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Abstract: This review aims to summarize the methods that have been used till today,

highlight methods that are currently being developed, and predict the future roadmap for

anticancer therapy. In the beginning of this review, established approaches for anticancer

therapy, such as conventional chemotherapy, hormonal therapy, monoclonal antibodies, and

tyrosine kinase inhibitors are summarized. To counteract the side effects of conventional

chemotherapy and to increase limited anticancer efficacy, nanodrug- and stem cell-based

therapies have been introduced. However, current level of understanding and strategies of

nanodrug and stem cell-based therapies have limitations that make them inadequate for

clinical application. Subsequently, this manuscript reviews methods with fewer side effects

compared to those of the methods mentioned above which are currently being investigated

and are already being applied in the clinic. The newer strategies that are already being

clinically applied include cancer immunotherapy, especially T cell-mediated therapy and

immune checkpoint inhibitors, and strategies that are gaining attention include the manipula-

tion of the tumor microenvironment or the activation of dendritic cells. Tumor-associated

macrophage repolarization is another potential strategy for cancer immunotherapy, a method

which activates macrophages to immunologically attack malignant cells. At the end of this

review, we discuss combination therapies, which are the future of cancer treatment.

Nanoparticle-based anticancer immunotherapies seem to be effective, in that they effectively

use nanodrugs to elicit a greater immune response. The combination of these therapies with

others, such as photothermal or tumor vaccine therapy, can result in a greater anticancer

effect. Thus, the future of anticancer therapy aims to increase the effectiveness of therapy

using various therapies in a synergistic combination rather than individually.

Keywords: stem cell-based therapy, T cell-mediated therapy, macrophage repolarization,

nanodrug-based immunotherapy

Introduction
As research progresses, great success in treating many diseases has achieved what

was previously thought to be incurable. The invention of vaccines and the conse-

quent eradication of smallpox, the discovery of insulin and its use for treating

diabetic patients, and the use of anesthesia in surgery are some of the major medical

developments made to this day.1–3 Unfortunately, the cure for cancer, one of the

leading worldwide causes of death, is still a challenge as of today.4

There are three standard strategies for cancer treatment: surgery, radiotherapy, and

chemotherapy. Surgery and radiotherapy are very effective for removing tumors, but

they are limited to low-stage tumors and are not sufficiently applicable to high-stage

tumors.5 While most early-stage tumors can be potentially cured by complete excision,
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stage III and IV tumors require chemotherapy treatment.

However, even with chemotherapy, there is no guarantee of

a cure.6 Therefore, the ultimate treatment for malignant

tumors requires the novel design of new drugs and combina-

tion therapies to maximize anticancer efficacy.

The design of novel target-based anticancer drugs

allows to selectively target and completely eradicate can-

cerous cells. However, most of the strategies that destroy

the tumor cell also adverse effects the normal cells during

chemotherapy.7 Therefore, the next generation of cancer

treatment should not only should target malignant tumor

cells, but also inactivate the cancer functions that harm

non-tumor cells.8

The rapid growth of target-based anticancer drugs has

provided the possibility to selectively destroy tumor cells

located deep within tissues,8 even though there are barriers

to overcome.

Cancer therapies, including chemotherapy, hormonal

therapy, monoclonal antibody therapies, and tyrosine kinase

inhibitor therapies are already clinically applied. However,

they have critical limitations, such as relative ineffectiveness

in certain types of cancers or serious side effects that dis-

qualify them as safe drugs.9–12 Chemotherapy, which has

been long-used in cancer treatment, leads to side effects by

adversely affecting the function of normal cells in clinical

settings.7 Hormonal therapy is effective but can only be

applied to a small range of cancers. Monoclonal antibodies

and tyrosine kinase inhibitors have been deemed as a great

advancement in anticancer therapy, but their effectiveness is

limited to a few cancers, which have certain hyperactive

receptors.13,14

Newer methods, like selective accumulation of nano-

drugs by adjusting their physiochemical properties or the

use of human stem cells, have been employed. However,

the use of these nanodrugs resulted in toxicity and was not

sufficiently effective considering aroused side effects by use

of nanoparticles.15,16 Recently, great efforts have been made

to develop a novel immunotherapeutic strategy that effec-

tively directs immune cells to react against invasive cancer

cells.17–19 The immune system, which includes immune

checkpoints, the tumor microenvironment, dendritic cells

(DC), or macrophages, can be appropriately manipulated to

create the desired anticancer effect.20,21 Furthermore, when

nanoparticles are simultaneously used in combination with

other technologies, maximum anticancer efficacy can be

achieved.22 Specifically, the use of nanoparticles in combina-

tion with tumor vaccines and natural killer cells, or photo-

thermal therapy for the ablation of tumor cells is considered

a very effective strategy.23 In conclusion, the focus of this

review is to summarize previous approaches and current

research regarding anticancer therapy, as well as address

the future perspective of anticancer therapy (Figure 1).

Previous Anticancer Therapies
Conventional Chemotherapy
Although the use of conventional anticancer chemothera-

peutic drugs causes severe side effects, the use of these

drugs is still widespread.24 This is probably because these

drugs are effective against all types of cancer due to their

non-selective drug biodistribution, unlike other more effi-

cient drugs that usually require specific biomarkers or

activated receptors and can thus only be used to treat

certain cancers, such as monoclonal antibodies or tyrosine

kinase inhibitors.25,26 Thus, for the majority of cancers

that do not have these biological traits, conventional che-

motherapy is the first treatment of choice.6

Conventional chemotherapy inhibits DNA synthesis

and mitosis, thereby preventing the proliferation of cancer

cells.27 The most common chemotherapeutic drugs are

alkylating agents, antimetabolites, and topoisomerase inhi-

bitors, which stop cancer cell proliferation by different

mechanisms (Figure 2).28–30

Alkylating agents such as nitrogen mustards (eg cyclo-

phosphamide) or nitrosoureas alkylate guanines at N7 (eg

carmustine), leading to abnormal base pairing, miscoding,

and strand breakage, and thereby stopping cell proliferation

and destroying cancer cells.28,31 Antimetabolites, a different

type of anticancer drug including folic acid analogs (eg

methotrexate), purine analogs (eg azathioprine), and pyrimi-

dine analogs (eg 5-fluorouracil),29 are structurally similar to

endogenous genetic products. Thus, they can genetically

alter the cancer gene and can inhibit nucleotide synthesis.32

On the contrary, topoisomerase inhibitors, such as camp-

tothecins (eg irinotecan), anthracyclines (eg doxorubicin),

and podophyllotoxins (eg etoposide) block the activation of

the topoisomerase by relaxing overwound DNA.30 Due to the

double helix structure of DNA, during DNA replication and

transcription, winding of the DNA occurs. The topoisome-

rase enzyme appropriately breaks and mends DNA strands to

relax the winding and decrease the torsion.33 Topoisomerase

inhibitors inhibit the topoisomerase function, resulting in the

overwinding of DNA and increase in its torsion, and thus

causing DNA injury. Since alkylating agents, antimetabo-

lites, and topoisomerase inhibitors influence the cell cycle,

they can significantly affect fast-growing tumors.34
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Unfortunately, these drugs are non-selective and thus also

detrimental to normal cells. Fast-growing normal cells, such

as bone marrow cells, hair follicles, or intestinal epithelial

cells, are particularly vulnerable to these drugs.35–37

Furthermore, these drugs are ineffective against some cancer

cells,38 for instance slow-growing tumor cells. Some cancer

Figure 1 Past, current, and future anticancer therapies. (A) Previous approaches for anticancer therapy. Even though many of these methods are still effective, they have

limitations and are thus not the most effective for attacking cancerous cells. (B) Current research in anticancer therapy. Cancer immunotherapies, including T cell-mediated

therapy and macrophage repolarization, are the most promising. (C) Future perspective of anticancer therapy. The future of anticancer therapy lies in nanotechnology based

anticancer immunotherapy and other combination therapies.

