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Cholinesterases (ChE) are specialized carboxylic ester hydrolases that catalyse the hydrolysis of choline esters. They are classified
into either acetylcholinesterase (AChE) or butyrylcholinesterase (BChE). Determination of ChE in the tissues is the appropriate
tool for the diagnosis of organophosphorus and carbamate exposures. In general, a significant inhibition was seen in both AChE
and BChE activities after 6 months of freezing at −80◦C and after 3 months of freezing at −20◦C. Linear regression of mean AChE
and BChE was observed in all individual samples during the months of the two freezing methods. Bland and Altman plot of the
ratios of the two freezing methods have showen the mean difference between the two freezing methods to be 8.8, and SD was 144.7
and −127.6 for upper and lower limits, respectively, for liver, while in muscle the mean difference was 1.5 and SD was 32.5 and
−28.9 for upper and lower limits, respectively.

1. Introduction

Cholinesterases (ChE) are specialized carboxylic ester hydro-
lases that catalyse the hydrolysis of choline esters. Two types
of ChE activity have been identified in mammalian tissues;
these are distinguished according to their substrate speci-
ficity and sensitivity to the selective inhibitors. The first is
acetylcholinesterase (AChE, EC.3.1.1.7), which is systema-
tically called acetylcholine acetylhydrolase. Other names in-
clude true cholinesterase, specific cholinesterase, red blood
cell cholinesterase, erythrocyte cholinesterase, and choline-
sterase I. The second is butyrylcholinesterase (BChE,
EC.3.1.1.8), referred to systemically as acylcholine acylhy-
drolase. Other names include pseudocholinesterase, non-
specific cholinesterase, plasma cholinesterase, serum choli-
nesterase, propionylcholinesterase, benzoylcholinesterase,
and cholinesterase II [1–4].

The preferred substrate for AChE is acetylcholine (ACh),
BChE prefers butyrylcholine (BCh), and propionylcholine
(PCh) [1, 2, 5]. AChE and BChE serve a pivotal role in
regulating nerve impulse transmission by rapid hydrolysis
of the neurotransmitter ACh [6, 7]. AChE appears to be

the predominate enzyme performing this function, since
AChE catalysis the hydrolysis of ACh much more rapidly
than BChE [6, 8]. At present, the most widely used method
for the determination of ChE activity is the colorimetric
method of Ellman et al. [9]. This is a simple, accurate,
fast, and direct method of measuring ChE activity in blood
and tissues. It is based on the reaction between thiocholine,
which is one of the products of the enzymatic hydrolysis of
the synthetic substrates acetylthiocholine iodide (ATCI) or
butyrylthiocholine iodide (BTCI), and the sulfhydryl group
of a chromogen such as 5,5′-dithiobis-(2-nitrobenzoic acid)
(DTNB or Ellman’s reagent). The formation of the yellow
product of this reaction, 5-thio-2-nitrobenzoic acid (TNB),
is measured by monitoring absorbance at 410 nm. Each
mole of the anion produced represents the hydrolysis of one
mole of substrate [5, 10–12]. The advantage of DTNB is
that it is water soluble; it may be used at neutral pH with
few side reactions; its reaction with thiocholine is fast and
sensitive due to the high molar absorption coefficient of TNB
[5, 9, 13]. The objectives of this study were (a) to investigate
correlations between the storage −80◦C and −20◦C, and
(b) to establish a foundation for the applicability of ChE
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activities in food animal species as biochemical biomarkers
for the evaluation of exposure to organophosphorus and
carbamate pesticides.

2. Materials and Methods

2.1. Chemicals. Cholinesterase (ChE) substrates (acetylthi-
ocholine iodide, ATCI, 98% purity; S-butyrylthiocholine io-
dide, BTCI, 98% purity), and 5,5′-dithiobis-(2-nitrobenzoic
acid) (DTNB) were supplied by the Sigma Chemical Com-
pany (Poole, UK). All other reagents and solvents used in this
work were of analytical grade and were supplied by Fisher
(Loughborough, UK).

