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In the field of food processing, the processing of liquid foods has always played an

important role. Liquid foods have high requirements for the processing environment and

equipment. As the core equipment in liquid foods processing, food transport pumps are

widely used in liquid foods production, processing and transportation. Most liquid foods

are non-Newtonian and vulnerable to vibration, noise, and temperature rise produced

by rotary motions of food transport pumps in operation, which can finally affect foods

safety. Therefore, this review summarizes the impact of mechanical vibration, noise, and

temperature rise on liquid food products, with the aim of ensuring food safety while

designing a cleaner, safer and more reliable food transport pumps in the future.
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INTRODUCTION

With the continuous development of economy and society, food safety is not only a major public
health safety issue (1), but also a major issue related to people’s survival and development and
nutritional health (2–4). The impact of all links of food production on food safety cannot be
ignored, especially in food processing and transportation (5–7). The processing of liquid foods
such as peanut butter, beer, and milk makes enormous demands on delivering equipment. Due
to the different molecular structures and physical parameters of various liquids, the impact
of physical parameters of various equipment operation (mainly including vibration, noise and
temperature rise) on liquid foods should be considered during the transportation of liquid
foods (8–11). Food transport pumps accelerate the output of liquid food under pressure, thus
realizing efficient and stable conveyance of liquid foods. It is the core delivering equipment
in the production process of liquid foods. The most used two types of food transport pumps
are vane pumps and positive displacement pumps (12–14). Vibration, noise and temperature
rise caused by long-term operation are ubiquitous in the use of food transport pumps (15–19).
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When delivering liquid foods, pressure pulsation exists in the
flow field due to the rotor–stator interaction between the vanes
and volutes of the pump. Such pressure pulsations will result
in the vibration and noise of the pump (20–23). In addition,
local temperature rise of liquid foods in pump impeller and
volute will occur during operation of food transport pumps,
which will affect the safety of liquid foods (24, 25). Vibration,
noise, and temperature rise of liquid foods are inevitable in the
process of transfer. Extensive research efforts have been made
to investigate the effect of such factors on the quality of liquid
foods. This review focuses on the impact of liquid foods in the
transfer process in terms of mechanical vibration, noise, and
temperature rise.

EFFECT OF VIBRATION-INDUCED
FACTORS ON LIQUID FOODS

Vibration in the process of transfer can negatively affect liquid
foods (milk, liquor, yogurt, juice, etc.). For example, during
yogurt fermentation, the vibration caused by large yogurt transfer
pumps will spread to the fermenter (26), and the characteristic
frequency of vibrations can affect pH and disturb protein
network formation, which can lead to defects in yogurt texture
(27). Körzendörfer et al. (28) tested the effect of vibration on
the fermentation process of yogurt, and showed that mechanical
vibration causes yogurt to produce large particles on the
millimeter scale during stirring, while this particle formation is
mainly induced by changes in yogurt pH (29). According to
particle image velocimetry results, vibration forces the yogurt
to undergo vertical back and forth movements, which leads to
local protein breakage during aggregation and gelation, making
the yogurt more susceptible to syneresis during storage (30).
Richmond et al. (31) studied the stability of yogurt during
simulated transport in different secondary packaging. Textural
defects caused by vibration include whey and cracked or
completely destroyed coagulum. In contrast, agitated yogurt
might suffer from structural losses (such as hardness) and phase
separation in the process of transfer (32, 33). In addition, the
vibration can affect the concentration of aldehydes, especially at
higher storage temperatures (34). Jaskula-Goiris et al. (10) have
studied the beer production process, and found that vibration
can lead to intensified collisions between fluid molecules,
which can cause beer to undergo oxidative reactions and thus
become turbid.

