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Abstract

Co-expression analysis has been employed to predict gene function, identify functional
modules, and determine tumor subtypes. Previous co-expression analysis was mainly con-
ducted at bulk tissue level. It is unclear whether co-expression analysis at the single-cell
level will provide novel insights into transcriptional regulation. Here we developed a compu-
tational approach to compare glioblastoma expression profiles at the single-cell level with
those obtained from bulk tumors. We found that the co-expressed genes observed in single
cells and bulk tumors have little overlap and show distinct characteristics. The co-expressed
genes identified in bulk tumors tend to have similar biological functions, and are enriched
for intrachromosomal interactions with synchronized promoter activity. In contrast, single-
cell co-expressed genes are enriched for known protein-protein interactions, and are regu-
lated through interchromosomal interactions. Moreover, gene members of some protein
complexes are co-expressed only at the bulk level, while those of other complexes are co-
expressed at both single-cell and bulk levels. Finally, we identified a set of co-expressed
genes that can predict the survival of glioblastoma patients. Our study highlights that com-
parative analyses of single-cell and bulk gene expression profiles enable us to identify func-
tional modules that are regulated at different levels and hold great translational potential.
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Author Summary

With the development of single-cell sequencing, an increasing number of biological
insights were revealed at the single-cell resolution. Here we integrated the expression pro-
files from single cells and bulk tissues to discover that a majority of gene pairs were specifi-
cally co-expressed at single-cell and bulk levels. Our comparative analysis reveals co-
expressed functional modules at different levels, and suggests a distinct regulatory mecha-
nism in which single-cell co-expressed genes are regulated through physical interactions
from different chromosomes. Moreover, we found a set of co-expressed genes to predict
patient survival. This study suggests that single-cell and bulk co-expression analysis could
provide novel biological insights and great clinical potential.

Introduction

Gene expression is often coordinated to carry out cellular activities and biological functions
[1]. If the expression levels of two genes rise and fall together across different conditions, they
are likely to be members of the same protein complex or participate in the same biological
pathways. Therefore, co-expression analysis has been widely used to predict protein-protein
interactions (PPIs) or annotate functions of uncharacterized genes [2-4]. Built upon co-expres-
sion relationships, co-expression networks were often constructed to reveal the functional
modules consisting of genes with functional relationships [5-7]. Furthermore, co-expression
relationships are often considered to be the consequence of co-regulation that is governed by
the same regulatory machinery. Therefore, regulatory elements could be predicted based on
the co-expression relationships [8-10]. In addition, co-expression analysis has been applied to
cancer biology. For example, co-expressed gene sets could reveal interaction modules in tumor
progression [11], or serve as molecular signatures to classify tumors into different subtypes,
which often showed distinct clinical outcomes [12,13].

Previous co-expression analyses were mainly conducted at the bulk level in which a large
population of cells was profiled as a whole. Recently, single-cell sequencing has emerged as a
powerful tool to investigate cellular variability and intratumor heterogeneity [14-16]. However,
it remains elusive whether co-expression analysis at the single-cell level will provide novel bio-
logical insights into the molecular principles of transcription regulation that would be other-
wise hidden at the bulk level. For example, can the same set of co-expressed genes be identified
both at the single-cell and bulk levels from the same tissue origin? Will the comparative co-
expression analysis reveal functional modules that are regulated at different levels? Do the co-
expression relationships detected at the single-cell and bulk levels reflect the same regulatory
mechanisms?

To address these important questions, we developed a computational approach to perform
comparative co-expression analysis between single-cell and bulk samples, and discovered that
the majority of the co-expressed gene pairs were unique. Multiple lines of evidence suggest that
the discrepancy between the two analyses is not due to technical artifacts. Interestingly, the co-
expressed genes in bulk tissues tend to have the same biological functions, while the co-
expressed genes in single cells encode proteins that are likely to interact with each other. Strik-
ingly, members in different protein complexes are often predominately connected by one type
of co-expression relationships. Furthermore, we find that the co-expression relationships in the
single cells and bulk tissues might reflect distinct co-regulatory mechanisms. Interestingly,
interchromosomal interactions are highly enriched for single-cell co-expression. Finally, we
discover a set of co-expressed genes that can predict the clinical outcome of glioblastoma.
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Results