2.2. Animals. Meat from healthy food animals (sheep, cattle,
and pigs) from local markets in Plymouth and abattoirs
in Cornwall (Callington and Launceston), UK, was used in
this study. The samples (liver and muscle) were transported
on ice to the laboratory for immediate processing. During
sample collection from the animal it was ensured that
there was no possibility of the introduction of Anti-ChE
compounds from the skin of the animals. As noted by
Fairbrother et al. [14], this can be a source of contamination
by Anti-ChE.

2.3. Sample Preparation. One gram of each tissue was
removed using a scalpel, cut into small pieces (3-4 mm3),
and rinsed until the blood was fully removed. The tissue was
then placed on ice in 12 mL tubes (7.5 mm internal diameter)
and homogenized using a mechanically driven homogenizer
(Model X520-D, T6 probe, Bennett and Company, Weston-
super-Mare, UK) with sodium phosphate buffer (0.1 M, pH
8) at a ratio of 1 part of tissue to 9 parts of buffer, and
a speed of 10000 rpm. Homogenisation required between 2
and 5 min depending on the tissue; after every 30 s or so
of homogenisation the mixture was rested for 10 s to allow
cooling. The homogenate was then centrifuged and then
decanted into an Eppendorf tubes at 9000 g for 5 min at
4◦C [12, 15, 16]. However, the homogenates were thoroughly
mixed and distributed into 16 equal portions in all animals
(sheep, cattle, and pigs) and tissues (liver and muscle),
representing storage temperatures (−80◦C and −20◦C) for
immediate processing one-month intervals, over a period of
eight months. It was important during homogenization to
ensure that (i) samples were fully homogeneous and that
aliquots taken reflected the homogenate as a whole, and (ii)
that ChE activities were altered in the process (e.g. through
heat-induced denaturation) [14].

2.4. Enzyme Activity Measurement. Cholinesterase activity
was determined by the Ellman method [9], adapted for
use with microtitre plates as described by Haigh et al.
[17], and using either ATCI or BTCI as substrate (1 mM
final concentration of each) for measuring AChE and BChE
activities, respectively. Substrate solutions were prepared and
used on the same day and kept on ice during use. Briefly,
0.02 mL of sample and 0.24 mL of assay mixture (9.75 mL
of 0.1 M sodium phosphate buffer, pH 8.0, containing 1 mM

EDTA, and 0.25 mL of 0.2 mM DTNB) were mixed, allowed
to stand for 5 min, and then 0.04 mL of substrate solution
were added. The absorbance increase was monitored for
5 min at 410 nm, at 25◦C in a plate reader (OptiMax,
Molecular Devices, Sunnyvale, CA) [17]. In each case the
rate of absorbance increase was corrected by subtracting
the rate observed for a reagent blank (i.e., without sample).
ChE activities were calculated using an extinction coefficient
of 13.6 mM−1 cm−1 for TNB [18]. All measurements were
carried out in triplicate.

2.5. Data Analysis. Conventional statistical methods were
used to calculate the means, coefficient of variance, and
standard errors (SE). Pearson’s correlation coefficient were
applied to test for any significant differences (P < .05). All
statistics were carried out using MiniTab statistical software
version 15 (MiniTab Ltd., PA, USA). Bland-Altman method
was also used to compare between two storage methods
according to Dewitte et al. [19].

