
Research Article
A PSO-Powell Hybrid Method to Extract Fiber Orientations
from ODF

ZhanxiongWu ,1 Xiaohui Yu ,2 Yang Liu ,3 andMing Hong1

1School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
2Department of Systems Medicine & Bioengineering, Houston Methodist Hospital, Houston, TX, USA
3Department of Biomedical Engineering, University of Houston, Houston, TX, USA

Correspondence should be addressed to Xiaohui Yu; xyu2@houstonmethodist.org

Received 4 August 2017; Revised 20 December 2017; Accepted 26 December 2017; Published 21 January 2018

Academic Editor: Chuangyin Dang

Copyright © 2018 ZhanxiongWu et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

High angular resolution diffusion imaging (HARDI) has opened up new perspectives for the delineation of crossing and branching
fiber pathways by orientation distribution function (ODF). The fiber orientations contained in an imaging voxel are the key factor
in tractography. To extract real fiber orientations from ODF, a hybrid method is proposed for computing the principal directions
of ODF by combining the variation of Particle Swarm Optimization (PSO) algorithm with the modified Powell algorithm. This
method is comprised of the global searching ability of PSO and the powerful local optimizing of Powell search. This combination
can guarantee finding all the diffusion directions without applying sliding windows and improve the accuracy and efficiency. The
proposed approach was evaluated on simulated crossing-fiber datasets, Tractometer, and in vivo datasets.The results show that this
method could correctly identify fiber directions under a range of noise levels. This method was compared with the state-of-the-art
methods, such as modified Powell, ball-stick model, and diffusion decomposition, showing that it outperformed them. As to the
multimodal voxels where different fiber populations exist, the proposed approach allows us to improve the estimation accuracy of
fiber orientations from ODF. It can play a significant role in the nerve fiber tracking.

1. Introduction

At present, tractography based on diffusion-weighted mag-
netic resonance imaging (DWI) is the only noninvasive tool
to obtain information on the neural architecture of the
human brain white matter (WM) in vivo. The structural
connectivity inferred from tractography is critical for under-
standing the functional coupling between cortical regions of
the brain and for the characterization of neurodegenerative
diseases and for medical applications [1–4]. In deterministic
tractography, it is the important step to resolve the fiber
orientations populated in each imaging voxel.

In current literature, there are threemathematical models
applied to retrieve fiber orientations from DWI raw datasets:
apparent diffusion coefficient (ADC), diffusion tensor (DT),
and ODF. However, the local maxima of ADC profile do
not necessarily coincide with the underlying fiber directions,
making the extraction of orientation information difficult
[5–7]. This is due to the nature of the ADC measurement

which is the projection of spin displacements onto the
diffusing gradient axis. The limitation of the DT model is
the Gaussian diffusion assumption, which implies that there
can only be a single-fiber population per voxel [8–10]. It is
known that many voxels have low diffusion anisotropy due
to the crossing, branching, and fanning of multiple fibers
[11–14]. The ODF is defined as the radial projection of the
spherical diffusion function, which is a function on the unit
sphere describing the probability averaged over the voxel
that a particle will diffuse into any solid angle [15, 16]. As a
spherical function, ODF has its local maxima aligned with
the underlying fiber directions at every voxel. Until now,ODF
is most widely employed to determine the fiber orientations
with high angular resolution.

As the water molecules in WM tissues tend to diffuse
along fibers when contained in fiber bundles, the principal
directions of ODF agree with the true synthetic fiber direc-
tions [17]. The ODF field is promising for the estimation
of neuronal fibers. The orientation of a particular fiber
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population could be estimated by finding the peaks of the
corresponding reconstructed ODF. For this reason, a major
focus within the DWI community has been directed at
developingmethods to compute theODF. Although diffusion
spectrum imaging (DSI) was firstly developed to image com-
plex distributions of intravoxel fiber orientations with a more
detailed, complete, and accurate view of WM architecture
locally, the time-consuming MRI signal sampling restricts
its application [18]. Currently, Q-ball imaging (QBI), con-
stant solid angle QBI (CSA-QBI), and diffusion orientation
transform (DOT) are constantly used to construct the ODF
because they are more time-saving than DSI [15, 16, 19].
However, there is still an important issue to be solved in
the neural fiber tracking from ODF. That is how to extract
the fiber directions from ODF accurately with high angular
resolution. In general, there are two kinds of methods to
extract fiber orientations fromODF, and the first is to resolve
the ODF to multicompartment partial volume models, and
the other is to directly search the peaks of ODF.