However, studies also have showed that mechanical vibration
also positively affects liquid foods. Stoforos et al. (35) examined
the effect of vibration on thermal mixing of liquid foods during
cooling of several highly viscous foods, potato puree, banana
puree, applesauce, and cheese sauce was investigated, and the
results showed that thermal mixing of liquid foods was improved
under low frequency lateral vibration. Low frequency lateral
vibrations can homogenize the temperature distribution of liquid
foods while also accelerating food cooling. Kim et al. (36)
found that resonance vibration could alleviate the membrane
fouling problem of whole milk during filtration process, and
resonance vibration could more effectively alleviate the fouling

phenomenon of milk. Salek et al. (37) concluded that mechanical
vibration can convert mechanical energy into thermal energy
and enhance the hardness, storage modulus, and viscosity of
cheese sauce. Warmińska et al. (38) studied the effect of vertical
vibration (10–60Hz, 0.5–2 h) on raw milk, and found that
vibration increases electrical conductivity, while also altering
the heat and clotting behavior of chymosin. Czerniewicz et al.
(39) revealed that vibration decreased the pH of raw milk while
increasing the amount of free fatty acids (40).

EFFECT OF NOISE-INDUCED FACTORS
ON LIQUID FOODS

Both noise and acoustic wave characteristics have a significant
effect on food safety (41–43). Ultrasound has a more pronounced
physical effect on milk and dairy products, and related studies
have shown that ultrasound has a distinct effect on the degree
of emulsification and overall homogenization of milk and dairy
products (44, 45). According to this research phenomenon,
related researchers made low-fat dairy products by using
ultrasound for separating emulsion and removing the fat layer
(46, 47). Ultrasound has also been used to enhance the milk
curding ability (48). O’Sullivan et al. (49) found that Ultrasound
has been found to reduce micelle size and hydrodynamic volume
of sodium caseinate, whey and milk protein isolates. Shanmugam
et al. (44) studied flaxseed oils/milk emulsion composition, and
found that ultrasound treatment improved the gel properties,
gel strength, and elasticity, while reducing the gelation time
of emulsions. Gursoy et al. (50) showed that ultrasound can
postpone the separation of serum from milk and increase
the viscosity of milk. Chandrapala et al. (51) concluded that
ultrasound could accelerate the dissolution of powder inmilk and
the release of individual casein micelles into solution. Sfakianakis
et al. (52) found that ultrasonicated milk samples also showed an
increase in gel stiffness, clotting strength, final storage modulus,
cohesiveness, and water holding capacity.

Aadi (53) found that ultrasound could improve turbidity
values, antioxidant capacity, free radical scavenging activity,
ascorbic acid of liquid foods such as phenolics, flavonoids and
flavonols. Abid (54) found that ultrasound could enhance the
concentration values of inactivated polyphenolic compounds
and sugars in enzymes (polyphenolase, peroxidase, and pectin
methylesterase) and microbial communities. Ultrasound could
also effectively reduce the number of microbes in juice (55). Jiang
et al. (56) found that ultrasound could enhance the antioxidant
activity of fliud foods. Tomadoni et al. (57) found that ultrasound
could effectively reduce the number of yeasts and molds in
strawberry and kiwifruit juices.

EFFECT OF TEMPERATURE RISE
INDUCED FACTORS ON LIQUID FOODS

For most foods, temperature rise implies a deterioration of food
quality. Temperature significantly affects microbial reproduction
and speeds up food spoilage under appropriate humidity and
oxygen conditions (58). Generally, within a certain range of
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TABLE 1 | A summary table of all mentioned papers outcomes.

Characteristics Product References Outcomes

Vibration Yogurt (28) Produce large millimeter-sized particles

Yogurt (31) Cause texture defects

Beer (10) Oxidation of beer

Mashed Potatoes et al. (35) Improve thermal mixing of foods

Whole milk (36) Reduce milk scaling

Cheese sauce (37) Increase hardness, storage modulus and viscosity

Raw milk (38) Alter heat and rennet coagulation behavior

Raw milk (39) Decrease pH and increase the amount of free fatty acid

Noise Milk (49) Reduce micelle size and hydrodynamic volume of

sodium caseinate, whey and milk protein isolate

Flaxseed Oil/Milk (44) Improve gel properties, gel strength and elasticity

Milk (50) Delay serum separation and increased viscosity

Milk (51) Accelerate the dissolution of powders

Milk (52) Increase gel hardness, coagulation strength, final storage

modulus, cohesion and water holding capacity

Phenols and flavonoids (53) Improve food turbidity value, antioxidant capacity, free