Distinct sets of co-expressed genes were identified at the single-cell
level

We used glioblastoma as a model system because both single-cell and bulk expression data are
available. A dataset of single-cell RNA-seq was obtained from 430 individual cells of five glio-
blastoma patients [14]. Similarly, gene expression profiles of 120 glioblastomas as bulk tissues
were obtained from TCGA consortium [17]. To compare co-expression patterns at single-cell
and bulk levels, we calculated Pearson’s correlation coefficients (R) of gene expression for all
possible gene pairs across the cells (or tumors).

Strikingly, the majority (> 90%) of co-expressed gene pairs were unique to either single-cell
or bulk analysis. For instance, we observed that the expression profiles of two genes, ATP9B
and MORCH4, were highly correlated at the single-cell level (R = 0.97, Fig 1A); the correlation
coefficients calculated separately from the five tumors were also consistent (S1 Fig). However,
their correlation was not significant at the bulk level (R = 0.04). Conversely, the expression pro-
files of REST and ROCK2 were found highly correlated at the bulk level (R = 0.85), but not at
the single-cell level (R = 0.00051, Fig 1A and S2 Fig). Globally, we separately identified the top
1,000 most correlated gene pairs at either single-cell or bulk level and cross-examined whether
the same pairs were also correlated at the other level. Surprisingly, only 76 (7.6%) of the top
1,000 gene pairs are shared between the bulk and single-cell levels (Fig 1B). For example,
RPL41 and RPS14 are co-expressed in both single cells (R = 0.75) and bulk tissues (R = 0.83)
(Fig 1A and S3 Fig). However, most co-expressed gene pairs at the single-cell level have no or
even negative correlation at the bulk level. Similar pattern was also observed for the top 1,000
correlations at the bulk level. It is worthy to note that the observation is not sensitive to the cor-
relation measurement we choose. For example, if maximal information coefficient (MIC),
which is able to capture non-linear relationships [18], was used, a consistent pattern was
observed that 96.4% co-expressed gene pairs were specific at single-cell or bulk level (S4 Fig).
These results suggested that distinct sets of co-expressed gene pairs were yielded at single-cell
and bulk levels.

Distinct co-expression patterns are not due to artifacts

Several lines of evidence suggest that the discrepancy in co-expression analysis between bulk
and single-cell levels is not due to technical artifacts. First, we checked whether expression cor-
relation was sensitive to the samples chosen for analysis. We randomly partitioned the cells (or
tumors) into two equal-sized sub-groups and separately calculated corresponding gene expres-
sion correlations. The top 1,000 co-expressed genes were highly consistent between the two
sub-groups (Fig 1C). For example, 524 (52.4%) of the top 1,000 correlations were shared
between the two sub-groups in the single-cell analysis. The remaining 47.6% of gene pairs are
also highly correlated, even though they were not in the top 1,000. A similar observation was
made for bulk-level analysis. This observation suggested that expression correlations were
robust and not sensitive to the samples used for calculation.

Second, we examined whether the dissociation and processing of single cells introduced
measurement errors, which could lead to the discrepancy of co-expression between single-cell
and bulk levels. For the five glioblastomas with single-cell expression profiles, we averaged
gene expression across the individual cells and then compared the average gene expression pro-
files with the genuine bulk expression profiles from the same glioblastomas. The comparison
showed that the average gene expression was highly correlated with the expression in bulk tis-
sue for each tumor (Fig 1D and S5 Fig). These results suggest that the procedure of isolating
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Fig 1. Distinct sets of co-expressed genes were identified for single cells and bulk tissues. (A) Examples of single-cell specific, bulk specific and
shared co-expressed gene pairs. (B) The mapping of the top 1,000 positively correlated genes in single cells (or bulk tissues) to their correlation in bulk
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tissues (or single cells). Each line represent a gene pair. The cells (or tissues) were randomly partitioned into two sub-groups. (C) The mapping of the top
1,000 positively correlated genes in one sub-group to the other sub-group. (D) Clustering of glioblastomas based on gene expression profiles. Bulk samples
from TCGA (TCGA-GBM), single-cell-derived average gene expression (Average-MGH) and 5 genuine bulk samples (Bulk-MGH) for single-cell sequencing.