Figure 2 Conventional chemotherapy. (A) Alkylating agents. A = adenosine, T = tyrosine, G = guanine, C = cytosine, X = alkylating agent. Alkylating agents react with the

N7 of guanine, resulting in abnormal base pairing, which leads to miscoding and strand breakage. (B) Antimetabolites. Y = Antimetabolite. Antimetabolites are structurally

similar to endogenous compounds and destroy cancer cells by posing as purines or pyrimidines, which are building blocks of DNA. In B, the antimetabolite is masquerading

as a purine. (C) Topoisomerase inhibitors. Z = Topoisomerase inhibitor. Topoisomerases normally decrease the torsion of the DNA. When this process is stopped by

topoisomerase inhibitors, the torsion of the DNA strand increases and causes DNA breakage.
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cells have become resistance to chemotherapeutic drugs by

increasing DNA repair, inactivating cancer drugs, or

promptly pumping the drugs out to prevent their accumula-

tion in the cytosol.9 Due to these drawbacks, researchers have

focused on other strategies for curing cancer.

Hormonal Anticancer Therapy
The development of tamoxifen for curing breast cancer has

completely changed the landscape of cancer therapy, opening

the era of “targeted cancer therapy”.39 Tamoxifen, a selective

estrogen receptor modulator, specifically targets tumors that

have estrogen receptors. Hormonal therapy utilizes the endo-

crine system to attack hormone responsive tumor tissues;40

however, it has certain drawbacks.10 Since estrogen receptors

are naturally present not only in the breast tissue but in tissues

all over the human body, the activation of estrogen receptors

in endometrium, bone, and adipose tissues, for example,

elicits side effects.41 As the endometrium of the female

uterus has a large number of estrogen receptors and tamox-

ifen is also a partial agonist of endometrial tissue, develop-

ment of endometrial cancer is possible. The activation of

endometrial estrogen receptors causes endometrial cell pro-

liferation and cancerization.42 Although tamoxifen, as

a hormonal anticancer therapy, possess many side effects

and limitations, it is meaningful that it has started research

into the field of targeted therapy. Tamoxifen serves as

a cornerstone for following research regarding other cancer

receptors and biological markers, which can be targeted with

drugs, and thus destroying the cancer cell.39

Monoclonal Antibody Therapy
The limitation of conventional chemotherapy has led

researchers to look for alternative methods, and the efficacy

of tamoxifen has encouraged the development of better tar-

geted chemotherapies. The use of monoclonal antibodies

(mAbs), which are receptor-specific antibodies that detect

overexpressed receptors in the tumor cell and selectively

attack malignant cells, constitutes one of the earliest, most

widely-used, powerful, and effective approaches for targeted

tumor therapy.43,44Monoclonal antibodies are more effective

than previous chemotherapies because they selectively bind

to overexpressed cancer membrane receptors, and are thus

less harmful to normal cells. They also have advantages

when compared to hormonal therapy because mAbs target

more specific molecular receptors and ligands.45 Tumor sig-

naling takes place when receptors and ligands form

a complex that initiates an intracellular response, leading to

events, such as cell proliferation and genetic mutation.

Therefore, by targeting the overexpressed receptors that are

involved in cancer cell signaling, treating a broad range of

tumors is possible.11

Blockage of the epidermal growth factor receptor

(EGFR) family members is a major function of mAb-based

drugs.46,47 EGFRs are often overexpressed in many epithelial

malignant tumors, and higher levels of their overexpression

correlated with more advanced tumor stages, poorer prog-

nosis, and greater resistance to anticancer therapy.48 HER1

and HER2, which are the major subtypes of EGFR, are

frequently utilized in mAb anticancer therapy.49–51 HER1

(Cetuximab; Erbitux) and HER2 (Trastuzumab; Herceptin)

inhibitors, are used for treating (HER1-rich) metastatic

colorectal52–56 and (HER2-rich) breast cancers,57,58 respec-

tively. However, EGFR mAb application is only limited to

EGFR-overexpressed tumors.12 Even in colorectal and breast

cancers, the EGFR receptor is overexpressed in only 25–82%

of colorectal cancers and 18% of breast cancers,59–63 mean-

ing not all tumors have high EGFR expression.

Tumor progression and growth require metastasis and

angiogenesis, and the vascular endothelial growth factor

receptor (VEGFR) is a major receptor involved in these

processes.64–66 By inhibiting VEGFR with a mAb such as

Bevacizumab (Avastin), the tumor is deprived of oxygen

Table 1 Major Monoclonal Antibodies in Cancer Treatment

Drug Target

Receptor

Target Cancer (FDA APPROVAL

Date)
(Trade

Name)

Cetuximab

(Erbitux®)

EGFR

(HER1)

Advanced colorectal cancer (Feb 2004),

Late stage head and neck cancer

(Nov 2011)

Trastuzumab

(Herceptin®)

EGFR

(HER2)

HER2-positive node-positive breast

cancer (Nov 2006),

HER2-positive metastatic stomach

cancer (Oct 2010)

Bevacizumab

(Avastin®)

VEGFR Metastatic colorectal cancer

(Feb 2004),

Lung cancer (Oct 2006),

Glioblastoma (May 2009),

Kidney cancer (Aug 2009),

HER2-negative breast cancer

(Feb 2008),

Metastatic cervical cancer (Aug 2014),

Ovarian cancer (Nov 2014)

Abbreviations: EGFR, epidermal growth factor receptor; HER1, human epidermal

receptor; HER2, human epidermal receptor 2; VEGFR, vascular endothelial growth
factor receptor.
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and nutrition, thus tumor cell growth is stopped, effectively

treating colorectal and lung cancers.55,67-70 Bevacizumab

was also approved for use in combination with antimetabo-

lite 5-fluorouracil or carboplatin together with paclitaxel

against colorectal and lung cancers (Table 1).68,71

However, like EGFR mAbs, VEGFR mAbs can only be

applied to tumors with VEGFR overexpression, which cor-

responds to 48%, 66.7%, and 72.2% in colorectal cancer

and in lung adenocarcinoma and squamous cell

carcinoma,72,73 respectively. Therefore, many types of col-

orectal and lung cancers are untreatable using this therapy.

