantly higher
Cd accumulation in the root cell sap and significantly increased sensitivity to Cd [99].
Yeast heterologous expression indicated that OsABCG43 and OsABCG48 conferred Cd
tolerance (Figure 1, Table 3); overexpression of OsABCG48 in rice reduced Cd concentration
in the roots [100,101]. Similarly, in Triticum aestivum, TaABCC13 was reportedly involved
in Cd uptake and transport (Table 3), as Cd concentration in the roots and shoots of
TaABCC13:RNAi line decreased, compared with that of the WT [102].

In other plants, some ABC genes have also been found to have a Cd-transporting
role. Yeast-expressed RgABCC1, found in Rehmannia glutinosa, increased Cd tolerance
(Table 3) [103]. Similarly, PtoABCG36 reduced Cd concentration in plants by mediating its
efflux (Table 3), thereby improving Cd tolerance [104].

5. Zinc- and Iron-Regulated Transporter Proteins

There are many members in the ZIP family, with all of them generally presenting eight
transmembrane regions and metal ion-binding conserved domains that play a role in their
transport. Not only can they transport essential metal ions such as Fe2+ and Zn2+, but
also Cd2+ [105]. The first member of the ZIP family to be described was NcZNT1, found
in N. caerulescens (Table 4) [106]. Overexpression of NcZNT1 enhanced the tolerance and
accumulation of Zn and Cd in Arabidopsis, suggesting its involvement in the long-distance
translocation of xylem loading from the roots to the shoots [107].

Table 4. Genes encoding Zinc and Iron regulated transporter Protein (ZIP) and Yellow Stripe-Like
proteins (YSL) for Cd transport in plants.

Plant Species Genes Expression Sites Subcellular
Location Function References

Genes encoding Zinc and Iron regulated transporter Protein (ZIP)

Noccaea caerulescens L. NcZNT1 roots and shoots - - [106,107]

Arabidopsis thaliana AtIRT1 Roots Plasma membrane Cd uptake [108,109]

Oryza sativa L.

OsIRT1 Roots Plasma membrane Cd uptake [108–110]

OsIRT2 Roots Plasma membrane Cd uptake [110]

OsZIP1 Roots
Endoplasmic

reticulum (ER) and
plasma membrane

Cd efflux [111]

OsZIP5 Roots Plasma membrane Cd uptake [112]

OsZIP6 Shoots and roots - Cd uptake [113]

OsZIP7
parenchyma cells of
vascular bundles in

roots and nodes
Plasma membrane Cd translocation [114]

OsZIP9 Roots Plasma membrane Cd uptake [112,115]

Nicotiana tabacum var
Xanthi NtZIP4A/B Leaves and roots Plasma membrane Cd translocation [116,117]

Morus alba MaZIP4 - Plasma membrane - [118]

Genes encoding Yellow Stripe-Like proteins (YSL)

Miscanthus
sacchariflorus MsYSL1 Stems Plasma membrane Cd translocation [119]

Solanum nigrum SnYSL3
Vascular tissues and
epidermal cells of the

roots and stems
Plasma membrane Cd translocation [120]

Vaccinium ssp. VcYSL6 - Chloroplast - [121]

Brassica juncea BjYSL7 Stems Plasma membrane Cd translocation [122]
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In recent years, studies on the role of the ZIP family in Cd transport have mainly
focused on O. sativa. OsIRT1 and OsIRT2 are the major transporters participating in Fe
and Cd uptake as observed in an heterologous expression experiment in yeast (Figure 1,
Table 4) [110]. The IRT1 protein, first described in A. thaliana, mediates the absorption of
a variety of metals including Fe, Zn, and Cd (Figure 1, Table 4) [108,109]. Similarly, IRT1
has also been explored in pea seedlings, mulberry (Morus L.), Triticum polonicum L., and
Hordeum vulgare. Overexpression of IRTI in Arabidopsis and rice increased their sensitivity
to Zn and Cd [110,118,123–126]. OsZIP1, a metal efflux transporter, is localized in the
endoplasmic reticulum and the plasma membrane and is mainly expressed in the roots
(Figure 1, Table 4). Overexpression of OsZIP1 protects rice plants from an excess of Zn, Cu,
and Cd by limiting metal accumulation in their tissues [111]. Plasma membrane-localized
proteins OsZIP5 and OsZIP9 have influx transporter activity that functions synergistically in
the Zn/Cd uptake in rice (Figure 1, Table 4). Overexpression of OsZIP9 markedly increased
the Zn/Cd levels in the aboveground tissues in brown rice. OsZIP9 is also responsible
for the uptake of Zn and Co into the root cells [112,115]. Employing electrophysiological
techniques, Kavitha et al. [113] demonstrated the uptake of Cd by OsZIP6 (Figure 1, Table 4).
OsZIP7 encodes a plasma membrane-localized protein responsible for Cd/Zn influx and
is expressed in the parenchyma cells of vascular bundles in the roots and nodes (Figure 1,
Table 4). Compared with the WT, an OsZIP7 knockout results in Zn and Cd retention in the
roots and the basal ganglia, hindering their upward transmission and thus playing a role in
xylem loading in the roots and inter-vascular transfer in the nodes to deliver Zn/Cd to the
grains in rice [114].

