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The genomes of RNA viruses present an astonishing source
of both sequence and structural diversity. From intracellular
viral RNA-host interfaces to interactions between the RNA
genome and structural proteins in virus particles themselves,
almost the entire viral lifecycle is accompanied by a myriad of
RNA–protein interactions that are required to fulfill their
replicative potential. It is therefore important to characterize
such rich and dynamic collections of viral RNA–protein in-
teractions to understand virus evolution and their adaptation
to their hosts and environment. Recent advances in next-
generation sequencing technologies have allowed the charac-
terization of viral RNA–protein interactions, including both
transient and conserved interactions, where molecular and
structural approaches have fallen short. In this review, we will
provide a methodological overview of the high-throughput
techniques used to study viral RNA–protein interactions,
their biochemical mechanisms, and how they evolved from
classical methods as well as one another. We will discuss how
different techniques have fueled virus research to characterize
how viral RNA and proteins interact, both locally and on a
global scale. Finally, we will present examples on how these
techniques influence the studies of clinically important path-
ogens such as HIV-1 and SARS-CoV-2.

RNA viruses and their genomes exhibit incredible sequence
and structural diversity and a correspondingly complex range
of RNA–protein interactions. Inside infectious virus particles
(in virio), the specific and often programmed interactions of
RNA with viral (nucleo-)capsids orchestrate virus particle
assembly, genome packaging and release, structural stability,
and can regulate RNA replication and transcription (1–4). In
addition, RNA viruses and their genomes are dependent on
host cellular factors and actively reprogram the host cellular
environment to support RNA replication and/or prevent im-
mune clearance. Much of this reprogramming occurs through
numerous interactions between viral RNAs (vRNAs) and host
factors (5). Thus, vRNAs have multiple simultaneous roles and
overlapping interactions with both host and viral proteins that
must be carefully coordinated during the viral lifecycle.
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Studying and characterizing this complex choreography pre-
sents an important but major technical challenge.

Classical techniques that probe RNA–protein interactions,
such as immunoprecipitation (IP) (6, 7), crosslinking (7–11),
EMSA (12, 13), and affinity-capture (14, 15), offer reliable
biochemical solutions both in vitro and in vivo. However, these
methods typically rely on prior knowledge or prediction of
RNA–protein interaction sites, which requires researchers to
target specific hypothesized interactions. This may miss
important and/or unanticipated interaction partners. Similarly,
due to lack of high-throughput analytical power, molecular
methods also are limited in their capacity to identify the many
possible RNA targets and binding sites of a protein-of-interest.

The remarkable power of high-throughput next-generation
sequencing (NGS) combined with traditional “tried and true”
biochemical techniques provides a complementary approach to
study vRNA–protein interactions in a high-throughput, spe-
cific, and unbiased fashion. This has broad applications in
studying the role and activities of vRNA-binding proteins
within the host, as well as in elucidating the structure of
macromolecular RNA–protein complexes within virus particles
themselves. Furthermore, NGS-based methods can often pro-
vide nucleotide or near-nucleotide resolution.

As such, NGS is often deployed as a hypothesis-generating
instead of hypothesis-dependent tool, allowing for detection of
novel RNA–protein interactions within the host transcriptome
(in vivo) or the viral genomicmaterial (in virio).This latter point is
particularly important in the caseof structural viral proteins, such
as icosahedral capsid proteins or helical nucleocapsid (NC)
proteins that engage innumerous simultaneous contactswith the
viral genomic RNA during viral replication, particle assembly,
and disassembly. Details of the molecular contacts of these
structural proteins with genomic RNA are often lost in crystal-
lographic or electron-microscopy based approaches due to the
use of symmetrical averagingduring image reconstruction.These
techniques may be appropriate to resolve the symmetrical as-
semblies of the viral capsid proteins, but they can also obscure the
inherently asymmetrically arranged genomic RNA within virus
particles. Understanding the unique interactions with the
numerous capsid proteins is important, as their relative binding
positions and affinities with vRNA must be carefully choreo-
graphed to successfully guide virus particle assembly (16). Viral
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structural proteins can also engage in numerous host RNA
contacts. For example, capsid from flaviviruses is not only
responsible for wrangling genomic RNA into virus particles but
also is shuttled to the nucleus and nucleolus where it mediates
diverse, perhaps nonspecific, host–RNA interactions thatmay be
necessary to alter the host transcriptional program to provide a
proviral environment (17).

Almost allNGS-based vRNA–protein interaction approaches
are derived from or are at least inspired by classical biochemical
techniques. In this review, we will discuss how cutting-edge
NGS-based technologies evolved from classical methods. We
will categorize these NGS approaches based upon whether they
employUVcrosslinkers (e.g., HITS-CLIP, PAR-CLIP, vPAR-CL,
and etc., Fig. 1), chemical (formaldehyde) crosslinkers (e.g.,
Protein Interaction Profile Sequencing, PIP-seq), or no cross-
linking at all (e.g., native RNA immunoprecipitation and
Figure 1. General methodologies of
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sequencing, RIP-seq), as well as their methods for RNA–protein
complex enrichment (IP or affinity capturing). We will also
summarize notable applications in virus research (Table 1) and
present how each has made an impact on the way we study
numerous viruses including SARS-CoV-2 and HIV-1.

Photo-crosslinking methods

UV light–mediated crosslinking is a well-established tool for
studying RNA–RNA-binding protein (RBP) interactions (18)
due to its ability to elicit covalent bonds between adjacent
(within covalent-bond distance) amino acid side chains and
nitrogenous bases of nucleic acids (19). UV-induced cross-
linking provides a means of stabilizing otherwise transient and
less stable RNA–protein interactions, which usually consist of
hydrogen bonds and electrostatic interactions (19). Zero dis-
tance (20) UV-induced RNA-protein crosslinking largely
HITS-CLIP, PAR-CLIP, and vPAR-CL.



Table 1
NGS methods for studying RNA–protein interactions

Methods Abbreviated procedures Virus Reference

Photo-crosslinking methods
CLIP-seq/HITS-CLIP UVB/C crosslink, IP, radio-

labeling, SDS-PAGE, pro-
teinase K, and NGS

Epstein-Barr virus (46, 47)
Kaposi’s sarcoma-associated
herpesvirus

(42, 69)

Influenza virus (54, 55)
Hepatitis C Virus (52)
Simian gammaherpesviruses (50, 51)

PAR-CLIP Nucleotide analogs, UVA
crosslink, IP, radiolabeling,
SDS-PAGE, proteinase K,
and NGS

Epstein-Barr virus (69, 85)
Kaposi’s sarcoma-associated
herpesvirus

(69, 85, 86)

HIV (89, 90, 102, 106, 111, 112, 114, 121, 122)
Influenza (205)
Moloney leukemia virus 10 (206)
Herpes Simplex Virus-1 (207, 208)
Flaviviruses (209)
Alphaviruses (210)

Other CLIP-derived methods iCLIP Hepatitis C virus (211)
HIV-1 (A3) (212)

eCLIP SARS-CoV-2 (213)
irCLIP Flavivirus (214)
CLASH Gammaherpesviruses (215)

vPAR-CL Nucleotide analogs, UVA
crosslink, proteinase K, NGS

Flock House Virus (216)

Chemical crosslinking method
PIP-seq Formaldehyde crosslink,

RNase footprinting, NGS
- -

Affinity capturing methods
APEX-seq/Proximity-CLIP APEX-induced biotinylating,

affinity capturing, NGS, and
mass spectrometry

SARS-CoV-2 (160)

VIR-CLASP 4SU/photo-crosslinking, solid
phase separation, mass
spectrometry

CHIKV (161)
Influenza A virus (163)
Zika (164)
SARS-CoV-2 (165)

Non-crosslinking methods
RIP-seq Native IP, RNA extraction,

NGS
HIV (178)
Bombyx mori
nucleopolyhedrovirus

(181)

EBV (182–184, 217)
SARS-CoV-2 (180)

Chemical probing SHAPE/DMS chemicals HIV-1 (199)
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prevents long-distance, nonspecific crosslinks that are
commonly induced by chemical crosslinkers such as formal-
dehyde (21). UV-induced crosslinks are also in general highly
specific to nucleic acid–protein interactions.