Tyrosine Kinase Inhibitor Therapy
Tyrosine kinase inhibitors (TKIs) function similarly to

mAbs; however, they have a different mechanism of action

(Figure 3).74 TKIs target overexpressed receptors, similarly

to mAbs. However, unlike mAbs which only block

a specific cancer receptor, TKIs also stop the intracellular

signaling system that is usually initiated when the receptor

and ligand interact.14 Tyrosine kinase is the enzyme respon-

sible for the activation of many proteins in tumor signaling.

By blocking this enzyme, TKIs prevent the activation of the

signaling systems that lead to tumor formation and

proliferation.75,76 Imatinib (Gleevec) is a widely known

TKI used for treating acute lymphoblastic leukemia (ALL)

and chronic myeloblastic leukemia (CML) by inhibiting the

transcription of the BCR/ABL gene and treating gastroin-

testinal stromal tumor by inhibiting the c-kit gene

expression.77–82 Erlotinib and Gefitinib block the signals

initiated by the HER1 tumor receptor; however, Lapatinib

and Neratinib block the HER2 tumor receptor

(Table 2).83–85

Though monoclonal antibodies and TKIs are both very

effective anticancer drugs, they still have some clinical

limitations. First of all, they are only effective in treating

the specific cancers that express the target proteins. For

example, Trastuzumab is effective only against breast can-

cer and Gleevec is only applicable to ALL and

CML.58,79,82 Unfortunately, these drugs are poorly applic-

able to other tumors, such as lung or pancreatic cancer.86,87

Additionally, these types of drugs can destroy normal cells

that have the same type of receptors. Although their cyto-

toxicity is much more limited when compared with that of

conventional anticancer chemotherapy, they still elicit

severe side effects. MAbs frequently cause immune-

related dermatological problems, and TKIs can induce

hematologic problems, such as anemia, macrocytosis, or

neutropenia.88–91 Therefore, future cancer therapies should

focus on treating a wider range of tumors and overcoming

the side effects associated with mAbs and TKIs.

Figure 3 Comparison of monoclonal antibodies (mAbs) and tyrosine kinase inhibitor (TKI) activity in receptor tyrosine kinase (RTK). (A) Normal cell signaling of RTK.

When ligands bind to RTKs, neighboring RTKs cross-link to each other to form dimers, activating the tyrosine kinase domain in each RTK to phosphorylate the tyrosine

kinase domain in the paired RTK. This phosphorylation initiates intracellular cell signaling and thus cellular activities, including proliferation and growth. (B) Monoclonal

antibodies. MAbs stop the ligand from binding to RTKs, thus causing no dimerization, no phosphorylation, and no cell signaling. MAbs can bind to ligands or receptors,

depending on the type. (C) TKI. TKIs inhibit RTK phosphorylation. The signaling transduction cascade is not started and thus cell signaling and resulting cellular activities do

not occur.

Dovepress Kim and Khang

International Journal of Nanomedicine 2020:15 submit your manuscript | www.dovepress.com

DovePress
5723

http://www.dovepress.com
http://www.dovepress.com


Established Approaches in Nanodrug

Therapy
A new type of anticancer drug, nanodrugs, was invented not

only to effectively reach the tumor site but also to be easily

captured by the tumor cells.92–94 Researchers believed that

by carefully designing the unique physiochemical properties

of nanodrugs, their anticancer efficacy could be enhanced.15

Additionally, nanodrugs have the ability to evade cancer

efflux pumps and optimize intracellular endosomal drug

delivery, allowing nanodrugs to selectively destroy the can-

cer cell.95–97 However, the greatest drawbacks of nanodrug

delivery for the clinical application of nanodrugs are the

toxicity and clearance issues. Although various efforts have

been made to maximize tumor targeting efficiency and mini-

mize the clearance problems, the predicted toxicity of nano-

drugs has prevented them from becoming the ultimate cure

for cancer.98,99

In previous research on mAb drugs, tumors were targeted

via membrane-receptors to increase their targeting efficiency.

However, nanotechnology research has shown that changes

in nanoparticle (NP) shape, size, and material can influence

their biodistribution and improve their cellular uptake

efficiency.15,100-104 For example, gold and liposome NPs

are preferentially localized in the liver and blood,

respectively.105–107 Additionally, nanospheres, nanorods,

and single walled carbon nanotubes (swCNTs) show differ-

ent biodistributions.98 However, biodistribution control by

changing the nanoshape is currently not a practical approach

for selectively targeting specific tumor tissues.108,109

The major limitation of conventional nanodrugs is their

accumulation in the reticuloendothelial system (RES),

a group of important immune organs, rather than in the

specific tumors they are meant to target.110 However, RES

accumulation can be minimized by increasing the circula-

tion time of nanodrugs in the blood, which increases the

interaction time between nanodrugs and immune cells.

Therefore, to maximize the targeted nanodrug delivery, it

is essential to determine the optimal blood circulation

time.15 One strategy to adjust the optimal blood circulation

time of nanodrugs is to control their polyethylene glycol

(PEG)/polylactic acid (PLA) ratio by changing the mole-

cular weight ratios of PEG and PLA.111,112

In some cases, drugs are required to be not only deliv-

ered to the targeted tissue, but also into the exact organelle

in the tumor cell111,113,114 by using the intracellular uptake

pathways.111 A conventional target organelle is the mito-

chondria, since mitochondria attack can deprive the tumor

of its energy. To reach the mitochondria, nanodrugs are

released from the early endolysosomes, and PEGylation is

often used to prompt the releasing process.111,115,116

As mentioned above, nanodrugs have shown great results

for tumor targeting, but have shown clearance issues and

immune toxicity that still hamper the use of nanodrugs to

destroy cancer cells.112,117 Therefore, to apply these nano-

drugs in the clinic, developments must be made to avoid the

potential side effects. However, instead of reforming nano-

drugs to minimize side effects, other methods of utilizing

nanodrugs have been introduced, which is a topic that will be

discussed later on.108

Stem Cell-Based Cell Therapy
Among the currently used anticancer therapies, stem cell

therapy is one of the promising strategies. Stem cell ther-

apy is mainly based on the innate ability of mesenchymal

stem cells to home to cancer cells.118–120

Table 2 Major Tyrosine Kinase Inhibitors in Cancer Treatment

Drug

(Trade

Name)

Target

Receptor

Target Cancer (FDA Approval

Date)

Imatinib

(Gleevec®)

BCR/ABL

gene c-kit

gene

BCR/ABL gene inhibition: Chronic

myeloblastic leukemia (Jun 2001),

Acute lymphoblastic leukemia

(Jan 2013)

c-kit gene inhibition: GIST (Dec 2008)

Erlotinib

(Tarceva®)

EGFR

(HER1)

Non-small cell lung cancer

(Nov 2004)

Gefitinib

(Iressa®)

EGFR

(HER1)

Non-small cell lung cancer (May 2003)

Lapatinib

(Tykerb®)

EGFR

(HER2)

Advanced/metastatic breast cancer

(Mar 2007)

Neratinib

(Nerlynx®)

EGFR

(HER2)

HER2-positive breast cancer

(adjuvant treatment) (Jul 2017)

Sunitinib

(Sutent®)

VEGFR GIST (Jan 2006), Renal cell carcinoma

(Jan 2006)

Sorafenib

(Nexavar®)

VEGFR Renal cell carcinoma (Dec 2005)

Hepatocellular carcinoma (Nov 2007)