The method of diffusion decomposition obtains fiber
orientations by decomposing ODF into standard component
ODFs [20]. The advantage of the approach is that a fiber vec-
tor can be easily represented by the direction of component
ODF but not by spherical harmonics. The decomposition
algorithm provides a sparse solution to improve the ability in
resolving crossing fibers and to avoid false fibers as encoun-
tered in diffusion deconvolution. Ball and sticks model is a
model-fitting approach, which decomposes HARDI signals
into isotropic and anisotropic diffusion components directly
[21]. However, the two models suffer from the shortcomings
regardingmodel selection.Wemust determine the number of
diffusion compartments with a priori structural knowledge of
each voxel andmust use nonlinear optimization to obtain the
fiber orientations. What is more, the two methods are sen-
sitive to noise and to the number of HARDI measurements.
Essentially, the two models are ill-posed inverse problems.

TheODF, as a probability distribution function, should be
nonnegative. As the principal directions of ODF are consis-
tent with fiber orientations, extracting the fiber orientations
from ODF could be boiled down to a multimodal optimiza-
tion problem. At present, several methods exist to extract
ODF’s maxima, such as finite difference method, Powell’s
method, and spherical Newton’s method. By searching for
local maxima of persistent angular structure (PAS) using
Powell’s method, the orientations ofWMfibers were revealed
[22]. Tournier et al. estimated the orientation of a particular
fiber population by finding the peak of the corresponding
reconstructed ODF using a spherical Newton’s method [23].
This method has the merit of high convergence speed, but
it is susceptible to the position of the starting point. In the
iteration not only gradient vectors and their modulus but
also Hessian matrix and its inverse matrix are needed to be
computed over and over again. This is quite time-consuming
andmemory-consuming. Sequential quadratic programming
(SQP) is an iterative method for nonlinear optimization. It
usually is used on the mathematical problems for which the
objective function and the constraints are twice continuously
differentiable [24]. But SQP was found to introduce biases in
the peak distributions via the constraints.

In order to find all the fiber-along vectors fromODFs and
improve the precision of multipeak searching, in this work,
we have introduced a novelmethodology to estimate the fiber
directions directly from ODF based on PSO-Powell hybrid
algorithm. In this method, the global search ability of PSO
is combined with the strong local search ability of modified
Powell algorithm.This combination can not only improve the
solution accuracy but also speed the searching at the same
time. Only using the function value information without the
need to calculate derivatives makes it very useful to solve
ODF optimization. It can correctly retrieve the orientations
corresponding to underlying intravoxel fibers populations.
Results on the simulated datasets, Tractometer, and in vivo
HARDI datasets illustrate the effectiveness of the proposed
approach.

2. Methods

2.1. ODF Construction. In the past decades, respectable
researchers have tried to extract fiber orientations with
high angular resolution from raw DWI datasets. However,
image acquisition under clinical conditions with limited
measurement time faces the problem of poor spatial and
angular resolution and the technique’s high susceptibility to
noise [25–27].The advent of HARDI has provided the chance
to delineate multifiber pathways effectively and efficiently by
ODF. Essentially, ODF is a function of two angular variables
𝜃 and 𝜑 as (1). The equation expresses diffusion probability
in the direction (𝜃, 𝜑) of water molecules contained in WM
tissue:

𝑑ODF (𝜃, 𝜑) = ∫
∞

0

𝑃 (𝑟 (𝜃, 𝜑)) 𝑟2𝑑𝑟, (1)

where 𝑟 is the displacement radius, 𝜃 is the azimuth angle, and
𝜑 is the elevation angle in spherical coordinate. In this work,
we applied the PSO-Powell hybrid method to the ODF fields
which were constructed with QBI, CSA-QBI, and DOT. In
order to be able to delineate fiber crossings even at low angles
and avoid unnecessary loss of angular resolution, we choose
a high SH order of 8 for ODF constructions in CSA-QBI
and DOT. Higher-order spherical harmonics are necessary
to resolve fibers that are separated by small angles but also
introduce noise [28–30]. We applied a set of 724 directions
evenly distributed on a unit sphere to evaluate the ODFs of
the testing HARDI datasets.