radical scavenging activity, ascorbic acid

Enzyme (54) Enhance concentration values of inactive polyphenolic

compounds and sugars

Mulberry juice (56) Enhance antioxidant activity

Strawberry and kiwifruit Juice (57) Reduce yeast and mold counts

Temperature rise Yogurt (63) accelerate spoilage

Milk (64) Maillard reaction

Milk (67) Produce bad odor components

Yogurt (68) Reduce viscosity and smoothness

Yogurt (71) Negative effects of nutrition, physical properties, and

flavor

temperature, when the temperature of foods rises by 10◦C
under constant moisture conditions, the enzymatic and non-
enzymatic chemical reaction rate will double, and the rate of
food spoilage will increase by 4–6 times (59). The increase in
temperature also damages the internal organizational structure
of food, thus seriously worsening the quality. Excessive heat
can also denature proteins in foods, disrupt vitamins especially
vitamin C in watery foods, or change the properties due water
loss and deform foods (60). Therefore, the temperature rise of
food transport pumps should be strictly controlled during the
operation of liquid foods (61). High-protein foods such as milk
and soybean milk are highly sensitive to temperature and greatly
affected by temperature in the process of production. During
yogurt transfer, the temperature should be controlled at around
5◦C to avoid spoilage (62, 63). Al-Attabi (64) found that the
physical and chemical reactions in heat treatment resulted in
changes in milk flavor, which is different from the flavor of
raw milk. The temperature increase of milk results in Maillard
reaction, lipid degradation and thermal denaturation of whey
proteins and milk fat globule membranes (65). In addition, some
by-products of Maillard reaction are harmful to human health
and can cause allergic reactions when severe (66). Zhang et al.
(67) found that the longer the heat treatment time, the higher
the heating temperature of milk, and the more extensive the
Maillard reaction, which resulted in various unacceptable odor
components. Wu et al. (68) found that the yogurt fermentation

temperature might degrade yogurt quality with the growth
of microbes, and that culture temperature during production
had a significant effect on the physical characteristics of the
final product. Higher temperatures exacerbated yogurt whey
separation (69), which would result in a weak protein network
with coarser microstructures and reduce the viscosity and
smoothness of yogurt (70). Yang et al. (71) studied the effect of
different fermentation temperatures on the quality of yogurt and
metabolites, found that temperature rise caused different degrees
of negative effects on the nutritional, physical characteristics
and flavor of yogurt. Finally, all the above mentioned papers
outcomes are shown in Table 1.

CONCLUSION AND PERSPECTIVE

Food safety has been a hotspot and sticking point in research.
This review summarized the effect of vibration, noise, and
temperature rise in the operation of food transport pumps on the
physical, chemical, and structural characteristics of liquid foods.
However, machinery vibration and ultrasound are also used for
improving the taste of liquid foods, but other hazardousmaterials
will also come with temperature rise. In general, machinery
vibration, noise, and temperature rise have both positive and
negative effects on liquid foods. Therefore, further research
should proceed. At the beginning of food transport pumps
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design, it is necessary to take full account of its impact on specific
food, such as milk, yogurt, wine, fruit juice, etc., to develop a
more adjustable multi-scene food transport pump, which can
adjust the rotating speed, flow rate and blade structure according
to different liquid foods. Such multi-functional food transport
pumps are also the main research and development direction of
food machinery in the future. It is also necessary to take into
account the material characteristics of food transport pumps,
and introduce new technologies and materials, such as carbon
nanomaterials, coating technology, which can improve the
food transport pumps’ damping capacity, sound and vibration
absorption capacity, and environmental friendliness. All of this
technology will reduce vibration, reduce temperature rise and
protect food more safely, when liquid foods are transferred by
food transport pumps.
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