Metastatic differentiated thyroid

cancer (Nov 2013)

Lenvatinib

(Lenvima®)

VEGFR Differentiated thyroid cancer

(Feb 2015), Advanced renal cell

carcinoma (May 2016)

Abbreviations: EGFR, epidermal growth factor receptor; HER1, human epidermal

receptor; HER2, human epidermal receptor 2; VEGFR, vascular endothelial growth
factor receptor; GIST, gastrointestinal stromal tumor.
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By selecting the appropriate types of mesenchymal

stem cells (MSCs) for MSC therapy and loading them

with cytotoxic drugs, drugs can be delivered into the

targeted cancer cells to efficiently destroy them.121–124

There are many lineages of MSCs, such as bone marrow,

adipose, and umbilical cord blood MSCs. Each type of

MSC has tumor-associated chemokine receptors which

enable them to selectively target different cancer cell

lines.121,125-127 Therefore, a certain type of tumor can be

targeted by selecting an appropriate MSC.128,129

The various MSC lineages differ in biodistribution and

chemokine receptors.123,130 Specific chemokine receptors

showed selective responses toward different cluster of

differentiation (CD) antigens in the physiological tumor

microenvironment (TME).131 Knowing the relationships

between different MSC lineages and their homing abilities

to different tumor types is important for developing MSC-

mediated therapies.132

Among the malignant tumors, brain, pancreatic, and

small-cell lung cancers (SCLCs), are neoplasms that are

still difficult to treat.133–138 Stem cells are more promising

for destroying malignant tumors than conventional tar-

geted chemotherapy because they target tumor cells more

effectively.123 For example, previous research indicated

that CXCL12 and IL-8 chemokine receptors of bone mar-

row MSCs (BM-MSCs) reacted more strongly with che-

mokines released by lung cancer cells, compared to those

produced by other cancer cells, such as breast or brain

cancer cells, resulting in increased targeting ability for

lung cancer cells.130,139,140

However, stem cell therapy still has some drawbacks.

The use of genetically engineered MSCs with increased

anticancer efficacy mediated by the secretion of therapeu-

tic proteins or expression of suicide-inducing enzymes,

resulted in some unexpected long-term side effects, such

as a shorter lifespan and lower drug delivery efficacy, and

resistance to therapy by some large cancer cell

populations.141 On the other hand, there are other two

methods that deliver drugs in better and safer ways,

namely drug conjugation to the MSC surface membranes

and facilitated intracellular drug loading into MSCs. MSCs

with surface conjugated drugs had better drug loading

ability,122,130,142,143 drug stability, and homing ability,

and were able to further induce cancer cell self-apoptosis

than MSCs with intracellularly uploaded drugs.16,130

Therefore, surface-conjugated drugs had increased antic-

ancer efficacy, and a reduced dose of injected MSCs was

required to provide the same anticancer effect as that of

facilitated intracellular drug loading into MSCs.

However, when drugs are not properly conjugated in

the loading process, the same drugs can diminish the

homing ability of MSCs to cancer cells, increase self-

apoptosis, and cause unexpected tumorigenesis due to

uncontrollable differentiation.144 Additionally, the use of

stem cells for cancer therapy is still controversial.145

Unlike human embryonic stem cells, MSCs do not cause

ethical problems, since they are obtained from tissues such

as adult bone marrow, adipose tissue, or the umbilical

cord. However, safety issues related to the use of MSCs

are still a concern, especially regarding their long-term

fate. Unwanted differentiation of MSCs may occur, poten-

tially leading to tumor growth and metastasis, instead of

destroying tumor cells.120,146,147 Therefore, studies that

continuously monitor MSCs, even after long-term therapy,

are essential to guarantee their effectivity and safety.

To overcome such limitations, the combination of

nanomedicine and MSC therapy has shown a huge poten-

tial to effectively target tumors.16,144,148 By conjugating

nanodrugs onto the MSC membrane, a higher efficiency of

drug delivery can be attained, since nanodrugs have better

conjugation and tumor-targeting abilities.143,149 Another

promising method is the use of nanovesicles (NVs) in

MSC therapy. Instead of conjugating nanodrugs onto the

surface of MSCs, it is possible to create NVs using MSC

membranes, which can induce a more effective anticancer

response.

Current Immuno-Anticancer
Therapy
Cancer immunotherapy is a promising and novel antic-

ancer therapy that focuses on the immunological aspects

of cancer. Through immuno-anticancer therapy, the innate

and adaptive immune system can be utilized to attack

invasive cancer cells.

T Cell-Mediated Therapy
T lymphocytes, which play a major role in the adaptive

immune system, have the ability to naturally destroy can-

cer cells by recognizing the cancer antigens that tumors

express and responding specifically to the tumors.150,151

T cell therapy is also important because while T cells play

a major role in adaptive immunity, they simultaneously

activate the immune system to amplify the innate immune

response against cancer cells. By doing so, the innate and
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adaptive immune mechanisms synergize to fight against

cancer.152,153

However, cancer cells have evolved to avoid the T cell

attack. Tumor cells activate immune checkpoints, secrete

cytokines that inhibit cytotoxic T and natural killer (NK)

cells, and downregulate antigen presentation by decreasing

the expression levels of major histocompatibility complex

(MHC) II.154,155 The goal of T cell-mediated therapy is to

overcome the cancer cells’ evasion of the T cell attack by

recognizing and effective killing cancer cells.18 There are

three major approaches for T cell-mediated therapy: immune

checkpoint therapy, tumor microenvironment targeted-

therapy, and dendritic cell interaction-based therapy.19

Immune Checkpoint Therapy

A normal immune response involves the recognition of the

foreign antigens via helper T cells, which secrete cytokines

that enable the proliferation of cytotoxic T cells. These prolif-

erated cytotoxic T cells directly attack the foreign antigens,

resulting in an effective immune response.151 However, cancer

cells can avoid T cell immune activation.154,155 Immune

checkpoints originally exist to inhibit the activation of CD8

cytotoxic Tcells, stopping an autoimmune response. However,

cancer cells evade the attack of the immune system by activat-

ing these immune checkpoints that stop the T cell attack.20

Although there are many immune checkpoints, the pro-

grammed cell death protein (PD) 1/PD-ligand 1 (PD-L1) and

the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)

checkpoints are most often utilized in immune checkpoint

therapy.156,157 The PD-1/PD-L1 checkpoint stops the immune

response, resulting in the apoptosis of the cancer cells; mean-

while, the CTLA-4 checkpoint blocks the cytotoxic T cells

from recognizing and attacking tumor cells. By modulating

these checkpoints, cancer cells can avoid the immune system

(Figure 4).158

The use of anti-PD-1, anti-PD-L1, and anti-CTLA-4 anti-

bodies has been effective in treating tumor types unresponsive

to already established anticancer therapies. Nivolumab, an

anti-PD-1 antibody, treated both squamous and non-

squamous non-SCLCs (NSCLC) more effectively than

conventional chemotherapy.159,160 Pembrolizumab, an anti-

PD-L1 antibody, was also effective for treating NSCLCs hav-

ing the PD-L1 ligand.161–163 Ipilimumab, an anti-CTLA-4

antibody, was used against melanomas.164–166

The main drawback of immune checkpoint inhibition ther-

apy is that only a limited patient population can benefit from it;