After ODF fields have been constructed, it is crucial to
resolve the principal directions of ODF, which are aligned
with the underlying fiber directions. In each imaging voxel,
the directions of fiber tracts are parallel to the directions
of maximum diffusion that are defined as local maxima of
the ODF [18, 19, 23, 24, 31, 32]. In the next section, the
whole process of PSO-Powell hybrid algorithmwas described
in detail, which was applied to extract the fiber directions
through finding the peaks of ODF.

2.2. PSO-Powell Hybrid Optimization. Hybrid strategies for
optimization are implemented by combining a heuristic
algorithm with a mathematical algorithm. This strategy
increases reliability in comparison to mathematical methods
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and increases efficiency in comparison to pure heuristics
algorithms [33]. In this work, PSO is coupled with the
modified Powell’s method in order to obtain a fast and
reliable hybrid algorithm. As the heuristic algorithm, PSO
is utilized to cover the entire search space, while modified
Powell method, as the mathematical algorithm, starting from
a point inside this region, quickly reaches local maxima.
The combination makes the hybrid algorithm reliable and
at the same time maintains properties which lead to rapid
convergence. The PSO algorithm is used to cover the entire
search space, identifying the region of local maximum, while
Powell algorithm quickly reaches the maximum. Another
reason for this choice is the fact that this hybrid algorithm
does not require the gradients of ODF [34, 35].

In the optimization of ODF, in order to make PSO go
through the domains where the local maxima locate, the
c2 parameter in (2) is assigned to zero [34]. Since the two
random factors of rand( ) in (2) could increase the stochastic
motion of the particles, we removed them from (2) so that the
hybrid algorithm could converge to all local maxima as soon
as possible. The revised particles’ velocity update equation is
described by (3).

𝑉𝑖𝑑 (𝑘 + 1) = 𝜔 (𝑘)𝑉𝑖𝑑 (𝑘) + 𝑐1rand ( ) (𝑃𝑖𝑑 − 𝑋𝑖𝑑 (𝑘))
+ 𝑐2rand ( ) (𝑃𝑔𝑖𝑑 − 𝑋𝑖𝑑 (𝑘)) ,

(2)

𝑉𝑖𝑑 (𝑘 + 1) = 𝜔 (𝑘)𝑉𝑖𝑑 (𝑘) + 𝑐1 (𝑃𝑖𝑑 − 𝑋𝑖𝑑 (𝑘)) , (3)

where 𝜔(𝑘) is the inertia weight, 𝑉𝑖𝑑 stands for the velocity
of particles, 𝑐1 and 𝑐2 represent learning factors, rand( )
represents a random value between 0 and 1, 𝑃𝑖𝑑 is the
optimal position of the 𝑘th iteration,𝑃𝑔𝑖𝑑 is the global optimal
position, and𝑋𝑖𝑑 stands for the current position.

Because the construction points located on the spherical
surface have no structure or order between their relative loca-
tions, we interpolated the query points by triangulating the
known ones.This step involves traversing of the triangulation
data structure to find the triangle that encloses the query
point. Once the point is found, the subsequent step is to
compute the value of the query point by the nearest-neighbor
interpolation method.The detailed procedure of PSO-Powell
hybrid searching algorithm is outlined as follows.

Step 1. Initialize the positions for a swarm of particles of
size𝑁, and initialize the parameters including the maximum
number 𝑡max of PSO iterations, the maximum number 𝑀 of
hybrid iterations, the precision 𝜀 of Powell searching, and the
precision 𝑃 of PSO searching.

Step 2. Evaluate the fitness of each particle.

Step 3. If the total number of iterations is greater than 𝑀,
we would stop the iteration and output all the local maxima.
Otherwise, turn to Step 4.

Step 4. If 𝑡 ≤ 𝑡max (𝑡 is the number of PSO iterations),
the speed and position of the particles would be updated

according to (3) and (4). And then 𝑃𝑖𝑑 and 𝑃𝑔𝑖𝑑 should be
updated at the same time.

𝑋𝑖𝑑 (𝑘 + 1) = 𝑋𝑖𝑑 (𝑘) + 𝑉𝑖𝑑 (𝑘 + 1) . (4)

Step 5. If Tolerance PSO < 𝑃, then we search the extrema
for the particles of last PSO iteration using modified Powell
method.