In both classical biochemical and high-throughput NGS as-
says, the final analyte is anRNA fragment crosslinked to a protein
of interest. UV crosslinking is typically followed by RNase
digestion and enrichment of theRBPof interest using approaches
such as IP or other affinity-capturing methods. Often, the RBP is
digested by proteinase K to leave only small peptide adducts
crosslinked to the RNA. Finally, the RNA–peptide complex is
analyzed either directly or by reverse transcription into cDNA.
CoupledwithNGS, a number of high-throughput platforms such
as high-throughput sequencing of RNA isolated by crosslinking
immunoprecipitation (HITS-CLIP) (22), PhotoActivatable-
Ribonucleoside–Enhanced Crosslinking and ImmunoPrecipita-
tion (PAR-CLIP) (23), and viral PhotoActivatableRibonucleoside
CrossLinking (vPAR-CL) (24) have revolutionized the study of
vRNA–protein interactions by providing unprecedented
sequencing power and scale.

HITS-CLIP/CLIP-Seq

CLIP (crosslinking and immunoprecipitation) combines short
wavelength UV irradiation and IP to identify RNA sequences
interacting with a protein of interest (25, 26). Short wavelength
(�254 nm) UV irradiation has been extensively used to induce
RNA-protein crosslinks for nearly half a century (27). In spite of
this, the detailed photochemistry and biophysical mechanism of
such reaction is not completely understood (28). It is generally
accepted (18, 29–32) that when an aromatic ring (such as the
nitrogen-containing aromatic base of nucleotides) is excited byUV
irradiation, nucleobases are induced to a higher energetic state to
exceed the ionization potential, which generates cation radicals.
The consequence of such short-lived high energy nucleobases is
either rapid thermal relaxation or the formation of a covalent bond
with similar radicals in direct vicinity (such asUV-excited aromatic
rings or other side chains in amino acids) (Fig. 2A). CLIP was first
applied to investigate RNA targets that are bound and regulated by
autoimmune neurologic disease antigens (Nova proteins, (33)) in
mouse brain tissue (25). After UV crosslinking and anti-Nova IP,
CLIP sequence-tags (which represent Nova-binding RNAs) were
Sanger-sequenced to revealRNAmotifs associatedwith alternative
spliced mRNAs regulated by Nova (34). These Nova-targeting
RNA sites were further validated with Nova-/- mice to demon-
strate the advantage of CLIP methodology (25).

In the early days of NGS (35), CLIP quickly benefited and was
adapted into HITS-CLIP (22). HITS-CLIP follows the same gen-
eral scheme of CLIP (22) (Fig. 1): (1) RBP of interest is UV
J. Biol. Chem. (2022) 298(5) 101924 3



Figure 2. Mechanisms of common cross-linking methods. A, 5-S-cysteine-6-hydrouracil as an example of a cross-link product of 254-nm UV; the cyan line
indicates the cross-linking bond. Adapted from the study by Smith and Aplin (218). B, 4-thio-uracil (4SU) cross-linked with amino acid side chains after 365-
nm UV irradiation, which alters hydrogen bond donor/accepter properties of 4SU, and subsequently results in 4SU-guanine mispairing during reverse
transcription. Purple and orange arrows indicate hydrogen bond acceptors and donors, respectively. Adapted from the studies by Hafner et al. (23) Ascano
et al. (80). C, molecular mechanism of formaldehyde cross-link: 1) protein; 2) Methylol; 3) Schiff Base; 4) example of lysine–guanine cross-link after
formaldehyde cross-link. Adapted from the study by Hoffman et al. (21).
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crosslinked with bound RNA via short wavelength UV irradiation
(typically UVC�254 nm or UVB�300 nm) in cell culture; (2) cell
lysate is treatedwith RNase to digest unprotected RNA; (3) IPwith
specific antibodyof theRBPof interest enriches the targetedRNA–
protein complex; (4) subsequent SDS-PAGE is used to remove
noncrosslinked RNA (26); (5) proteinase K is used to cleave the
crosslinked protein next to the carboxyl group of hydrophobic or
aromatic amino acids (36); (6) the covalent interaction between
polypeptide (or sometimes a single amino acid) and ribonucleotide
is retained during RNA purification; (7) finally, sequencing
adapters/linkers are ligated to the purified RNA–polypeptide
complex and RT-PCR is used to reverse transcribe the RNA and
generate dsDNA libraries for high-throughput sequencing.

NGS-coupled HITS-CLIP libraries can readily reveal hun-
dreds of thousands of CLIP sequence-tags (22), which
comprise RNA fragments �50 to 200 nts in length, depending
on the sequencing platform used (22, 26). This far exceeds the
scale of traditional CLIP (usually only a few thousand CLIP
tags (25)). The sequences of CLIP tags are thereafter aligned to
genome to determine RBP-binding sites and RNA motifs
associated with these interactions (22, 28).

Beyond its original application in mouse brain tissue,
numerous applications of HITS-CLIP† have demonstrated its
capacity for RNA-RBP discovery on a transcriptomic scale
(reviewed in (28)). In virus research, HITS-CLIP shined in the
fashion of AGO HITS-CLIP. Argonaute proteins (AGO) are
essential members of the cellular RNA-induced silencing
† Interestingly, HITS-CLIP was renamed “CLIP-Seq” in a study of RbFOX2
splicing regulator targets in human embryonic stem cells (219). Notably,
this alternative term triggered certain confusions, as a number of studies
also referred such term to a collection of similar technologies that
combine CLIP and NGS, such as PAR-CLIP (81). For clarity, in this review,
CLIP-Seq refers to the alternative naming of HITS-CLIP, and other NGS
techniques utilizing CLIP will be discussed separately.
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complex. Guided via their interactions with numerous classes
of small noncoding RNAs (such as miRNAs), AGO proteins
cleave mRNA and repress translation (37). Due to the small
size of AGO-bound miRNAs (�20 nts.), it can be a challenge
to correctly identify their mRNA partners from their sequence
alone as the short miRNAs have many potential ambiguous
cognate sequences in the transcriptome and miRNAs often
bind to their mRNA targets in spite of multiple mismatches.
This can be overcome by AGO HITS-CLIP, which demon-
strated that AGO protein is sufficiently well associated with
miRNAs and mRNAs to allow UV crosslinking of both AGO-
miRNA and AGO-mRNA (38). After IP with specific AGO
antibody, the discovered miRNA sequences can be used to
seed match the codiscovered mRNA targets. AGO HITS-CLIP
quickly empowered virus-encoded miRNA discovery in her-
pesviruses, which encode numerous miRNAs (39, 40). Kaposi’s
sarcoma-associated herpesvirus (KSHV, also known as human
herpesvirus-8) is the tumorigenic cause of Kaposi’s sarcoma
(41). KSHV-encoded viral miRNAs are expressed in latently
infected cells and are regarded to be associated with viral
pathogenesis and tumorigenesis (41). Haecker et al. (42) per-
formed AGO HITS-CLIP and recovered thousands of KSHV
miRNA targets in KSHV-infected primary effusion lymphoma
cells lines, which overlapped with important cellular pathways
for KSHV pathogenesis and tumorigenesis. Importantly, AGO
HITS-CLIP also recovered significantly different ratios of
KSHV miRNAs to human-derived miRNAs, depending on
whether the cell lines are postgerminal B cells (BCBL-1, (43))
or pre-B cells (BC-3, (44)). This suggests KSHV infection can
potentially compromise the host RNA-induced silencing
complex. Similar to KSHV, Epstein–Barr virus (EBV) is
another dsDNA herpesvirus (human herpesvirus-4) that per-
sists in humans with latent infection and tumorigenic potential
in B cells (45). Riley et al. (46) used AGO HITS-CLIP to
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identify a handful of EBV and human miRNA targets in EBV-
transformed B cells (Jijoye cells)and revealed that EBV miRNA
predominantly targets human mRNA 30 UTRs (46). Surpris-
ingly, the highly expressed EBV miRNAs were also found to
target human mRNAs that are involved in transcription
regulation, apoptosis, cell cycle control, and signaling (46). In a
follow-up study, Harold et al. (47) further investigated EBV
miRNA’s interaction with Caspase protein 3 protein (CASP3).
CASP3 is a central host factor regulating apoptosis (48, 49) and
has been speculated to be a target of EBV miRNAs for EBV-
associated apoptosis repression (46). Using the same AGO
HITS-CLIP and more advanced bioinformatics, Harold et al.
discovered that EBV miRNAs specifically bind to the 30 UTR of
CASP3 mRNA at 13 loci. A subsequent reporter assay
confirmed that nine of the discovered EBV miRNAs exhibited
significant repression of CASP3, validating the role of EBV
miRNAs in targeting CASP3 protein (46). Together, the HITS-
CLIP studies on EBV demonstrated the “general-to-specific”
approach to understanding viral miRNA functions, in which
discovery of protein-binding miRNA targets led to specific
hypotheses and experimental validation. Such knowledge can
ultimately contribute to defining molecular mechanisms and
drug design.