Figure 4 PD-1 and CTLA-4 immune checkpoints and immune checkpoint inhibitors. (A) CTLA-4 immune checkpoint. The CTLA-4 immune checkpoint stops cytotoxic

T cells from recognizing antigens presented by dendritic cells (DC) via major histocompatibility complex (MHC). When CTLA-4 receptors bind to CD80/CD86, tumor

antigens are not recognized. (B) Anti-CTLA-4 antibody. When anti-CTLA-4 antibodies, eg ipilimumab, bind to the CTLA-4 receptor, the CTLA-4 immune checkpoint, which

was originally activated by the binding of CD80/86 with CTLA-4, is not activated. This leads to the activation of the cytotoxic T cells and the successful recognition of tumor

antigens presented by the APC MHC molecules. (C) PD-1 immune checkpoint. The PD-1 immune checkpoint stops cytotoxic T cells from secreting cytokines that induce

tumor cell death. The PD-1 receptor of the cytotoxic T cell binds PD-L1, a ligand presented by the tumor cell. (D) Anti-PD-1 and anti-PD-L1 antibodies. When anti-PD-1

antibodies, eg Nivolumab, bind the PD-1 receptor, the PD-1 immune checkpoint is no longer activated. A similar effect can be obtained using anti-PD-L1 antibodies, eg

Pembrolizumab, which results in the activation of cytotoxic T cells and thus causes tumor cell death.

Kim and Khang Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2020:155726

http://www.dovepress.com
http://www.dovepress.com


this is because it is only effective when PD-1, PD-L1, and

CTLA-4 play an active role in tumorigenesis.167 For example,

Nivolumab and Pembrolizumab are only applicable to cancers

that inactivate the PD-1/PD-L1 immune checkpoint.168

There are currently seven FDA-approved immune check-

point inhibitors: ipilimumab, pembrolizumab, nivolumab,

atezolizumab, avelumab, durvalumab, and cemiplimab-

rwlc. These drugs treat a wide range of cancers, including

advanced melanoma, lymphoma, NSCLC, and renal cell

carcinoma.169 Despite advances in the treatment of various

cancer types by immune checkpoint inhibition, application of

this therapy to treat solid tumors, such as pancreatic and brain

tumors, is still unsuccessful (Table 3).168,170

Tumor Microenvironment-Targeted Therapy

Tumor microenvironment-targeted therapy is another strat-

egy that stops cancer cells from evading the immune

system.171–173 Various cellular infiltrates within the tumor

microenvironment (TME) (eg blood vessel endothelium,

immune cells, signaling molecules, and extracellular

matrix) also help cancer cells escape the immune

system.174

Regulatory T cells (Tregs) play an important role in the

TME.175 They not only activate the immune checkpoints,

but also secrete immunosuppressive cytokines, such as

TGF-β and IL-10, which stop the antitumor response of

T cells and other innate immune cells, such as CD4, CD8,

and NK cells.176 In contrast, by activating cells which

secrete immune-activating cytokines, such as IL-2, IFN-α,
TNF, IL-12, and GM-CSF, an effective anticancer response

can be initiated.173,177,178 In particular, IL-2 inhibits meta-

static melanoma. Importantly, a limited number of patients

respond to this cytokine treatment; but those who do

respond to it experience durable, complete, and apparently

curative results.179–181

Dendritic Cell Interaction-Based Therapy

DCs are antigen-presenting cells (APCs).182,183 Both foreign

and self-antigens are presented on DCs as peptides by MHC

class II molecules. This presentation results in the activation

of Tcells and the stimulation of the adaptive immune defense

system.184 Specifically, by activating the adaptive immune

response, DCs link the innate and adaptive immune

systems.153 As discussed, T cell-mediated therapy relies in

the activation of T cells in order to effectively attack cancer

cells. Therefore, by properly activating DCs, one can stimu-

late T cells to attack the cancer cells.185–188

The most important question is how to manipulate the

DCs to initiate T cell activation. T cells are activated

through the immunological response of cell membrane-

bound molecules, such as BTLA-HVEM, CD40-CD40L,

CTLA4-CD80/CD-86, and CD70-CD27, and various

secreted cytokines including, IL-6, IL-12, IL-23, IL-27,

and TNF-β1. By understanding that the immunomodula-

tory mechanism involving DCs and T cells is a “functional

partnership,” it is possible to develop novel immunothera-

pies to target tumors (Figure 5).189–196

Macrophage Repolarization Therapy
Like T cells, macrophages also play a vital role in the TME

and can destroy cancer cells.197–200 Macrophages located in

the TME, named tumor-associated macrophages (TAM), can

release immunosuppressive cytokines, including IL-1β, IL-6,
and TNF-α. TAMs are usually differentiated into M2-type

macrophages, which are anti-inflammatory, unlike M1-type

Table 3 FDA Approved Immune Checkpoint Inhibitors

Drug (Trade

Name)

Target

Receptor

Target Cancer (FDA Approval

Date)

Ipilimumab

(Yervoy®)

CTLA-4 Advanced melanoma (Mar 2011),

Renal cell carcinoma (Apr 2018),

Metastatic colorectal cancer

(Jul 2019)

Pembrolizumab

(Keytruda®)

PD-1 Advanced melanoma (Sep 2014),

Metastatic non-small cell lung cancer

(Oct 2015)

Metastatic head and neck squamous

cell carcinoma (Aug 2016)

Hodgkin’s lymphoma (Mar 2017)

Nivolumab

(Opdivo®)

PD-1 Advanced melanoma (Dec 2014),

Lung cancer (Mar 2015), Metastatic

renal cell carcinoma (Nov 2015)

Atezolizumab

(Tecentriq®)

PD-L1 Urothelial carcinoma (May 2016),

Advanced bladder cancer

(Apr 2017)

Avelumab

(Bavencio®)

PD-L1 Metastatic Merkel cell carcinoma

(Mar 2017), Urothelial carcinoma

(May 2017), Advanced renal cell

carcinoma (May 2019)

Durvalumab

(Imfinzi®)

PD-L1 Advanced bladder cancer

(May 2017), Non-small cell lung

cancer (Feb 2018)

Cemiplimab-

rwlc (Libtayo®)

PD-1 Advanced cutaneous squamous cell

carcinoma (Sep 2018)