(5.1) The particles of the last PSO iteration are considered
as the initial points,𝑋(0) ∈ 𝑆. The directions 𝑑(𝑖) (𝑖 =
0, 1, . . . , 𝐷 − 1) are linearly independent. Generally,
𝑑(𝑖) are set along the directions of axes. Let 𝑘 = 0.

(5.2) Starting from 𝑋(0), 𝑋(1), 𝑋(2), . . . , 𝑋(𝐷) are ob-
tained by the linear search along the directions of
𝑑(0), 𝑑(1), . . . , 𝑑(𝐷 − 1):
𝑓 (𝑥𝑖 + 𝛼𝑖𝑑𝑖) = min

𝛼∈𝑆
𝑓 (𝑥𝑖 + 𝛼𝑑𝑖) ,

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑑𝑖, 𝑖 = 0, 1, . . . , 𝐷,
(5)

where 𝛼𝑖 and 𝛼 denote the step length. And 𝛼𝑖 is
obtained by the linear search.

(5.3) Let 𝑑𝐷 = 𝑥𝐷 − 𝑥0. If ‖𝑑𝐷‖ ≤ 𝜀, 𝑥𝐷 is the solution.
Otherwise, starting from 𝑥𝐷, a new solution 𝑥𝐷+1
would be found along 𝑑𝐷 by the linear search.

(5.4) The parameter 𝑡𝑙 corresponding to the maximum
drop is determined through

𝑓 (𝑥𝑡𝑙) − 𝑓 (𝑥𝑡𝑙+1) = max
0≤𝑖≤𝐷

{𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖+1)} . (6)

(5.5) If

𝑓 (𝑥0) − 2𝑓 (𝑥𝐷) + 𝑓 (2𝑥𝐷 − 𝑥0)
≥ 2 (𝑓 (𝑥𝑡𝑙) − 𝑓 (𝑥𝑡𝑙+1))

(7)

𝑑0, 𝑑1, . . . , 𝑑𝐷−1 would be still linearly independent, and they
are still the search directions of the next iteration. Let 𝑥0 =
𝑥𝐷+1, 𝑘 = 𝑘 + 1, then go to (5.2).

(5.6) If (7) is false, 𝑑0, 𝑑1, . . . , 𝑑𝐷−1 are linearly dependent.
Let 𝑑𝑡𝑙+𝑖 = 𝑑𝑡𝑙+𝑖+1 (𝑖 = 0, 1, . . . , 𝐷− 𝑡𝑙 − 1), 𝑥0 = 𝑥𝐷+1,
and 𝑘 = 𝑘 + 1; then go to Step (5.2).

Step 6. The new extremum is added to the extreme set.

Step 7. Reinitialize particle position and velocity. Then go to
Step 2.

In this hybrid method, the term of Tolerance PSO < 𝑃
is the condition of the transformation from PSO to Powell
search, in which Tolerance PSO represents the tolerance of
PSO optimization and 𝑃 stands for the Powell searching
threshold value. In the construction of ODF, some noise
would be introduced. We could select a normalized ODF
value as the thresholding, and this could avoid selecting small
peaks that may appear due to noise and transformation [27].
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Table 1: Simulation parameters of multitensor model.

𝑏-value (s/mm2) Volume fraction (azimuth, elevation) (rad)
1 fiber 3000 1 (0, 0)
2 crossing fibers 3000 0.5, 0.5 (0, 0), (1.22, 0)
3 crossing fibers 3000 0.33, 0.33, 0.33 (0, 0), (1.22, 0), (0.52,1.05)

Table 2: Convergence time of extracting fiber orientation from one-fiber ODF.

One-fiber
ODF Ball-stick Modified Powell

QBI/CSA-QBI/DOT

Diffusion
decomposition

QBI/CSA-QBI/DOT

PSO-Powell
QBI/CSA-QBI/DOT

Noise-free 1.12 s 82.15 s/78.03 s/84.09 s 77.63 s/68.27 s/70.05 s 40.17 s/44.79 s/41.45 s
SNR = 20 1.16 s 85.06 s/78.65 s/87.27 s 75.91 s/69.09 s/70.31 s 43.93 s/49.48 s/44.39 s

Table 3: Convergence time of extracting fiber orientation from two-fiber ODF.