Beside human herpesviruses, HITS-CLIP has been applied in
numerous other viruses to study how vRNA and miRNA
interact with cellular proteins, such as AGO. With simian
gammaherpesviruses (Herpesvirus saimiri, HSV), Guo et al.
usedAGOHITS-CLIP to identify the enrichedmRNA targets of
miR-27 in T-cell receptor signaling pathway (50) and robust
AGO-binding sites on both host and HSV genomes that are
mediated by viral U-rich miRNAs (51). Luna et al. (52) used
AGOHITS-CLIP to investigate the relation between hepatitis C
virus (HCV) andmicroRNA-122 (miR-122). miR-122 is a highly
expressed liver-specific miRNA, which is speculated to facilitate
HCV replication (53). AGO binding of vRNA was observed at
multiple regions of viral genome andparticularly clustered at the
HCV 50 UTR miR-122 sites, confirming AGO engagement of
vRNA in a replication-dependent manner (52). In a subsequent
study with recombinant virus, pharmacologic inhibition and a
single-cell reporter assay further elucidated the ability of HCV
RNA replication to derepress host cell miR-122 production that
can lead to potential oncogenesis after viral infection (52).

Inside the virus particle, HITS-CLIP has also been demon-
strated to be a reliable method to characterize interactions
between the RNA genome and structural proteins. This was
well illustrated for RNA–NC interactions in influenza A virus
(IAV) by Lee et al. (54). Infected cells were crosslinked, lysed,
nuclease-digested, and IP-ed with nucleocapsid antibodies for
different IAV strains. HITS-CLIP sequence data revealed
distinctive patterns of binding loci for each strain but that
consistently favored G-rich and U-poor RNA regions. In a
follow-up study, Le Sage et al. (55) extended the HITS-CLIP
in-virion binding profiles to other strains of influenza virus
and found that both IAV and influenza B virus exhibited
“nonuniform and nonrandom” binding patterns between
vRNA and NC and that there is uneven distribution of NC-
binding sites among different vRNA segments.
In spite of the power of HITS-CLIP, several limitations still
apply. While the high energy of short wavelength UV radiation
(UVB, UVC) can efficiently stabilize RNA–protein complexes
(usually within several seconds), UV radiation may also lead to
mutagenesis in the target of interest (56–58). Additionally,
unprotected RNA is prone to fragmentation after excessive UV
irradiation and oxidation thereafter (59, 60). Although HITS-
CLIP is readily applied in cell culture, short wavelength UV
is limited in its penetration depth, which typically cannot
exceed the second layer of epidermis (stratum lucidum) (61).
This prevents HITS-CLIP’s application to complex tissues or
organs. It is also important to note that during short wave-
length UV radiation, protein-RNA crosslinks are not exclusive
(61–63) and extensive RNA-RNA crosslinking can also occur
(64, 65), which can interfere with the interpretation of true
RNA–protein interactions. During downstream analysis, bio-
informatic tools have been developed to maximize the speci-
ficity and sensitivity of HITS-CLIP data (reviewed in (66, 67)).
Nonetheless, HITS-CLIP is relatively coarse in terms of
revealing nucleotide-resolution maps of RBP-binding sites
(usually at a resolution of 30–60 nts). This is partially due to
the lack of complete biophysical knowledge regarding UVB/
UVC crosslinking specificity and their amino acid/nucleotide
preferences (28). New bioinformatic tools allow for the
detection of single nucleotide deletions and transitions in
HITS-CLIP data (68). However, it remains complex to discern
signals from background due to mutations occurring with
different efficiencies for each nucleotide (69). Other technical
artifacts such as mis-priming during reverse transcription (in
the form of overrepresentation of sequences complementary to
the primer) remain to be challenges for HITS-CLIP (70).

PAR-CLIP

PAR-CLIP provides a different path to high-throughput dis-
covery of RNA–protein interactions (23). Based on the same
principle as CLIP, PAR-CLIP integrates a significant variation
through the use of photoactivatable nucleoside analogs. These
enhance UV crosslinking by reducing the required excitation
energy and also increasing crosslinking efficiency (23, 71–73).
Analogs such as 5-azidouracil, 8-azidoadenine, 8-azidoguanine,
4-thiouracil, 5-bromouracil, 5-iodouracil, and 5-iodocytosine
have all been successfully used (reviewed in (71)). Among
these, thionucleobases such as 4-thiouracil (4SU) and 6-
thioguanosine (6SG) have gained popularity for a number of
reasons including the following: (1) sulfur is only 0.45 Å larger
than oxygen (71, 74), allowingminimum structure perturbation;
(2) 4SU or 6SG can be supplemented in cell culture at high
concentrations without obvious cytotoxic effect (23, 72, 73, 75);
(3) the sulfur substitution allows forUVexcitation around330 to
365 nm, avoiding the 260 nm excitation wavelength of native
uracil and minimizing unwanted photochemistry and/or pho-
todamage (71, 74); (4) free radicals of the thio-group can greatly
enhance crosslinking efficiency and crosslinking yield can reach
up to 90% (76); and (5) importantly, the 4SU/6SG incorporated
RNA can lead to specific base mismatches during reverse tran-
scription (U-G, andG-T) (77–79). This latter point is potentially
due to alterations in hydrogen bond donor/acceptor within a
J. Biol. Chem. (2022) 298(5) 101924 5
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base pair as a result of the crosslinked peptide adduct (80)
(Fig. 2B). These crosslink-specific mutations (U-C or G-A
transitions) enable high-throughput screening for the precise
nucleotide at the RNA-protein crosslink and therefore engaged
in RNA–protein interactions.

PAR-CLIP takes advantage of thionucleobase-enhanced
crosslinking with the following basic scheme (illustrated in
Fig. 1): (1) modified nucleotides such as 4SU are supplemented
in cell culture and converted to 4SUTP, which are subse-
quently incorporated into newly synthesized RNA; (2) 4SU-
labeled cells are washed and crosslinked with long wavelength
UV irradiation (typically UVA at 365 nm); (3) lysed cells are
treated with RNase T1 and IPed on magnetic beads with an
antibody specific to the protein of interest; (4) the enriched
RNA–protein complex is then treated with RNase T1 again to
ensure the removal of uncrosslinked or unprotected RNA,
which is followed by radiolabeling of crosslinked RNA; (5) the
recovered RNA-RBP from SDS-PAGE EMSA is then digested
by proteinase K and the purified RNA-polypeptide complex is
ready for reverse transcription and NGS library preparation
(23, 81, 82). In the final sequence data, the RBP-interacting
4SU or 6SG is determined by U-to-C or G-to-A transitions,
respectively. This mutation profile informs the crosslinking
position and ultimately the RNA sites that interact with pro-
tein. Compared to HITS-CLIP, which only reveals the
approximate binding site position, PAR-CLIP therefore pro-
vides a nucleotide-resolution map of RNA–RBP interaction
sites.