3. Results

3.1. Liver Freezing. Acetylcholinesterase (AChE) and buty-
rylcholinesterase (BChE) activities were determined in liver
for sheep, cattle, and pigs of each of the 8 freezing times
rates at −80◦C and −20◦C as described in Section 2 (Figures
1(a)–1(d)). There were significantly higher AChE and BChE
activities in pigs compared to when cattle and sheep used,
using both freezing effects (Figures 1(a)–1(d)). In all cases
(sheep, cattle, and pigs using both freezing methods), BChE
activity was higher in liver than AChE activity (Figures 1(a)–
1(d)). Freezing for cases (sheep, cattle, and pigs using both
freezing methods) at −80◦C showed a significant decrease
of AChE and BChE activities after 6 months (Figures 1(a)
and 1(b)). In general, freezing at −20◦C showed a significant
decrease in AChE and BChE activities after 3 months with an
exception in the case of sheep in which the decrease in AChE
was significant after 1 month (Figure 1(c)).

The linear regression of mean ChE activities of liver after
8 months of freezing is shown in Figures 2(a)–2(d). The R2

values tended to be very high in case of BChE activity at
−20◦C (R2 = 0.98, P = .0001; Figure 2(d)). Taking the over-
all data set there was a significant correlation between both
AChE and BChE activities measured at −80◦C and −2◦C of
freezing (Pearson’s correlation coefficient = 0.70, P < .0001;
Figure 3(a)). However, the percentage of coefficient variance
(%CV) values for each month was generally higher (35 out
of 48 sets of data) using the −20◦C compared to the −80◦C
freezing (Figures 4(a)–4(f)). Bland and Altman plot of the
ratio of the two freezing methods at −80◦C and −20◦C
showed the mean differences between two freezing methods
to be 8.8, and SD was 144.7 and −127.6 for upper and lower
limits, respectively (Figure 5(a)).

3.2. Muscle Freezing. Freezing effects to AChE and BChE
activities were also determined in muscle for sheep, cattle,
and pigs using each of the 8 freezing times rates at−80◦C and
−20◦C as described in Section 2 (Figures 6(a)–6(d)). In all
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Figure 1: AChE and BChE activities in liver for sheep, cattle, and pigs using freezing at −80◦C ((a) and (c)) and −20◦C ((b) and (d)). Data
are expressed as the mean ± SE (n = 10 of each animals). The letter in the column is significantly different (ANOVA, P < .05).

cases (sheep, cattle, and pigs using both freezing methods),
AChE activity was higher in muscle than BChE activity
(Figures 6(a)–6(d)). In all cases (sheep, cattle, and pigs using
both freezing methods), the freezing at −80◦C showed a

significant decrease after 3 months for AChE and BChE
(Figures 6(a) and 6(b)). Freezing in all cases (sheep, cattle,
and pigs using both freezing methods) at −20◦C showed a
significant decrease after 1 month for BChE (Figure 6(d)),



4 Enzyme Research

Storage −80◦C

Time (months)

1 2 3 4 5 6 7 8

A
C

h
E

(%
of

co
n

tr
ol

ac
ti

vi
ty

)

60

70

80

90

100

110

f = 105.8− 2.8∗x
R2 = 0.91
P = .0002

(a)

Storage −80◦C

Time (months)

1 2 3 4 5 6 7 8

60

70

80

90

100

110

50

f = 110.9− 5.3∗x
R2 = 0.9
P = .0003

B
C

h
E

(%
of

co
n

tr
ol

ac
ti

vi
ty

)
(b)

Sheep
Cattle
Pig

Storage −20 ◦C

Time (months)

1 2 3 4 5 6 7 8

A
C

h
E

(%
of

co
n

tr
ol

ac
ti

vi
ty

)

60

70

80

90

100

110

f = 97.3− 1.7∗x
R2 = 0.96
P = .0001

(c)

Sheep
Cattle
Pig

Storage −20 ◦C

Time (months)

1 2 3 4 5 6 7 8

60

70

80

90

100

110

50

B
C

h
E

(%
of

co
n

tr
ol

ac
ti

vi
ty

)

f = 100.9− 2.4∗x
R2 = 0.98
P = .0001

(d)