Two-fiber
ODF Ball-stick Modified Powell

QBI/CSA-QBI/DOT

Diffusion
decomposition

QBI/CSA-QBI/DOT

PSO-Powell
QBI/CSA-QBI/DOT

Noise-free 1.12 s 81.42 s/80.39 s/90.15 s 88.81 s/90.15 s/87.78 s 43.45 s/42.97 s/41.35 s
SNR = 20 1.17 s 87.15 s/81.76 s/92.80 s 93.90 s/93.43 s/90.27 s 45.96 s/44.77 s/45.28 s

This hybrid algorithm could search all the peaks in the
feasible region through revised PSO and has the ability of
global search for all extremum points. With the strong local
search ability of modified Powell method, the accuracy and
convergence speed of the hybrid algorithm are improved.The
algorithm only uses the value of the ODF without the need
to calculate derivatives. In this work, the parameters of the
hybrid algorithm are set as follows according to [34, 35]. PSO
population size is 100. The max inertia weight is 0.2, and the
min inertia weight is 0.1. The acceleration factor 𝑐1 is 0.5. The
maximum number of PSO iterations is 120. The searching
threshold value 𝑃 is 0.02. The maximum number of PSO-
Powell hybrid iterations is 20.

3. Results

We utilized multitensor simulated datasets, Tractometer
datasets, and in vivo datasets to evaluate the methods for
extracting fiber orientations, including ball-stick, modified
Powell, diffusion decomposition, andPSO-Powellmodel.The
angular deviations for the four methods were compared and
the results proved the validity and feasibility of PSO-Powell
hybrid algorithm.

3.1. Simulation Study. The synthetic datasets were acquired
using the multitensor model [36], which leads to an ana-
lytical computation of exact ODF. For a given 𝑏-value of
3000 s/mm2, noise level of SNR = 20 [37], and 64 encoding
directions that uniformly are distributed on the unit sphere,
we generated DWI raw signals. The simulation parameters
of the synthetic datasets about one single-fiber and two and
three crossing fibers are shown in Table 1. After the ODF
fields were constructed with QBI, CSA-QBI, and DOT, we
applied three algorithms including PSO-Powell, modified
Powell with sliding windows, and diffusion decomposition

to extract the fiber orientations. The constructed ODFs were
displayed in Figure 1. The ball-stick model is a simplified
model for multiple tensors, and the fiber orientations are
directly estimated fromDWI raw signals.We directly applied
it to the comparison in Figures 2–4.

Figures 2, 3, and 4 show the angular deviations of ball-
stick, PSO-Powell, modified Powell, and diffusion decom-
position applied to synthetic ODFs without noise and with
noise of SNR = 20. The legends located on the right side
denote the angular deviations of the evaluatedmethods. Ball-
stick model directly resolves the fiber directions from raw
DWI signals. The other three methods were used to extract
fiber directions from ODFs constructed with QBI, CSA-
QBI, and DOT. The azimuth and elevation deviations were
separately grouped for quantitative comparison. As shown in
the figures, the diffusion decomposition with QBI ODF has
the highest angular deviation for the estimated azimuth 𝜃 and
elevation 𝜑. The results of the modified Powell method show
better accuracy for noised and noiseless ODFs. Its angular
deviation may be due to ODF construction incompatibility
and sliding windows radius, and the error can be reduced in
low SNR conditions. The ball-stick model performs best for
single-fiber and two-crossing-fiber ODFs (Figures 2 and 3)
but worse for three-crossing-fiber ODF (Figure 4). In sum,
PSO-Powell method showed substantial better performance
than other methods. The overall results suggest that PSO-
Powell method can be applied to the fiber orientations
extraction from ODF fields constructed with QBI, CSA-QBI,
and DOT. From the above quantitative comparisons, the
hybrid algorithm was shown to be reliable and to perform
better than the ball-stick model, modified Powell, and ODF
decomposition.

Tables 2–4 show the convergence time of the testedmeth-
ods for extracting fiber orientations from ODFs constructed
with QBI, CSA-QBI, and DOT. From these tables, we can
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ODF
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Figure 1: ODFs constructed with QBI, CSA-QBI, and DOT. (a) Single-fiber ODFs without noise. (b) Single-fiber ODFs with noise of SNR =
20. (c) Two-fiber-crossing ODFs without noise. (d) Two-fiber-crossing ODFs with noise of SNR = 20. (e)Three-fiber-crossing ODFs without
noise. (f) Three-fiber-crossing ODFs with noise of SNR = 20.

draw the conclusion that PSO-Powell got the better con-
vergence speed than modified Powell and diffusion decom-
position. Because ball-stick model resolves the orientations
through nonlinear curve fitting in least-squares sense under
the condition that the number of diffusion compartments
is given, it requires significantly less time. Powell’s method
takes the longest time because of the repeated application
of the sliding window, and the radius is 0.4. In diffusion
decomposition, much time must be spent on the iterative
regression analysis. These methods were tested on the PC
equipped with Intel Core i5-3337U, 4G RAM, and Windows
10.