ZIP genes related to Cd transport have also been reported in other plants. In Nicotiana
tabacum, NtZIP4A and NtZIP4B are two copies of ZIP4, with 97.57% homology at the amino
acid level. NtZIP4A/B is a plasma membrane-localized transporter that regulates Zn and
Cd translocation from the roots to the shoots (Table 4) [116,117]. Similarly, MaZIP4 is also
localized in the plasma membrane and has Cd transport activity (Table 4) [118].

6. Yellow Stripe-Like Proteins

The YSL family mediates the transmembrane transport of metal ions and chelates
formed by metal ions and nicotinamide in plants, as well as the long-distance transport
from the roots to the shoots [105]. YSL proteins were first reported to have a role in
Fe transport, and then were subsequently found to participate in the transport of Cu,
Zn, Cd, and Mn [127]. Members of this family involved in Cd transport include YSL1,
YSL3, YSL6, and YSL7. MsYSL1 and SnYSL3 are plasma membrane-localized transporters
responsible for long-distance Cd translocation from the roots to the shoots (Table 4). An
excess of Cd reportedly stimulated their expression. Overexpression of MsYSL1 or SnYSL3
in Arabidopsis increased the Cd translocation ratio under Cd stress [119,120]. VcYSL6 is
located in the chloroplast, and its expression is up-regulated under Cd induction (Table 4).
Overexpression of VcYSL6 in tobacco increased Cd concentrations in the leaves [121].
BjYSL7 encodes a plasma membrane-localized metal–nicotinamide transporter (Table 4).
The concentrations of Cd and Ni in the shoots of BjYSL7-overexpressing transgenic tobacco
plants are significantly higher than that of WT plants, suggesting a role of BjYSL7 in Cd
translocation from the roots to the shoots [122].

7. Conclusions and Further Perspectives

In this review, we outlined the role of transporters in the uptake and transport of Cd
by plants. After long-term evolution, plants have formed a set of complex mechanisms to
cope with Cd stress. The key role of transporters in it has also been confirmed by multiple
studies, and excellent progress has been made in determining the localization, specific
expression, and function of each protein family member. However, the regulatory network
for Cd uptake and transport in plants is extremely large and involves multiple genes. For
example, in O. sativa, OsZIP5 and OsZIP9 are tandem duplicates and act synergistically in
Cd uptake [112]. OsNRAMP1 and OsNRAMP5 are involved in Cd uptake via roots and
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knocking out both these genes resulted in large decreases in the uptake of Cd, compared
to the case for the knockout of either one of genes [33]. However, the functions of many
genes and the relationships between them are still unknown. Therefore, the traditional
way of examining a single gene can no longer meet the requirements of the post-genomic
era, and the mutual synergy between functional genes should be explored further in
future research. Moreover, unknown genes related to plant Cd uptake and transport and
the synergistic relationship between these genes can be further explored by constructing
mutants and using molecular biology techniques in future studies. This would contribute
to our understanding of the vast regulatory network of genes involved in Cd uptake,
translocation and accumulation. In addition, studying the functions of various genes and
the mechanisms underlying these functions would help cultivate Cd-tolerant plants using
transgenic technology, which would further be helpful to restore Cd-contaminated soil.
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