PAR-CLIP provides a dependable method for identifying
RNA/miRNA targets of important cellular proteins, such as
Argonaut 2, embryonic lethal abnormal vision (ELAV) protein,
pumilio homolog 2 (PUM2), insulin-like growth factor proteins
(23, 83), as well as identifying actively transcribed tRNA genes
by targeting pre-tRNA binding protein La (lupus antigen, a
ubiquitous pre-tRNA–binding protein) (84). In virus research,
like HITS-CLIP, PAR-CLIP was quickly adapted to identify the
miRNA targets of human herpesviruses including KSHV and
EBV. AGO PAR-CLIP uses 4SU to crosslink AGO with inter-
acting miRNAs and mRNAs. Thousands of viral miRNA/
mRNA targets were revealed to interact with AGO in latent cell
lines infected with either KSHV or EBV (69, 85, 86). Among the
discovered miRNA interaction sites, 7% were EBV miRNAs in
infected lymphoblastoid cells lines (85), and 30%-27% were
derived from KSHV miRNAs in infected BCBL-1 and primary
effusion lymphoma cell line BC-1 (86), which is drastically
different from the HITS-CLIP study of KSHV-infected
BC-3 cells, where �83% of miRNA reads were of viral origin
(42). In comparison to previous studies (42, 46, 47, 69), both
PAR-CLIP and HITS-CLIP demonstrated great reliability in
determining miRNA targets, such as EBNA2, LMP1, and
BHRF1 for EBV and miR-K10a, -K10b, and miR-142-3p for
KSHV (69). As for AGO-mRNA targets, the number of genes
regulated by viral or host miRNAs were found to be limited in
both EBV and KSHV, while instead the majority of mRNA
matches (of KSHV-encoded miRNAs) were targets within the
host transcriptome (85, 86). This is expected as viral replication
cycles are minimal in the selected latent cell lines (69). Among
6 J. Biol. Chem. (2022) 298(5) 101924
the AGO mRNA targets characterized by PAR-CLIP, cellular
pathways such as transcription regulation, intracellular
signaling and transportation, protein localization, MAPKKK
(Mitogen Activated Protein kinase kinase kinase), were found to
be consistently influenced by both EBV and KSHV miRNAs
(86). This suggests a functional similarity between KSHV and
EBV miRNAs, despite their evolutionary distance.

PAR-CLIP has also been extensively utilized in HIV
research. The HIV-1 Gag polyprotein contains viral structural
proteins that coordinate numerous features of the viral life-
cycle including genome selection, intracellular genome traf-
ficking, virion assembly, budding, and maturation (reviewed in
(87, 88)). This indicates that there are extensive interactions
between Gag and numerous host and vRNAs at each of these
different stages. Kutluay et al. (89, 90) used PAR-CLIP to
enrich Gag–RNA complexes form both cells and virions to
investigate the global Gag-RNA interactome during and after
Gag-orchestrated genome assembly. This uncovered a sur-
prising and drastic shift in profiles of Gag-interacting RNAs
during HIV-1 intracellular virion assembly (90). The cytosolic
monomeric Gag–RNA complexes occurred at discrete se-
quences within both the 50 leader and 30 Rev Response
Element (RRE) of the HIV genomic RNA, suggesting these
sites may be spatially adjacent (90). This was contrasted by the
membrane-bound, oligomeric Gag-RNAs, which bound a
range of sites across viral genome. Such dynamic RNA-binding
properties of Gag are also observed during the viral maturation
process. Mature virions, which comprise proteolyzed Gag,
exhibited a Gag-RNA profile similar to that of the cytosolic
fraction, whereas the immature virion exhibited significant
similarity to membrane-bound Gag-RNA profile. In addition
to vRNA, HIV-1 also packages cellular RNAs (91). Motif
enrichment analysis (92) uncovered that cytoplasmic Gag
binds to GU-rich cellular RNAs while membrane-bound Gag
favors A-rich motifs (90). In the same study, individual do-
mains of Gag were also investigated with PAR-CLIP to char-
acterize RNA-binding specificity. The matrix domain (MA) of
Gag was found to be devoid of vRNA but exclusively interacted
with host tRNA (90). Interestingly, such MA–tRNA in-
teractions showed strong preference for specific tRNA anti-
codons. Specific tRNAs such as GluCTC, GluTTC, and GlyGCC

were bound up to 100-fold more frequently than others (90).
In contrast, NC was found to be primarily crosslinked to vRNA
and largely resembled the interaction profile of full-length Gag.
The detailed dissection of Gag domains, in combination with
PAR-CLIP, addressed the question of whether MA can interact
with viral or cellular RNAs (93). Together, Gag PAR-CLIP
offered a valuable approach to determine the reciprocal and
dynamic relationship between HIV-1 Gag and RNA in the
context of membrane association during virion genesis.

HIV-1 integrase (IN) is a multi-domain enzyme and one of
the cleaved products of Pol polyprotein (94). IN mediates the
integration of viral DNA into host chromosomes following the
production of double-stranded proviral DNA from reverse
transcription (95, 96). In addition to integration, IN has long
been suggested to coordinate viral replication and virion
maturation. Mutated IN can lead to the eccentric “exile” of



JBC REVIEWS: NGS approaches to study viral RNA–protein interactions
ribonucleoprotein complexes (RNPs) outside of capsid shell
and ultimately impairs virion maturation (97–101). Using
PAR-CLIP, Kessl et al. identified IN-binding RNA targets in
virions (102). IN showed strong binding preference for the
trans-activation response (TAR) element (103) and RRE, but
not for the packaging element ψ, suggesting IN and NC have
both shared and unique roles in HIV-1 genome assembly and
particle maturation (102). In vitro biochemical experiments
and mass spectrometry–based protein footprinting (104) were
conducted to validate IN-RRE/IN-TAR binding and to eval-
uate their affinities with deletions/changes of structural ele-
ments. The quinoline-based allosteric HIV-1 integrase
inhibitors are a class of anti-HIV agents that bind noncatalytic
sites of IN, preventing IN–vRNA interactions (105). In one
study, Madison et al. (106) used allosteric HIV-1 integrase
inhibitors (107) to promote eccentric maturation of HIV-1 and
applied PAR-CLIP (alternatively named “CLIP-seq” in this
study) to reveal conservation of NC–vRNA interaction sites,
despite vRNA being mislocated outside the capsid shell.
Together, PAR-CLIP unveiled the correlation of IN–vRNA
interactions and particle maturation.

In addition to important HIV-1 viral proteins, PAR-CLIP
has been used to investigate several HIV-1-related cellular
factors, antiviral proteins, and RNA modifications (reviewed in
(108)). For example, APOBEC3 (A3) is a family of cytidine
deaminases that can suppress a broad range of viruses,
including HIV-1 (109, 110). PAR-CLIP has been used to un-
cover the preferential binding of A3 proteins to cellular and
virion vRNAs, suggesting binding specificity is influenced by
nucleotide composition (G-rich and/or A-rich) instead of
sequence (111). In a following study, PAR-CLIP revealed the
virion-encapsidated human A3H haplotype II (huA3H) protein
favors interaction with short RNA duplexes (7 nucleotides)
(112). Another host protein related to HIV-1 pathogenesis is
the Zinc finger antiviral protein (ZAP). ZAP represents
another class of antiviral host factors targeting a broad range of
viruses by promoting the degradation of viral mRNAs (113).
PAR-CLIP provided evidence that ZAP binds highly specif-
ically to CpG dinucleotides (114). This allows for ZAP to
differentially target viral but not host mRNA, as the latter is
typically depleted of frequent CpG dinucleotides (115). It is
also interesting to note that some have speculated that HIV
has similarly began evolving to evade this mechanism by
altering dinucleotide content (116, 117).