Abbreviations: CTLA-4, cytotoxic T lymphocyte-associated protein 4; PD-1, pro-
grammed cell death-1; PD-L1, programmed cell death ligand-1.
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macrophages which show pro-inflammatory abilities. M2-

type macrophages suppress antitumor immune responses

and promote tumor growth, whereas M1-type macrophages

do the opposite. Due to these traits, researchers have tried to

repolarize macrophages from M2- to M1-type.197,201,202

To repolarize macrophages from the M2- to the M1-

type, the use of nanovesicles (NV) was proposed.22 NVs

derived from M1-type macrophages (M1NVs) contain

approximately three times more protein than that in non-

nanosized exosome vesicles derived from the same num-

ber of M1-type macrophages. M1NVs are also engulfed by

M2-type macrophages, and possess homing abilities

towards tumor sites, guided by leukocyte-derived adhesion

molecules with lymphocyte function-associated antigen 1

(LFA-1), and are not toxic or immunogenic.22,203 To sum-

marize, the use of NVs is more effective and safer than the

direct injection of M1-type macrophages into the TME,

because the latter approach adversely repolarized M1- to

M2-type macrophages.22

Importantly, M1NV also boosts the antitumor efficacy

when combined with the PD-L1 antibody, by significantly

decreasing the tumor volume. This synergistic effect ori-

ginates because M1NV and PD-L1 have completely dif-

ferent mechanisms of action. M1NV inhibits M2-type

macrophages, stopping angiogenesis and immunosuppres-

sion, while PD-L1 antibody only induces the apoptosis of

tumor cells by the cytotoxic T cell attack.22,203

However, the TAM strategy is still at a very early

developmental stage, and differences between human and

mouse macrophages make the clinical application of

laboratory findings difficult. Therefore, to effectively

design a macrophage-repolarization strategy, the interac-

tion between the human immune system and the TME

needs to be further investigated and elucidated.22

Future Anticancer Therapy
The future of anticancer therapy will involve the combina-

tion of existing strategies. Therefore, to obtain the greatest

anticancer effect, it is essential to determine which strate-

gies work together well in a combined manner.204,205 By

understanding the exact mechanisms by which drugs

destroy tumors, the ultimate combination therapy to treat

Figure 5 Immunomodulatory mechanisms between dendritic cells (DC) and T cells. The activity of T cells is regulated by the membrane molecules presented by the

dendritic cells. (A) T cells are activated by interactions such as the MHC antigen recognition by T cell receptors, CD40-CD40L, and CD70-CD27. Cytokines such as IL-6, IL-

12, IL-23, and IL-27 also activate T cell immunity. (B) T cell activity is suppressed by BTLA-HVEM and CD80/86-CTLA-4. Cytokines such as TGF-β and IL-27 also suppress

T cell activity.
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cancer can be designed. Until now, the most promising

anticancer strategy is NP immunotherapy. Indeed, the field

of nanotechnology can be exploited to boost the anticancer

efficacy of conventional immunotherapy.206–208

Nanodrug-Based Anticancer

Immunotherapy
Although the clinical application of conventional anticancer

nanodrugs was unsuccessful, nanomedical cancer treatment

is still considered a promising approach.112,117,206 This

approach includes the use of NPs to stimulate the immune

system rather than to directly release cytotoxic anticancer

drugs to the cancer cells.

Historically, previous approaches of nanodrug therapy

focused on direct attacking cancer cells or transporting cyto-

toxic drugs into cancer cells.209 However, due to advantages in

preventing metastasis and recurrence, immunotherapy using

NPs is not only considered as a way of transporting anticancer

drugs into the cancer cells but also regarded as activators of

the innate immune response.210–213 Additionally, it is expected

that nanodrug anticancer immunotherapy will be able to over-

come the limitations of the current immunotherapies in terms

of efficacy and cytotoxic side effects.97

The cancer-immunity response is identical to the conven-

tional immune response to antigens.158,214 When cancer cells

enter apoptosis, cell death as the result of a genetically pro-

grammed process, or necrosis, cell death caused by external

cellular injury, antigens from tumor cells are released and

captured by APCs and presented through MHC class II

molecules to T cells.215,216 The MHC class II molecules

trigger immature T cells to differentiate into tumor-specific

cytotoxic T lymphocytes (Tc). Tcs then infiltrate the TME,

recognize the tumor cells, and induce their apoptosis.217

According to this scenario, NPs can boost the efficacy

of the tumor immune response through three main

mechanisms (Figure 6).211

First, NPs can aid the delivery of cancer antigens to

APCs. Tumor antigens must be expressed on the mem-

brane of APCs to induce tumor immunity. However, these

native tumor antigens are easily degraded by enzymes in

the body and have low immunogenicity because they are

not easily transferred to APCs. NPs facilitate cancer anti-

gen delivery to APCs by minimizing tumor antigen degra-

dation in the body via encapsulation and transfer of cancer

antigens to the APCs.213,218 NPs also induce delivery of

the tumor proteins to lymph nodes, where cancer antigens

are more easily transferred to APCs.218,219 This selective

delivery to the lymph nodes is determined by the physio-

chemical properties of the NP, such as particle size, sur-

face charge, shape, and hydrophobicity.220–222 Among

them, particle size is the most important factor that deter-

mines the delivery to the lymph nodes. While small NPs

(<5 nm) easily leak out of the blood vessels, larger NPs

(>100 nm) remain in the circulatory system and eventually

reach in the lymph nodes.223 However, when NPs of 25

and 100 nm were intradermally injected, NPs of 25 nm

were more significantly delivered to the draining lymph

nodes than 100 nm NPs.208,221 Therefore, medium-size

NPs (5–100 nm) were optimal for the selective delivery

of the tumor proteins to the lymph nodes, resulting in

higher expression of tumor proteins on APCs.224

Second, nanoparticles can deliver adjuvants to promote

an anticancer response.225,226 Adjuvants are molecules that

increase immunogenicity, such as 3-O-desacyl-4ʹ-

monophosphoryl lipid A (MPLA), lipopolysaccharides

(LPS), and agonists of the stimulator of interferon (IFN)

genes.227–229 When tumor antigens are presented alone,

they often fail to elicit an immune response. However,

when NPs deliver these adjuvants to the cytoplasm of

APCs, a more sensitive antigen-specific T cell immune

response is generated.225

Third, NPs can modulate TME to increase the activa-

tion of the immune system.230,231 NPs can control and

reduce the activation regulatory T cells (Treg) in the

TME. NPs can also inhibit tumor cytokines, like TGFβ,
that are present in the TME,232–234 inducing an immune

response against the tumor.235

Although many types of NPs are investigated in antic-

ancer immunotherapy, polylactic-co-glycolic acid (PLGA)

NPs, liposomes, micelles, and gold NPs were widely used

(Table 4).236–239 Among them, PLGA NPs are considered

excellent biomaterials in immunotherapy due to their low

systemic toxicity and high biodegradability.236,240 PLGA

NPs are nonspecifically uptaked by DCs without any

immunological recognition process and thus, PLGA NPs

are suitable for targeting DCs for delivering antigens,

vaccines, and other therapeutic molecules.240–242

Among the clinically approved anticancer nanodrugs,

Abraxane is one of the most successful drugs. Abraxane,

an FDA-approved drug, is applied for the treatment of

non-small cell lung cancer (NSCLC), is regarded as

a more effective drug than paclitaxel (PTX), one of con-

ventional chemotherapy for treating NSCLC.243 Abraxane

is an albumin bounded PTX, and the albumin formulation

allows PTX to more easily penetrate tumors than PTX
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Figure 6 Nanoparticles boost the anti-tumor immune response. (A) Efficiency of nanoparticles for tumor-antigen delivery. Nanoparticles (NPs) aid tumor antigen delivery by

protecting tumor antigens from degradation. Tumor cell-derived artificial NPmembranes encapsulate and thus protect tumor antigens from degradation. AsNP-coated tumor antigens