3.2. Phantom Study. The proposed method was also evalu-
ated on the phantom of Tractometer, which is popular in fiber
tracking test.TheDWI datasets of Tractometer were acquired
on the 3T Tim Trio MRI systems, equipped with a whole
body gradient coil, a whole body transmit coil, and a 12-
channel head receive coil. A single-shot diffusion-weighted
twice refocused spin echo-planar pulse sequence was used
to perform the acquisitions in order to compensate for the
first order Eddy currents. For each acquisition, there were 64
uniformly distributed diffusion-weighted measurements and
one 𝑏 = 0 image, with two repetitions. The spatial resolution
for the datasets is 3mm × 3mm × 3mm and 3 slices were
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Figure 2: Bar graph illustrating the angular deviations of fiber directions extracted from single-fiber ODFs constructed with QBI, CSA-QBI,
and DOT using the methods of PSO-Powell, modified Powell, and decomposition. The ball-stick model directly extracts the directions from
DWI raw signals. The azimuth and elevation of the synthetic single fiber are (0, 0).
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Figure 3: Bar graph illustrating the angular deviations of fiber directions extracted from two-crossing-fiberODFs constructedwithQBI, CSA-
QBI, and DOT using the methods of PSO-Powell, modified Powell, and decomposition. The ball-stick model directly extracts the directions
from DWI raw signals. The azimuths and elevations of the synthetic two-crossing fibers are (0, 0) and (1.22, 0).



Computational and Mathematical Methods in Medicine 7

Ball-stick
PSO-Powell QBI
PSO-Powell CSA-QBI
PSO-Powell DOT
Powell QBI

Powell CSA-QBI
Powell DOT
Decomposition QBI
Decomposition CSA-QBI
Decomposition DOT

(0, 0)

Azimuth Elevation Azimuth Elevation Azimuth Elevation Azimuth Elevation Azimuth Elevation Azimuth Elevation

(1.22, 0) (0.52, 1.05) (0, 0) (1.22, 0) (0.52, 1.05)

3 crossing �bers without noise 3 crossing �bers with noise SNR = 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
A

ng
ul

ar
 er

ro
r (

ra
d)

Figure 4: Bar graph illustrating the angular deviations of fiber directions extracted from three-crossing-fiber ODFs constructed with QBI,
CSA-QBI, and DOT using the methods of PSO-Powell, modified Powell, and decomposition. The ball-stick model directly extracts the
directions from DWI raw signals. The azimuths and elevations of the synthetic three-crossing fibers are (0, 0), (1.22, 0), and (0.52, 1.05).

Table 4: Convergence time of extracting fiber orientation from three-fiber ODF.

Three-
fiber
ODF

Ball-stick Modified Powell
QBI/CSA-QBI/DOT

Diffusion
decomposition

QBI/CSA-QBI/DOT

PSO-Powell
QBI/CSA-QBI/DOT

Noise-free 1.13 s 82.57 s/82.17 s/87.03 s 102.27 s/98.11 s/90.83 s 46.60 s/45.73 s/50.52 s
SNR = 20 1.21 s 92.80 s/83.74 s/91.70 s 121.95 s/110.25 s/117.12 s 50.16 s/48.96 s/50.62 s

acquired. Specific parameters are as follows: field of view
19.2 cm, matrix size 64 × 64, read bandwidth 1775Hz/pixel,
partial Fourier factor of 6/8, GRAPPA factor of 2, TR = 5 s,
TE = 102ms for 𝑏-value = 2000 s/mm2, and corresponding
SNR of DWI was estimated to be 1.1. The 𝑏 = 0 image has
SNR of approximately 15.8 [38].