In host cells, DNA methylation of provirus promoter
regions has been shown to regulate HIV-1 latency and tran-
scription activation (118). In addition, RNA methylation has
recently been recognized as an important factor in HIV-1 RNA
metabolism and replication (119). Methylation of adenosine at
the N6 position (m6A) is the most prevalent mRNA modifi-
cation, which are ‘read’ by the cytoplasmic YTH domain family
(YTHDF) proteins (120). One study used PAR-CLIP to enrich
YTHDF–vRNA complexes and unveiled that m6A modifica-
tions were clustered at HIV-1 30 UTR exclusively (121).
Interestingly, another study applied HITS-CLIP instead of
PAR-CLIP (122) and determined that binding sites of
YTHDF1–3 proteins are located in both 50 and 30 UTRs. This
discrepancy provides an interesting comparison of the two
methods and suggests that HITS-CLIP allows for a more
permissive and therefore sensitive detection of protein-binding
sites, while PAR-CLIP provides a more stringent but specific
readout.

PAR-CLIP applications in virus studies are far beyond the
above-mentioned human herpesviruses and HIV. Influenza
virus, flavivirus, and alphavirus research have all benefited
from PAR-CLIP and its extensions. We listed more selected
applications in Table 1.

Similar to HITS-CLIP, PAR-CLIP also has several intrinsic
limitations. The introduction of a nucleoside analog to nascent
RNA transcripts or vRNAs limits PAR-CLIP applications
within the scope of cell culture and in vitro systems instead of
in vivo research. Photoactivatable nucleoside-induced cyto-
toxicity (123), as well as other cellular stress and inhibitory
effects (124), should also be critically evaluated for each cell
line or experimental model. The concentration and uptake
efficiency of analogs also require optimization. Typically, only
one analog is applied in PAR-CLIP experiment. This dictates
that the observable interacting sites are limited to the crosslink
events at that particular nucleotide (e.g., only U crosslinks can
be revealed with 4SU supplement in cultured cells). Although
it is possible to supplement with a different analog in parallel
experiment (e.g., 6SG), they each exhibit different crosslink
efficiencies and signal intensities (23). Similarly, thio/UVA–
induced crosslinks only favor reactive amino acid side chains
(mainly phenylalanine, tyrosine, and tryptophan, while lysine
and cysteine can also be crosslinked to a lesser extent) (77, 79),
hence certain RNA–protein interaction lacking these favorable
amino acids may be missed. The long and technical experi-
mental procedures of PAR-CLIP (Fig. 1) also demand a large
quantity of starting material (usually starting between 108 and
109 cells) (81). Additional concerns such as antibody speci-
ficity, IP efficiency, as well as whether a crosslink can interfere
with antibody binding, should also be considered for PAR-
CLIP, as with HITS-CLIP and other IP-based techniques.

vPAR-CL

vPAR-CL represents a technique that is different from other
CLIP-based methods. vPAR-CL is specifically designed to
investigate the in virio RNA–protein interactions of an RNA
virus (24). In contrast to the complex cellular micro-
environment, vPAR-CL takes advantages of the unique and
highly confined enclosure of an assembled virus, which only
consists of few well-defined components (e.g., vRNA and
capsid). In return, vPAR-CL obviates the time- and resource-
consuming IP process but instead relies on the standard
purification of the given virus (24). vPAR-CL starts in an
analogous fashion to PAR-CLIP (Fig. 1), whereas a photo-
activatable nucleoside analog (e.g., 4SU) is supplemented to
cell culture during virus infection to label newly synthesized
vRNA genomes. After cell lysis, the virus particles are purified
(typically with PEG precipitation and/or sucrose gradient ul-
tracentrifugation) and RNase treated to remove any copurified
unpackaged viral or host RNAs. The intact, 4SU-containing
viruses are crosslinked with 365 nm UV and then are subjected
J. Biol. Chem. (2022) 298(5) 101924 7
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to proteinase K digestion, RNA extraction, reverse transcrip-
tion, and NGS library construction. In comparison to
PAR-CLIP (23, 81, 82), vPAR-CL avoids the need for labor-
intensive procedures such as IP of RBP, dephosphorylation,
radio-labeling, SDS-PAGE and electro-elution, and therefore
significantly shortens the time frame of experiments and the
requirement of starting materials. When coupled with the
fragmentation-free NGS technology such as ClickSeq (125,
126), vPAR-CL can yield results with less than 2 μg of viral
particles (equivalent to 250 ng of vRNA in the case of Flock
House virus (FHV)) (24), while typical PAR-CLIP starts with a
large number of cells (e.g., 108 cells or approximately 10–50
15 cm cell culture plates for HEK293 cells) (81, 82). Removing
the IP in vPAR-CL mitigates the bias generated due to speci-
ficity of antibodies and efficiency of IP and the associated
procedures. This also prevents any potential interference of IP
that is caused by RNA-protein crosslinking. Without any
artificial enrichment, vPAR-CL largely minimizes the back-
ground noise, as any random, nonspecific crosslinked signals
and intrinsic viral mutations will be diluted, while specific and
consistent RNA-capsid interactions can readily be discerned
(24). An important and novel feature of vPAR-CL is derived
from the fact that all purified vRNA is sequenced (rather than
just the IP-enriched crosslinked fragments) from both cross-
linked RNA (4SU+/UV+) and noncrosslinked control (4SU+/
UV-). As a result, vPAR-CL directly compares the U-to-C
transition rates between conditions. This eliminates intrinsic
mutational events (127) from interaction site interpretation
(24) (Fig. 3) but also provides a ratiometric value for RNA-
crosslinking, allowing for both the identification of RNA re-
gions that are bound to RBPs in a conserved and structured
manner as well as providing information on which sites do not
interact with RBPs.

vPAR-CL has been demonstrated with FHV to reveal highly
conserved RNA-capsid interactions across the entire encapsi-
dated viral genome. This suggests a structural tropism of the
RNA inside virion (24) that likely reflects the dodecahedral
RNA cage previously observed for FHV RNA in x-ray and
cryo-EM studies (128). The distribution of RNA-capsid
interaction clusters also suggests that the packaged FHV
genome has multiple conserved RNA-capsid–binding sites.
This indicates that the genome packaging mechanism of FHV
could resemble that of other +ssRNA viruses (16). Combined
Figure 3. Example of vPAR-CL signals across full-length RNA1 genome of
virus (4SU+/UV+) and non-cross-linked control virus (4SU+/UV−) to yield vPA
Adapted from the study by Zhou and Routh (24).
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with dimethyl sulfate mutational profiling with sequencing
(129), it was also uncovered that FHV RNA-capsid interactions
are enriched in dsRNA regions, and the disruption of base
pairing at these vPAR-CL sites interfered with viral fitness (24).

vPAR-CL represents a rapid and labor-friendly method to
specifically study in virio RNA–protein interaction sites. Both
vPAR-CL and PAR-CLIP utilize photo-activatable nucleoside
analogs to achieve efficient crosslinking and investigate
nucleotide-resolution interactions sites. Therefore, vPAR-CL
shares the same biochemical limitations as PAR-CLIP related
to thio-based photo-crosslinking. Additionally, due to the lack
of enrichment of crosslinked 4SU-containing RNA–protein
complexes, the incorporation rate of 4SU is critical in vPAR-
CL experiments, which determines whether the vPAR-CL
signal can stand out above the background. This requires
optimization on 4SU dosage and virus harvest timing. vPAR-
CL is demonstrated to be reliable to resolve the protein-
interaction sites in icosahedral particles such as FHV, whose
RNA genome is in direct contact with single protein
component-the capsid. It remains an open question whether
vPAR-CL can be adapted to other enveloped viruses such as
flavivirus, in which the vRNA genome may be in contact with
multiple protein components (17).