are less degraded than tumor antigens not coated with NPs, more antigens are able to reach the APCs, thus resulting in higher immunogenicity. The physiochemical properties of NPs

also aid the selectivity of delivery of tumor antigens to lymph nodes, where tumor antigens are more easily transferred to APCs. (B) Adjuvant delivery. NPs can deliver adjuvants along

with the tumor antigen. Adjuvants are molecules that increase the immunogenicity of tumor antigens; they include MPLA, LPS, and STING. When tumor antigens are delivered with

adjuvants, a greater immune response of APCs is initiated. (C) Tumor microenvironment (TME) modulation. NPs can suppress the activity of regulatory T cells (Treg) through various

mechanisms, eg NPs conjugated to anti-CTLA inhibitors. Tregs are immunosuppressive cells that inhibit the activity of cytotoxic T cells, which inhibit tumor cell activity. Another

mechanism is the suppression of tumor-associated macrophages (TAM) byNPs, eg liposomal doxorubicin NPs. TAMs suppress helper T cells (Th) through the TGF-β signaling pathway,
and Th cells facilitate cytotoxic T cell attack of tumor cells. TAMs also directly attack tumor cells. To summarize, NPs can decrease the number of tumor cells in the TME through Tregs

and TAMs.
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alone. Albumin particles extravasate from the blood

through albumin receptors, increasing the concentration

of the drug in the local tumor site.244–246

Although the use of NPs in immunotherapy has increased

the effectiveness of the tumor immune response, there are

still some limitations. Since the NPs are usually intrave-

nously (IV) rather than locally administrated, they are

sequestered and accumulated in RES organs, such as the

liver or kidney, instead of reaching the tumor site.213,247

A solution to this problem was discovered in the field of

interventional radiology.248 By injecting NPs locally into the

tumor rather than systemically, with the help of imaging

guidance, drugs are directly and precisely injected into the

tumor. The local administration of the NPs has shown greater

anticancer effect and less toxicity to other non-target cells,

compared with systemic IVadministration.249,250

Another method that resulted in highly specific delivery

of NPs to tumor cells and low toxicity to non-tumor cells

involved coating NPs on NK cells.149 NK cell membranes

can elicit tumor-specific immune responses by regulating the

tumor immune response with cytokines such as TNF-α,
activating T cells to attack tumor cells, and inducing M1-

type macrophage repolarization.251–253 NK cell membrane-

decorated NPs (NK-NPs) can improve NK cell membrane

immunotherapy. An example of NPs that are coated on NK

cell membranes is the photosensitizer 4,4ʹ,4”,4”’ –(porphine-

5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP)-loaded

mPEG-PGLA polymeric NP (T-NP). TCPPs that were

loaded on T-NPs not only directly eradicated primary tumor

cells through photodynamic therapy (PDT) but also triggered

the generation of damage-associated molecular patterns

(DAMP) caused by PDT-induced immunogenic cell death

of tumor cells. The DAMPs activated APCs, consequently

enhanced the antitumor immunity efficiency of the NK cell

membranes. Additionally, NK-NPs reduced primary tumor

growth, and induced an abscopal effect, which means an

inhibition of proliferation in distant tumors caused by the

elimination of primary tumors (Figure 7).149,254

In addition, the conjugating NPs with small molecules,

such as peptides, has shown versatile functionalities.255 In

addition, conjugating a chemotherapeutic drug with

a functional peptide, peptides are allowed to form an

autocatalytic and transformable state in drug delivery sys-

tem. Specifically, by attaching a short PEG chain with

a tumor targeting peptide and by using a hydrogen-

bonding peptide in scaffold, peptide-nanodrug selectively

accumulated into the tumor site and drugs sustained

released the chemotherapeutic drug.256

However, the use of NPs in cancer nanomedicine is still

hampered by the development of side effects. For instance,

TiO2, SiO2, Au, and Ag NPs can create gaps in the endothe-

lium of tens to hundreds micrometers in width,257 a process

called endothelial leakiness (NanoEL).258,259 These gaps can

be exploited by cancer cells for intravasation into circulation

and extravasation to a new tumor site, thus accelerating the

metastasis process.260–262 Therefore, the potential of

NanoEL to stimulate metastasis needs to be considered dur-

ing the design of drugs to treat cancer, especially in nanome-

dicine (Figure 8).257

Other Combination Therapies
As previously mentioned, the future of cancer therapy lies in

the combination of various existing methods to effectively

kill cancer cells. The use of monoclonal antibodies has been

more effective in treating cancer when combined with con-

ventional chemotherapy, rather than alone.263 Likewise,

immune checkpoint inhibitors are also more effective in

attacking tumor cells when used in combination with other

Table 4 Nanoparticle (NP) Systems Used for Immunotherapy

Material Target Tumor Model

PLGA based

NPs

PD-1/PD-L1

pathway

4T1 subcutaneous tumor290

HER2 In vitro HER2 positive breast

cancer241

CD40 B16-OVA subcutaneous

tumor242

Liposomes Tumor-specific

CTL

E.G7-OVA subcutaneous

tumor291

Cytosol of DCs DC2.4 in vitro model292

TME B16-F10 lung metastatic

tumor293

Micelles Cytoplasm of

DCs

C57BL/6 intradermal immunized

mice294

Lymph node 4T1 subcutaneous tumor295

TAMs B16-F10 subcutaneous tumor296

Gold NPs DCs B16-OVA subcutaneous

tumor297

Tumor cells Colon cancer subcutaneous

tumor298

Abbreviations: PD-1, programmed cell death-1; PD-L1, programmed cell death-

ligand 1; HER2, human epidermal receptor 2; CTL, cytotoxic T lymphocyte; DC,
dendritic cell; TME, tumor microenvironment; TAM, tumor associated macrophage.
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types of anticancer therapies, such as the combination of

M1NV with the PD-L1 antibody (Table 5).22,264

Nanomedicine in Photothermal Therapy (PTT)

The use of NPs in photothermal therapy (PTT) is

advantageous.23,265 PTT is a type of PDT that utilizes heat

created by electromagnetic radiation. The thermal ablation of

tumor cells using PTT is a possible clinical approach for the

treatment of local, solid tumors.266–268 By treating the tumors

with photosensitizers, which are molecules that can be acti-

vated by light to produce chemical responses that can damage

cellular structures, and near-infrared wavelength radiation, it is

possible to attack tumor cells via hyperthermia.269,270

However, PTT still has some limitations. PTT can only

be applied as a secondary treatment after the surgical

removal of solid tumors and is not applicable to metastatic

tumors. Additionally, hyperthermia can induce the tumor

cells to release antigens and pro-inflammatory cytokines,

which could adversely increase the tumor cell action.271

These limitations can be overcome with the help of NPs.