Figure 5 shows visual comparison of the fiber orientations
extracted from ODF fields constructed with QBI, CSA-QBI,
and DOT. The ROI regions were marked out by the red
squares in Figure 5(a). The top-right ROI contains two-
crossing fibers, and the bottom-leftROI contains single fibers.
From Figure 5(c), we could see that the marked voxels
lost one fiber orientation. A possible cause to this error
can be due to the discrepancy between QBI and the actual
diffusion pattern in the phantom. In Figure 5(e), the voxels
marked by black polygons got some more false directions. In

Figure 5(g), the four marked voxels have false orientations,
and this is due to the fact that DOT would lead to lager
false peaks. In Figure 5(i), the single-fiber directions were
correctly estimated. In Figure 5(k), seven voxels have false
directions. In Figure 5(q), three voxels have false directions.
Overall, in crossing-fiber regions, PSO-Powell method has
best performance on the ODF field constructed with DOT. In
single-fiber regions, the method stands out on the ODF field
constructed with QBI.

3.3. In Vivo Study. In order to further illustrate the effec-
tiveness of PSO-Powell hybrid algorithm on neural fiber
orientation extraction, we applied the algorithm to in vivo
DWI datasets.Thewhole-brainHARDIwas performed on an
adult male volunteers (25 years old) using a 3T Signa EXCITE
scanner equipped with an eight-channel phased-array head
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Figure 5: Fiber orientations extracted from ODF fields of Tractometer. In (a), two ROIs are marked out by red squares. (b) and (h) are ODF
fields constructed with QBI. (d) and (j) are ODF fields constructed with CSA-QBI. (f) and (p) are ODF fields constructed with DOT. (c), (e),
(g), (i), (k), and (q) show the fiber directions extracted from (b), (d), (f), (h), (j), and (p), respectively. (r) shows the ground truth fibers of
Tractometer phantom. The directions marked out by black polygons do not correspond with the ground truth.

coil. A multislice single-shot echo-planar spin echo pulse
sequence was employed to obtain attenuated signals at a
diffusion weighting of 𝑏 = 3000 s/mm2, where the diffusion-
encoding directions were distributed uniformly over the sur-
face of a sphere using electrostatic repulsion. An additional
acquisition without diffusion weighting at 𝑏 = 0 s/mm2 was
also obtained.The total scan time for whole-brain acquisition
of 64 diffusion-encoding directions was 19.3min with TR/TE

18 s/84ms and isotropic 2mm voxel resolution (FOV 260 ×
260mm, matrix 140 × 140, 92 interleaved slices with 2mm
slice thickness and no gap).

Figure 6 visually shows the fiber orientations estimated
from ODF fields constructed with QBI, CSA-QBI, and DOT
in the region of the corpus callosum (CC) that is a structure
that connects the left and right cerebral hemispheres. After
the ODFs were computed, the condition of FA ≥ 0.20
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Figure 6: Fiber orientations of CC extracted from ODF fields constructed with QBI, CSA-QBI, and DOT. (a) is the FA map of the 50th slice
of in vivo HADRI dataset. (b), (d), and (f) are the ODF fields constructed with QBI, CSA-QBI, and DOT, respectively. (c), (e), and (g) are the
vector map extracted from (b), (d), and (f), respectively.

was applied to segment WM tissue out to calculate fiber
directions. The results of Figures 6(c) and 6(e) are consistent
with known anatomy. In Figure 6(g), some voxels have two-
crossing directions, and this is mainly because that DOT has
evoked false peaks into ODF due to the impact ofMRI Rician
noise.

Figure 7 shows the fiber orientations estimated from
ODF fields constructed with QBI, CSA-QBI, and DOT in the
ROI region through which cuneus fibers, vertical occipital
fasciculi, and superior longitudinal fasciculi pass.This region
contains many multimodal ODFs. In Figure 7(g), crossing-
fiber directions can all be clearly identified. By contrast,
Figures 7(c) and 7(e) only reflect one fiber direction mainly.
In the calculation, the directions along which the peak of
ODF was less than the mean value were discarded [23], just
like the ODFs marked out by red rectangles in Figures 7(d)
and 7(f).

4. Discussion

The Powell-PSO hybrid algorithm overcomes the shortcom-
ings of PSO algorithm, such as poor accuracy and slow
convergence speed. At the same time, it keeps the merits
of Powell method, such as computational accuracy and

convergence rate. By searching all the peaks in the feasible
region, the hybrid algorithm has the ability of searching all
the local maximums of ODFs. Since the algorithm only uses
the value of the function information without the need to
calculate derivatives, it is suitable for solving the problem of
differentiable and nondifferentiable multifield optimization
(MFO) [35].