Other CLIP-derived methods

There are many techniques derived from the same rationale
as CLIP but differ in downstream procedures and applications
to identify specific protein–RNA interactions in cells, viruses,
and in vitro (reviewed in (130–132)). Nonetheless, the prin-
ciples behind these protocols remain largely the same, as do
many of the steps necessary to conduct these experiments and
analyze the resulting sequencing data. Here, we will only
provide a brief overview to compare and contrast a handful of
these CLIP-derived methods based on their hallmarks.

In individual nucleotide resolution CLIP (iCLIP) (133),
crosslinked RNA-RBP sites are identified via cDNA chain
termination at the introduced covalent bonds during reverse
transcription, which is expected to occur in more than 80%
cases (133). This contrasts HITS-CLIP which typically char-
acterizes the approximate crosslinking sites after cDNA
read-through. To capture these truncated cDNA, the reverse
transcription primer contains both the 30 and 50 adapters for
sequencing. The transcribed cDNA is then intramolecularly
FHV. The U-C transition rates (upper) were compared between cross-linked
R-CL signals (lower), which represents the fold change of U–C transitions.



JBC REVIEWS: NGS approaches to study viral RNA–protein interactions
circularized. This, importantly, allows for nucleotide resolu-
tion mapping of the interaction site, which is located one
nucleotide upstream of the truncation site.

Infrared-CLIP (134) utilizes antibody-conjugated beads to
IP RNA–RBP complex followed by on-bead RNase digestion
to maximize retained RNA fragments. This is followed by the
ligation of an IR800-biotin adapter to the 30 end of IP-ed RNAs
to avoid the standard radioisotope labeling (of HITS-CLIP and
PAR-CLIP) at the 50 ends of RNA molecules. The infrared-
biotin adapter not only prevents the inconsistent autoradiog-
raphy signals due to radioisotope decay but also largely
reduces the time required for protein–RNA complex visuali-
zation with equivalent efficiency.

In simplified CLIP (135), after IP, crosslinked RNA is biotin
labeled and subsequently visualized via streptavidin-
horseradish peroxidase to avoid radiolabeling. This is fol-
lowed by proteinase K digestion and polyadenylation of RNA
to allow reverse transcription with a modified oligo-d(T)
primer. This obviates the ineffective RNA ligation of
sequencing adapters, allows for low input materials during
reverse transcription, and omits size-selection of cDNA
products. Therefore, as the name suggests, simplified CLIP
presents a simplified and efficient procedure compared to
traditional HITS-CLIP.

Enhanced CLIP (136) builds upon the iCLIP protocol but
instead incorporates two separate adapter ligation steps: (1)
after IP, the enriched RNA is dephosphorylated and the first
ssRNA adapter is ligated to the 30 end of crosslinked RNA.
This first adapter contains an “in-line-barcode” to enable the
pooling of similar molecular weighted samples from multiple
experiments; (2) The second ssDNA adapter, which contains a
random nucleotide sequence (a random-mer), is ligated to the
30 end of cDNA after RT. This ssDNA adapter serves to pre-
serve the single-nucleotide resolution of terminated cDNA
reads. The random nucleotide sequence of the second adapter
(also commonly referred as unique molecular identifier) allows
for demultiplexing and to determine whether identical
sequenced reads represent two unique RNA fragments
(bearing different random-mer sequences) or the PCR
duplicates of the same RNA fragments (bearing the same
random-mer sequences). Together, enhanced CLIP provides
an approach to greatly shorten the hands-on time of typical
CLIP-based techniques and to reduce nonspecific RNA–
protein interaction artifacts and PCR bias during data
interpretation.

In terms of virus research, we list examples of these CLIP-
derived methods that have been used to study protein–RNA
interactions in response to viral infections (Table 1).
Chemical crosslinking

Although photo- (UV-) crosslinking methods offer reliable
solutions to characterize direct RNA-protein contacts with
nucleotide or near-nucleotide resolution, methods such as
HITS-CLIP, PAR-CLIP, vPAR-CL, and other similar technol-
ogies are only effective for in vitro, in virion, and cell culture
studies. When it comes to a whole tissue or whole organism
scale, UV-light often falls short in providing a viable cross-
linking solution, due to its deficiency in evenly penetrating
dense and complex tissues. Instead, crosslinking methods us-
ing chemicals such as formaldehyde are widely used due to
their ability to permeate different tissues.

Formaldehyde elicits crosslinking of a broad range of bio-
molecules. Between protein and nucleotides, formaldehyde
first reacts with protein nucleophiles to yield an imine (Schiff
Base), whose subsequent interaction with amino groups of
DNA/RNA bases results in covalent crosslinking (Fig. 2C)
(reviewed in (21)). In comparison to “zero-distance” photo-
crosslinking, the additional carbon of formaldehyde extends
the crosslinkable range to �2 to 3 Å (21) (2 N-C bonds be-
tween nucleic acid and amino acid) but still allows for cross-
linking of macromolecules within close proximity (137, 138). It
has been suggested that the numerous formaldehyde aggre-
gates in commercial products can further extend the distance-
spanning capability to much greater distances (21, 139).
Therefore, formaldehyde is able to crosslink and capture
certain RNA–protein interactions that are otherwise excluded
from UV crosslinking (140, 141). An important feature of
formaldehyde crosslinking is its reversibility. The heat and salt
conditions allowing for formaldehyde crosslink reversal have
been well characterized (138, 142, 143) and are critical in
ChIP/ChIP-seq experiments (144).

PIP-seq (141, 145, 146) was therefore developed, which
combines crosslinking, RNase-mediated protein footprinting,
and high-throughput nuclease-sensitivity sequencing assays
(147, 148). Although PIP-seq can also utilize UV to crosslink
RNA-RBP, formaldehyde remains the most common reagent
in this application. In PIP-seq, formaldehyde-crosslinked cells
are lysed and total cellular RNA–protein complexes are
separated into two pools. Pool 1 (experimental group) un-
dergoes RNase digestion and subsequent heat reversal to
enrich for protein-bound RNA footprints (crosslinked and
hence protected from RNase digestion). Pool 2 (control group)
is first subjected to proteinase K treatment and subsequent
RNase digestion. This is followed by heat reversal of formal-
dehyde crosslinks. The recovered RNAs from both pools are
used as input for NGS library synthesis. Comparison of the
read coverage across the whole host transcriptome is drawn to
identify protein-protected RNA sites, which is represented by a
differential signal between pool 1 and pool 2 (141, 145, 146).
The use of ssRNA- or dsRNA-specific RNases allows identi-
fication of ssRNA or dsRNA sites that are associated with
proteins (145). PIP-seq has been applied in human cell (HeLa)
(141) and plant cell (145, 149, 150) transcriptomes and iden-
tified numerous novel RPB-binding motifs, including enriched
RBP-reacting polymorphisms that are associated with diseases
(141).