Figure 2: Regression analysis of ChE (% of control activities) over time in liver using freezing at −80◦C and −20◦C for sheep, cattle, and
pigs. A linear regression equation is usually written as follows f = a+ bx, where f is the predicated mean ChE activities, a is the intercept of
the regression line with f -axis, b is the slop or regression coefficient and x was any month of storage. These equations indeed could be used
for predication of ChE activities in different sites for any month of storage.
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Figure 3: Regression analysis of individual activity of AChE and BChE using storage at −80◦C and −20◦C in liver and muscle of sheep,
cattle, and pigs.

while for AChE it showed a significant decrease after 2
months for cattle and pigs with the exception of sheep after 3
months (Figure 6(c)). Again linear regression of mean ChE
activities was seen in muscle after 8 months of freezing
(Figures 7(a)–7(d)). The R2 values tended to be very high
in case of AChE activity at −20◦C (R2 = 0.98, P = .0001;
Figure 7(c)). Again taking the overall data set, there was
a significant correlation between both AChE and BChE
activities measured by −80◦C and −20◦C freezing (Pearson’s
correlation coefficient = 0.43, P < .0001; Figure 3(b)), and
again, the %CV values for each month were generally higher
(35 out of 48 sets of data) using the −20◦C compared to the
−80◦C freezing (Figures 8(a)–8(f)). Bland and Altman plot
of the ratio of the freezing at −80◦C and −20◦C has shown
the mean differences between the two freezing methods to be
1.5, and SD was 32.5 and −28.9 for upper and lower limits,
respectively (Figure 5(b)).

4. Discussion

The widespread use of organophosphorus and carbamate
pesticides and the dangers associated with their application
have resulted in cholinesterase (ChE) activities being used as
biomarkers of both exposure to and effect of these pesticides
[2]. As noted by Wilson et al. [2], determination of ChE
activities may form the basis for the establishment of safe
levels of such pesticides in food and in the environment.

There are two freezing effects currently described for the
measurement of ChE activities, the −20◦C and −80◦C.
However, neither freezing effect has been validated for use
either in tissues from other food animal or in other tissues.
The present study was to investigate the effect of freezing
(8 months) on activity of AChE and BChE for sheep,
cattle, and pigs using modified Ellman method in liver and
muscles as described in Section 2 (Figures 1 and 6). In all
cases the results from our study are shown a significant
decreases of AChE and BChE at −80◦C after 6 months in
liver (Figures 1(a) and 1(b)). In contrast, with muscle we
found significant after 3 months (Figures 6(a) and 6(b)).
This is in agreement with the work of Kirby et al. [20], who
found no changes or loss in ChE activities for 4 months
in freezing at −80◦C for flounder muscle tissue. Nigg and
Knaak [21], who observed a little change in human plasma
BChE activity when freezing at −70◦C after 10 times of
frozen and thawing. Other than, ChE activities of fish brain
tissue freezing at −68◦C and −70◦C for up to 55 days and
5 months, respectively did not differ significantly [14, 21].
In general freezing at −20◦C showed significant decreases in
all cases (sheep, cattle, and pigs for liver and muscle) after
1–3 months (Figures 1 and 6). This is in agreement with
Crane et al. [22], who observed that plasma and erythrocyte
ChE activities using freezing at −20◦C remain stable after
6 weeks. This is in contrast with the work of Nigg and
Knaak [21], who observed using freezing at −20◦C for 14
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Figure 4: Percentage coefficient of variance between freezing at −80◦C and −20◦C for liver sheep, cattle, and pigs in 8 months.
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Figure 5: Bland and Altman plot of the ratio of the storage at −80◦C and −20◦C (plotted on the y-axis) versus the average of the storages
(x-axis) for food animal ChE activities. Horizontal lines are drawn at the mean difference, and at the mean difference ±1.96 SD of the
differences (dashed line). If the differences within mean±1.96 SD are not clinically important, the two storages may be used interchangeably
for tissue samples.