When light-responsive heating NPs (L-HNPs) are

injected into tumors, they selectively accumulate in the

local tumor site, allowing transfer heat to tumor cells without

damaging surrounding healthy tissue.268,272 The L-HNPs

effectively absorb energy from a light beam (wavelength of

700–980 nm and 1000–1400 nm) and have a large light-to-

heat conversion efficiency.268,273-275 Among metallic NPs,

gold were widely used as L-HNPs.267,276-278 Some carbon

nanotube based materials also have shown high light-to-heat

conversion efficiency and biocompatibility.279,280 In addi-

tion, light-absorbing organic NPs, such as polyaniline con-

ductive polymers and indocyanine green (ICG) are also

attractive materials as photothermal agents since those mate-

rials are biodegradable unlike other inorganic NPs.281–285

The combined use of NPs and PTT has shown ther-

apeutic efficacy for untreated and distant CT26 colon

carcinoma and metastasized TC-1 submucosa-lung cancer,

which were originally inaccessible by conventional PTT.

In these cases, PTT can attack metastatic tumors without

performing surgical resection. Therefore, the combined

use of NPs and PTT therapies offers more advantages for

cancer treatment (Figure 9).23,265

Nanomedicine in Tumor Vaccines

Tumor vaccines that can prevent long-term recurrence are

also under development.286,287 To prevent the long-term

Figure 7 NP coating on NK cells. When photodynamic therapy (PDT) is applied, tumor cells release damage-associated molecular patterns; APCs captured these to activate

NK cells. NK cells trigger antitumor immune responses that attack tumor cells, and this process is upregulated by NP coating. Tumor immune responses controlled by TNFα
are increased. M2 macrophages are repolarized into M1 macrophages to create a pro-inflammatory effect; meanwhile, neutrophils aggregate, causing inflammation. Cytotoxic

T cells also become activated. Through these immune responses, tumor cells are more efficiently attacked. NPs also play an important role in PDT. NPs, such as T-NPs, serve

as photosensitizers in PDT.

Kim and Khang Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2020:155732

http://www.dovepress.com
http://www.dovepress.com


recurrence of tumors, immune checkpoint inhibitor-modified

NPs are used to activate the immune system in the TME.

Adjuvant-loaded NPs were made by entrapping Imiquimod

(IQ), an immune response adjuvant, into photoresponsive

polydopamine NPs (IQ/PNs), and modifying them with the

anti-PD-L1 antibody (PD-L1Ab-IQ/PNs). Anti-PD-L1 anti-

bodies on IQ/PNs increased the binding of NPs to CT26

cancer cells overexpressing PD-L1, attacking them, and pre-

venting tumor recurrence (Figure 10).288

Therefore, the next generation of cancer therapeutics

will probably rely on the combination of nanomedicine

and immunotherapy to control the immune response

against cancer cells and thus destroy them more effec-

tively. By using this approach in combination with other

Figure 8 NP-induced endothelial leakiness (NanoEL). (A) Intravasation. Some NPs form sizable gaps in the tumor vasculature. Through these gaps, tumor cells can migrate

from the primary tumor site into the blood stream. (B) Extravasation. After the entrance of tumor cells into the circulatory system, the tumor cells extravasate out of the

bloodstream to a new tumor site through a process known as metastasis.

Table 5 Major FDA Approved Combination Therapies

Combination Type Drug Target Cancer (FDA Approval Date)

mAb + Conventional

chemotherapy

Bevacizumab (Avastin®) + Carboplatin,

Paclitaxel

Non-small cell lung cancer (Oct 2006)

Bevacizumab (Avastin®) + 5-fluorouracil Metastatic colorectal cancer (Feb 2004)

mAb + Immune checkpoint

inhibitor

Bevacizumab (Avastin®) + Atezolizumab

(Tecentriq®)

Metastatic non-squamous non-small cell lung cancer

(Dec 2018)

TKI + Immune checkpoint

inhibitor

Lenvatinib (Lenvima®) + Pembrolizumab

(Keytruda®)

Advanced endometrial carcinoma (Sep 2019)

Abbreviations: mAb, monoclonal antibody; TKI, tyrosine kinase inhibitor.
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proven therapies mentioned above, the effectiveness of the

treatment can be boosted to even higher levels.16,130

Discussion
The ultimate goal of anticancer research is its application

in the clinic; significant research in this direction is still

being conducted because the current anticancer strategies

are neither complete nor ideal for patient treatment.

The beginning of this review describes established and

widely employed anticancer approaches. Even though some

of them have shown limitations, they are still widely used

and some of them even constitute an important stepping-

stone to developing the cancer therapies of the

future. Conventional chemotherapy has clear application

limits, thus more effective cancer drugs are under

investigation.289 For instance, hormonal therapy introduced

the concept of targeted therapy, which was further devel-

oped using monoclonal antibodies and TKIs because they

target certain receptors and ligands on tumor cells.14,39,74

However, target receptor-based approaches are only applic-

able to specific cancer cells that overexpress those corre-

sponding receptors, thus, they are ineffective for treatment

many types of tumors.12 The modification of nanodrug

physiochemical properties has also been studied for two

decades but this approach has been quickly discarded for

cancer treatment due to its toxicity and relative

ineffectiveness.15 Among the established approaches dis-

cussed above, stem cells, especially MSCs, have great tar-

geting efficacy due to their unique homing abilities, but

their genetic modification to enhance their attack of cancer

cells has raised some concerns regarding long-term toxicity

in clinical applications.16

Figure 9 The use of NPs in PTT. (A) Metastatic cancer prior to treatment. When PTT is applied without the use of NPs, it requires prior surgical removal of the solid

tumor. (B) The application of PTT without NPs. (C) Results after PTT without NPs. This method shows limited effectiveness in removing tumor cells that remain after

surgical excision. It is not effective against diffuse, metastatic tumors. (D, E) The application of PTT with NPs. Polydopamine-coated gold NPs are injected in the tumor

vasculature for this purpose. This method does not need surgical excision prior to PTT. (F) Results of PTTwith NPs. This method is effective for treating solid tumors even

without their surgical removal, and it is also effective for treating diffuse, metastatic tumors.
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The next part of this review summarizes some more

practical methods that are currently under investigation and

in the early stages of clinical application. The newest strategy

is cancer immunotherapy. T cells, one of the most important

immune cells, have the ability to attack cancer cells.19 Thus,

bymodulating the immune system to initiate the Tcell attack,

we can achieve a desired level of cancer treatment. Immune

checkpoint inhibition could affect the inhibitory factors that

prevent T cell attack of cancer cells, thus using our own

immune system to attack tumors.157 Additionally, by utiliz-

ing anticancer cytokines in the TME, such as IL-2, IFN-α,

TNF, IL-12, and GM-CSF, along with the repolarization of

M2-type macrophages, is possible to attack a wider range of

cancers.21,197 Lastly, DCs play a significant role in connect-

ing the innate and adaptive immune systems, and if the

proper stimulation is provided via DCs, T cells could be

induced to destroy cancer cells.185 Combination immu-

notherapy strategies may be more effective compared with

single immunotherapy strategies.210

The last part of this review provides information about

combination therapy, which is the future of cancer treatment.

The use of NPs in immunotherapy has already shown

encouraging results.130 The use of NPs in combination with

photothermal therapy and tumor vaccines has been shown to

be effective in attacking tumor cells.267

In conclusion, the two main keywords of future antic-

ancer strategies would be the combinational therapy com-

bining cancer-immunology and nanodrug delivery system.

Reciprocally, the current anticancer nano-therapeutic effi-

cacy can dramatically enhance with the combination of

established immunotherapy.
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