PIP-seq is not accompanied with any conventional IP
methods to allow specific enrichment of RBPs of interest.
Unlike vPAR-CL which is only applied in virions with highly
selected RNA/protein components, PIP-seq instead searches
the entire transcriptomic length in a complex cellular or
in vivo setting. This reveals the global state of protein-bound
RNA sites, without informing on the counterpart (RBP). To
J. Biol. Chem. (2022) 298(5) 101924 9
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address this, ‘RNA:protein immunoprecipitation in tandem
(RIPiT)-Seq’ can be performed (151). RIPiT-Seq resembles a
chimeric form of PIP-seq and RIP (Native RNA IP)-seq, which
combines formaldehyde crosslinking, RNase footprinting, and
IP to allow discovery of RNA-binding sites of RBP of interest.
Of note, in RIPiT-Seq, the RBP of interest is typically addi-
tionally labeled (e.g., FLAG-tag). After formaldehyde cross-
linking, two sequential IP steps (with anti-FLAG and anti-RBP,
respectively) are involved and separated by RNase treatment to
generate RNP footprints. This is followed by crosslink reversal,
RNA extraction, dephosphorylation, size selection, and NGS
library construction (151). As a major advantage of RIPiT-Seq,
the two sequential IPs (which is enabled by additional FLAG
tag) significantly deplete intracellular RNA species (e.g., rRNA
fragments, tRNAs), which therefore improves signal-to-noise
ratio in the downstream NGS assays.

Although formaldehyde is commonly regarded as a more
efficient and powerful crosslinker to UV irradiation, formal-
dehyde readily induces protein-protein crosslinking, which can
interfere with the specificity of identification of desired RNA–
protein interaction as well as yielding indirect signal (149). It is
also important to recognize the formaldehyde aggregates in
commercial formalin solution (21, 139) can potentially intro-
duce significant amount of long-range, nonspecific multi-
component crosslinks in biological samples. The required
sample-by-sample optimization of crosslinking conditions (to
avoid over-crosslink) and the RNA thermo-damage during
crosslink reversal also remain as challenges of PIP-seq method
and other formaldehyde-based approaches.
Affinity-capture methods and proteomics

Besides IP, affinity-capture (152) provides an alternative
solution to specifically purifying protein contents of interest as
well as to enrich crosslinked RNA sequences. There are
numerous adaptations of HITS-CLIP or PAR-CLIP, in which
IP was replaced with affinity-capture methods. One innovative
application that combines affinity-capture and NGS is
proximity-CLIP, which utilizes the unique abilities of engi-
neered ascorbic acid peroxidase protein 2 (APEX2) to bio-
tinylate proximal endogenous proteins with biotin-phenol
moieties (153–155). In proximity-CLIP (156), APEX2 is fused
with a localization element to specifically target a subcellular
compartment, and cells are infused with 4SU. APEX2 is acti-
vated by biotin-phenol and subsequent hydrogen peroxide
addition to covalently tag proteins of proximity with biotin.
This is followed by 4SU-induced UVA crosslinking (as
described for PAR-CLIP) to capture nascent transcripts
interacting with biotinylated proteins. Compartment-specific
RNPs and proteins are then captured by streptavidin affinity
chromatography. Quite uniquely, proximity-CLIP allows for
concurrent compartment-specific analysis of both proteome
(via mass spectrometry) and interacting RNAs (via RNA-seq)
(156). A similar technology, APEX-seq (157–159), is based on
the same rationale and provides yet another solution to depict
both the proteome and its interacting RNA profiles with
specificity to a certain cellular compartment. In contrast to the
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4SU-induced crosslinking of proximity-CLIP, APEX-seq typi-
cally crosslinks RNA to proteins via formaldehyde (159) or
even bypasses crosslinking altogether (157, 158). In virus
research, APEX-seq data was referenced in a study investi-
gating localizing signals in SARS-CoV-2 RNA, predicting that
both genomic and subgenomic vRNAs are localized to the host
mitochondria and nucleolus (160).

As a recent development, VIR-CLASP (VIRal Crosslinking
And Solid-phase Purification) also presents a method that is
designed to investigate the protein components of the vRNA-
cellular RBP interactions (161). In VIR-CLASP, in a similar
fashion to vPAR-CL (24), cells are 4SU labeled and infected
with virus of choice, such as chikungunya virus (161). This is
followed by UVA crosslinking and cell lysis. The denatured
RNA–protein complexes are then recovered with solid-phase
purification with solid phase reversible immobilization (162)
beads to selectively enrich for nucleic acids. RNA is digested
with nucleases and the crosslinked protein components are
identified by LC–MS/MS. In addition to chikungunya virus,
VIR-CLASP also successfully identified host proteins inter-
acting with viral genomes of IAV (163), Zika virus (164), and
SARS-CoV-2 (165). Notably, similar techniques have been
applied previously to study the mRNA-binding proteins in
mammalian cell lines (166), with the main difference being the
use of oligo(dT) beads to harvest crosslinked RNA–RBP
complexes. Interestingly, in this study, the use of 4SU-
induced crosslinking and mass spectrometry for protein
identification is informally termed “PAR-CL”, which is not to
be confused with vPAR-CL.

There are also numerous RNA-centric methods that utilize
affinity-capture to investigate RNA–protein interactions. For
example, RNA Bind-n-Seq (167, 168) is based on the same
principle of RIP-seq where no crosslink was induced. However,
in RNA Bind-n-Seq, streptavidin-binding peptide tag was used
to purify the targeted protein with streptavidin magnetic
beads. Similarly, crosslinking and affinity purification (iCLAP)
(169) purifies double-tagged (Strep/His) RBPs using strepta-
vidin beads.
Non-crosslinking methods

RIP-seq

Native RNA immunoprecipitation (RIP) was first applied to
isolate and purify proteins interacting with the XIST RNA that
controls X chromosome inactivation (170, 171). RIP quickly
partnered with NGS to form RIP-seq to allow high-throughput
screening of Polycomb repressive complex 2 (PRC2) inter-
acting RNAs in embryonic stem cells (172). The rationale of
RIP-seq is largely similar to HITS-CLIP, with the main dif-
ference of the lack of crosslinking (171, 172). Instead, RIP-seq
relies on the native high affinity between certain RNAs and
RBPs to withstand the subsequent IP and purification. In RIP-
seq, cell or nuclear lysates are directly subjected to specific
antibody binding and bead pull-down. Strongly bound RNAs
are retained after extraction and NGS libraries and bioinfor-
matics assays are conducted thereafter (172, 173). RIP-seq is
demonstrated to be a versatile method of transcriptomic
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miRNA/mRNA-RBP profiling in the fields of stem cell
research, RNA epigenetics, and alternative splicing (172, 174–
176). Alternatively to NGS, RIP has also been combined with
microarray analysis to yield another high-throughput appli-
cation: RIP-Chip (177).

In virus research, Lichinchi et al. combined m6A IP and
RIP-seq (MeRIP-seq) to study the HIV-1 induced m6A in-
crease in both host and viral mRNAs and uncovered the
connection between HIV-1 RRE methylation and nuclear
export efficiency of RNA (178). Similarly, a recent study
combined m6A-RIP-seq and m6A-PAR-CLIP (miCLIP) (179)
to reveal eight putative m6A sites in the SARS-CoV-2 genome
(180). Importantly, single-nucleotide variants associated with
these identified m6A sites allowed the phylogenetic clustering
of specific US epidemic strains of SARS-CoV-2. In silkworms
infected with Bombyx mori nucleopolyhedrovirus (BmNPV),
Nie et al. conducted AGO2 RIP-seq and identified numerous
small noncoding RNAs, including highly enriched rRNA-
derived fragments (181). With EBV, AGO2-RIP-seq depicted
the viral and cellular miRNA landscape in diffuse large B-cell
lymphoma cell lines (182) and lymphoblastoid cell lines (183).
Another important EBV protein is Epstein-Barr nuclear anti-
gen 1 (EBNA1), which plays a vital role in viral replication and
the partitioning of viral genomic DNA during latent viral
infection but it has also been shown to alter splicing of host
mRNAs (184). EBNA1-RIP-seq clearly showed that EBNA1
bound specific cellular targets such certain mRNAs and non-
coding RNA (184). Interestingly, the discovered EBNA1-RIP-
seq targets did not include any gene whose splicing was
modulated by EBNA1, suggesting that EBNA1’s ability to
modulate splicing does not require direct interaction between
EBNA1 and target RNAs (184).