months without significance loss of plasma BChE activity.
Panteghini et al. [23], observed human plasma ChE activities
to be stable for several months and years using freezing at
−20◦C. However, these authors used a human blood plasma
measuring instead tissues of food animals. This factor may
explain the apparent difference in activity. There is a 30% loss
in BChE activity using freezing at −20◦C in human serum,
while there is no loss in AChE at storage for one year [24, 25].
And there is a 23% decrease in up to 6 months in sheep
AChE activity using freezing at −20◦C in whole blood and
a 9% decrease of whole blood from dog using freezing at
−20◦C [26]. Morán and Gómez-Ramos [27], who explained
that some loss of AChE activity is due to particularly the G4

molecular form of the enzyme, which has been described in
unfixed human brain tissue, stored frozen at −20◦C for 4
weeks.

Additionally, there is a great variety of freezing degrees
that can be found among different laboratories, for example,
there were no changes in ChE activities when stored more
than ten years at lower than 4◦C [28], and a10% decrease
after 2 months in bovine erythrocyte ChE as well as a 95%
decrease at 37◦C for 4 days [29]. Furthermore, Balland et al.
[30] found that ChE loses 15% of its activity after 240 days of
storage at room temperature; additionally he reported that
freezing for 1 h at −40◦C and −196◦C did not affect ChE
activities in plasma and stored samples. High correlation
coefficient was seen after 8 months of freezing at −80◦C

and −20◦C in the liver and muscle (Figures 2 and 7). One
objective of the present study was to investigate whether
the frozen animal product had effect on activity of ChE
[30].

Linear regression of mean ChE activity was observed
in all individual samples on months of freezing at −80◦C
and −20◦C (Figures 3(a) and 3(b)). The regression is
used in present study to find the line that best predicts
y (% control ChE activities) from x (months). The mean
differences between the two freezing methods are plot-
ted by Bland and Altman plot and were seen only in
muscle storage clinically important the mean less than
±1.96 (Figure 5(b)). With regards to precision of the both
freezing methods, they showed higher coefficient of variance
(%CV) values using freezing at −20◦C compared with
freezing at −80◦C (less than 13% and less than 15.2% for
freezing at −80◦C and −20◦C, resp. for liver) and (less
than 12.8% and less than 16.9% for freezing at −80◦C
and −20◦C, resp. for muscle) (Figures 4 and 8); therefore
freezing at −80◦C provides better precision than freezing
at −20◦C in muscle and liver for sheep and cattle. Finally,
it was noticed that the decreases of ChE inhibition levels
after freezing were broadly similar to those found in the
original analysis and, therefore, long-term freezing could
still be used as an option during monitoring programmes,
especially where samples are not allowed to thaw during
storage.
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Figure 6: AChE and BChE activities in muscle for sheep, cattle and pigs using freezing at−80◦C ((a) and (c)) and−20◦C ((b) and (d)). Data
are expressed as the mean ± SE (n = 10 of each animals). The letter in the column is significantly different (ANOVA, P < .05).

5. Conclusions

This is the first study that provided original data concerning
freezing effects for AChE and BChE activities in food ani-
mals. In general, using freezing at −80◦C in all animals

(sheep, cattle, and pigs), there is a significant inhibition
after 6 months in liver and 3 months in muscle. While
liver extracts using freezing at −20◦C in all animals showed
a significant decrease in AChE after 3 months with the
exception of sheep. However, in general there are significant
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Figure 7: Regression analysis of ChE (% of control activities) over time in muscle freezing at −80◦C for sheep, cattle, and pigs. Key for the
figure is listed under Figure 2.

differences in BChE in muscle using freezing at −20◦C after
1 month and in AChE after 2 months with exception of sheep
AChE after 3 months. Despite this, further studies in different
laboratories are necessary in order to improve our knowledge
about this very interesting enzyme as a potential biochemical
marker for intoxication.
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