The comparisons with ball-stick model, modified Powell,
and diffusion decomposition methods show that this hybrid
algorithm is effective in searching the diffusion directions
from ODFs. But when ODFs have more spurious local
maximums due to noise or computational models, more
hybrid iterations would be carried out.

In the proposed method, the c2 parameter is set to zero
to increase the stochastic motion of PSO particles. This
would make the hybrid algorithm go through the domains
where local maxima locate. The other parameters were
determined according to [34, 35], such as inertia weight 𝜔,
acceleration factor 𝑐1, searching threshold 𝑃, and the number
of hybrid and PSO iterations. In simulated experiments, the
proposed hybrid method has been tested on single-fiber,
two-fiber-crossing, and three-fiber-crossing ODFs. Through
quantitative comparisons (Figures 2–4, Tables 2–4), it outper-
formed other methods. In Tractometer and real experiments,
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Figure 7: Fiber orientations extracted from ODF fields constructed with QBI, CSA-QBI, and DOT. (a) is the FA map of 50th slice. (b), (d),
and (f) are the ODF fields constructed with QBI, CSA-QBI, and DOT, respectively. (c), (e), and (g) are the vector map extracted from (b), (d),
and (f), respectively. The ODFs marked out by red rectangles contain spurious peaks coming from computation models.

PSO-Powell method has also been verified using single-fiber
and crossing-fiber ODFs constructed with QBI, CSA-QBI,
and DOT. The results (Figures 5–7) conformed with the
ground truth satisfactorily.

The diameter of bundles of axons considered in fiber trac-
tography are on the order of 1mm, and individual physical
fibers on the order of 1–30 𝜇m. At the current resolution of
DWI, there are between one-third and two-thirds of imaging
voxels in the human brain WM that contain fiber crossing
bundles [1, 8]. But higher resolution of fiber directions comes
at the cost of higher susceptibility to noise.The low detection
rate and accuracy of local maximums of ODFs at critical
crossing angles are well-known problems.

Theoretically, there are two types of parameters that
can be extracted from ODFs: the orientation of each fiber
population and its volume fractions. Having estimated the
orientations of the various fiber populations, the correspond-
ing volume fractions could be computed by finding the set
of weighting factors providing the best fit of the weighted
sum of their respective signal attenuation profiles to the
actual measured signal attenuation. Further study should be
conducted to propose a more mature model for computing
the fiber volume fractions, meanwhile identifying the fiber
orientations.

HARDI has become a common tool for the reconstruc-
tion of WM architecture by ODF. In recent years, numerous
trackingmethods based uponHARDI have emerged in order
to overcome the shortcomings of ADC and DT which has

no the ability to resolve complex WM architecture such as
fiber crossing, branching, and kissing. Furthermore, HARDI
is more time-saving than DSI because it just needs to sample
on a spherical surface in 𝑞-space. Due to the fact that higher
sensitivity to crossing fibers results in higher sensitivity to
noise, the false fiber orientations created by noise can cause
substantial error in fiber tracking [39]. In order to increase
the accuracy of local maximum detection of ODFs and avoid
leaving out nondominant diffusion peaks, we should take
into account information from neighboring voxels in further
research. In order to better estimate the fiber orientations,
we may present a straightforward yet effective method for
the smoothing, regularization, and sharpening of diffusion
profiles in crossing areas of ODF fields obtained from DWI
datasets.

5. Conclusion

In this work, a novel hybrid method for determining the
principal directions of the ODF is proposed by combining
the PSO and the modified Powell search. The method tends
to extract fiber orientations from ODF fields, leading to
no less resolution, but with fewer and smaller spurious
peaks, particularly at low SNR. The method can improve
the estimation of fiber orientations in heterogeneous WM
regions and boost the reliability of fiber tracking. On the basis
of the quantitative analyses with the synthetic and phantom
datasets, we can conclude that this method is promising to
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improve the estimation accuracy of fiber orientations from
ODF. The experiments with data from a healthy human
subject, acquired under clinical imaging conditions, show the
method’s potential to notably optimize the reconstruction
of noncrossing and crossing-fiber orientations. This method
may improve the tracking for the construction of brain
structural connectivity network.
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