In RIP-seq, the obviation of crosslinking largely shortens the
experimental procedure and reduces the requirement of
starting material. However, the exclusion of crosslinking also
limits the application of RIP-seq. The requirement for strong
interactions within an RNA–RBP complex that can withstand
purification procedures is unguaranteed and the IP of non-
crosslinked RNA inevitably precludes stringent washing dur-
ing purification that would remove contaminants. Similarly,
RNase digestion must be controlled carefully in RIP-seq. RIP-
based techniques are typically suitable for stable RNP, such as
those interacting with noncoding RNAs (185). RIP therefore
provides a suboptimal solution for the study of transient or less
stable RNA–protein interactions. Furthermore, false positive
signals can arise from the reassociation of RNA (particularly
mRNA) and proteins in the lysate (185–188).
SHAPE/DMS flexibility probing

Selective 20-hydroxyl acylation analyzed by primer extension
(SHAPE) and dimethyl sulfate (DMS) chemistries have been
extensively used as RNA secondary structural probing
methods, due to their extraordinary abilities to methylate
flexible nucleotides in biological samples (SHAPE methylates
20-OH of RNA ribose while DMS methylates N1 of adenine
and N3 of cytosine) (189–193). More recently, SHAPE or DMS
probing has been empowered by high-throughput NGS and
advanced bioinformatics to generate mutational profiles
(MaPs) to offer incredible depth and single nucleotide reso-
lution to transcriptomic scale RNA structure discovery
(129, 194–198). As great as their power in ssRNA probing, it is
often overlooked that SHAPE and DMS are, at their core,
nucleotide flexibility probes. Both structural (e.g., base pairing)
and functional restrictions (e.g., RNA–protein interaction,
DNA nucleosome formation) can preclude methylation and
allow unveiling of the structural/functional relations. Indeed,
Smola et al. (197) used SHAPE-MaP to investigate intracel-
lular RNA–protein interactions: SHAPE chemical 1M7 was
applied under native conditions to living cells as well as
extracted and refolded RNAs. The differences in SHAPE
reactivity can hence be compared as the ex vivo RNA samples
are deproteinized and lack numerous RNA–protein in-
teractions compared to in cellulo. Similar to PIP-seq (141),
SHAPE-MaP and related chemical probing methods provide a
high-throughput transcriptomic scan of RNA–RBP interaction
sites, with little prerequisite for existing knowledge of involved
proteins or RNAs. In addition, Kenyon et al. also combined
SHAPE-MaP with photo-crosslinking to fully take advantage
of both worlds (199). XL-SHAPE (crosslink and SHAPE) uti-
lizes SHAPE reagent N-methylisatoic anhydride in conjunc-
tion with 254 nm UV irradiation to concurrently capture RNA
structural changes as well as protein-binding sites. With
in vitro crosslinking, XL-SHAPE successfully identified the
RNA-interacting site of HIV-1 Tat/TAR (200) complex and
Gag-binding site on HIV-1 leader sequence. This was further
complimented by differential SHAPE reactivities of bound/
unbound RNAs (199). Similar “function-to-structure” investi-
gation has also been conducted on FHV, in which vPAR-CL
and dimethyl sulfate mutational profiling with sequencing
were used to identify clustered RNA–capsid interactions on
dsRNA (24).
Perspective

Virus research has been fueled by rapidly emerging high-
throughput and quantitative tools to study RNA–protein in-
teractions. Since the development of HITS-CLIP, RNA
research as well as the RNA virus field has evolved to tran-
scriptomic and genomic scale studies. It is apparent that the
NGS-enabled RNA–protein interaction technologies are an
ever-growing field and that more and more such techniques
will continue to be applied in an expanding range of viral and
biological systems. It is inevitable that many of these tech-
nologies have been adapted or developed to study pressing
issues such as the ongoing SARS-CoV-2 pandemic.

With such a great availability of NGS-enhanced technolo-
gies to investigate RNA–protein interactions, it could be
overwhelming to determine the most appropriate scenarios to
apply each technique. We hereby provide a quick reference
flowchart (Fig. 4), in which we categorized the above-
mentioned approaches based on their discovery goals (RNA-
centric or protein-centric discoveries), their starting materials,
and procedural requirement (e.g., whether antibody is available
J. Biol. Chem. (2022) 298(5) 101924 11



Figure 4. A quick reference flowchart based on different methods’ discovery goals, starting materials, and procedural requirements.
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for IP). This flowchart is intended for brief guidance, while
many other factors should be considered during experimental
design.

Certainly, many challenges remain. Although novel methods
such as vPAR-CL reduce experimental burden, many tech-
niques are still labor-intensive and require handling of haz-
ardous materials such as radioisotopes. Both technological and
computational advances are necessary to improve
RNA-binding site discovery to have a higher sensitivity, lower
bias, and better specificity. It is also challenging to adapt these
methods to applications in more complex scenarios such as in
animal models or higher plants. Finally, as many techniques
only focus on end-point analysis, it is important but remains
difficult to understand how the RNA–protein interactions and
the associated regulatory networks dynamically change at
different timescales. This is especially important to virus
research as vRNA genomes encounter a myriad of protein
partners throughout their replication cycles.

It is also tempting to cross-compare different platforms for
their reliability, sensitivity, and the biological relevance of the
discovered sites. However, it remains challenging to draw such
conclusions, as different experimentalists will inevitably
employ different cell lines, culturing conditions, virus strains,
infection methods to address their own research need.
Numerous crosslinking methods, enzymes (83), sequencing
adapters (201), and bioinformatic pipelines (67, 202) can all
dictate the final output of experiments. To the best of our
knowledge, there is no systemic study available thus far to
compare different approaches in detail. Nevertheless, a few
studies managed to provide a glimpse at how certain methods
overlapped or contrasted with others, in their own specific
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experimental scenarios. In one forementioned example, two
studies tackled HIV-1 mRNA methylation sites with PAR-
CLIP and HITS-CLIP (122). PAR-CLIP revealed (121) the
exclusively enriched m6A sites at 30 UTR whereas HITS-CLIP
identified sites at both 50 and 30 UTRs (122). The exact
nucleotide sequences of identified sites in these two studies are
also different. In another study (83), both HITS-CLIP and
PAR-CLIP were used with the same bioinformatic framework
to investigate RNA-binding sites of HuR protein (203). It is
shown that each method delivered reproducible results with
similar correlation coefficient between replicates (83).
However, there was no direct cross-comparison between
HITS-CLIP and PAR-CLIP in regard to the proportion of
overlapped discoveries. These limited examples suggest
divergencies of the different approaches: each highlights its
own advantages and limitations; each has its own focus (e.g.,
HITS-CLIP focuses on a wide range of binding sites, while
PAR-CLIP focuses on higher specificity of the binding sites);
each will discover different sets of RBP-binding sites on a given
transcriptome or genome. It also demonstrates that the NGS
and bioinformatic discoveries resulting from any of these
approaches should be considered as a highly efficient
hypothesis-generating approach, which ultimately necessitate
experimental validation.

Looking ahead, several rapidly growing new technologies
also help depict a bright picture of virus RNA–protein inter-
action research. For example, single-cell RNA sequencing al-
lows for comprehensive understanding of an individual cell in
the context of its original microenvironment. Additionally,
Oxford Nanopore Technologies’ long-read nanopore
sequencing is advantageous in generating long and continuous
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single-molecule sequencing reads, which can effectively cover
the entire virus genome to understand the coevolution of
distant virus mutations and other features (204). Furthermore,
nanopore sequencing can directly sequence RNA in its native
state, allowing for the detection and resolution of modified
RNA bases which may be extended to detect peptide adducts
generated due to RNA-protein crosslinking. Altogether, it is
foreseeable that both single-cell RNA sequencing and Nano-
pore sequencing, among other new technologies, will further
lead the vRNA-protein interaction research to new and
exciting avenues in the near future.
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