doi:10.1371/journal.pcbi.1004892.9001

and harvesting single cells did not introduce much distortion in expression profiles. Further-
more, in comparison of the expression profiles of the five tumors for single-cell sequencing
with the other 120 bulk tumors from TCGA, we found that the five samples were dispersed
among the 120 glioblastomas (Fig 1D). This result suggests that the five tumors for single-cell
analysis are not characteristically different to the 120 glioblastomas for bulk analysis, and both
of the datasets were representative of primary glioblastomas.

Third, we explored whether the discrepancy of co-expression patterns between single cells
and bulk tissues could be observed in other tissues. Similar analyses were performed using data
obtained from prostate cancers. We compared the transcriptome of 122 individual prostate
cancer cells with those of 398 bulk prostate cancers from TCGA [19]. The results showed that
only 4% of the top 1,000 correlations were shared between single-cell and bulk levels (S6 Fig).
Taken together, all of the above analyses suggest that the observation of distinct co-expressed
gene pairs in single cells and bulk tissues was valid, and not due to technical artifacts.

Members of protein complexes co-expressed at different levels

In order to dissect the biological roles of the co-expressed genes at the single-cell level, we clas-
sified the co-expressed genes into three groups: single-cell specific, bulk specific, and shared at
both levels (S7 Fig and see Materials and Methods for the details). In brief, we compared the
distributions of expression correlation coefficients from real and randomly shuffled expression
profiles to identify the thresholds of significantly positive correlations at single-cell or bulk lev-
els. Using the obtained thresholds, 5,303, 107,851, and 12,584 gene pairs were classified as sin-
gle-cell specific, bulk specific, and shared co-expressed gene pairs, respectively (S8 Fig).

Next, we attempted to discover distinct characteristics of these three groups of co-expressed
genes. We first checked whether protein products of the co-expressed genes were enriched for
known PPIs. By surveying the PPI networks of the BioGRID database [20] using the corresponding
proteins of those co-expressed genes, we found that bulk specific co-expressed genes were slightly
enriched for PPIs. Specifically, the protein products of 591 (0.55%) of the 107,851 co-expressed
gene pairs specific to the bulk tissues have known PPI relationships, while only 0.34% was expected
for randomized gene pairs (P = 3.8E-91, student’s t-test). In contrast, PPIs were much more
enriched in single-cell specific co-expressed genes (90 of 5,303, 1.7%), which was a 5-fold enrich-
ment compared to the expectation (P = 2.0E-247, student’s t-test) (Fig 2A). Strikingly, we observed
that 1,167 of 12,584 (9.3%) shared co-expressed genes have PPIs (Fig 2A), a 27-fold enrichment
compared to the expectation (P < 1.0E-500, student’s t-test). The enrichment was not due to rela-
tively high correlation coefficients in the shared group. The same trend was also observed if we
compared the three groups at the same range of correlation coefficients (Fig 2B). Furthermore, the
enrichment for PPIs in co-expressed genes increased with the degree of correlation coefficients,
suggesting the fidelity of the relationships between the co-expressed genes and PPIs.

Surprisingly, we observed that the three classes of co-expressions were not homogeneously
distributed among annotated protein complexes. Instead, different protein complexes were
enriched in different classes of co-expressions. Members of many protein complexes are co-
expressed at bulk level, such as proteasome and CDC5L complex (Fig 2C). However, members
in other complexes (e.g. condensing IT) are co-expressed in both single cells and bulk tissues
(Fig 2C). Perhaps the most striking examples are cytoplasmic and mitochondrial ribosomes.
Of 1,816 co-expressed gene pairs that belong to the cytoplasmic ribosomal complexes, 1,791
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Fig 2. Members in protein complexes are predominately connected by one type of co-expressions. (A) The fraction of co-expressed genes whose
protein products interact with each other. (B) The same fraction in function of correlation coefficients. (C) Examples of protein complexes. Two gene
members in a complex were connected if they are co-expressed. The color denotes the types of co-expressions: single-cell specific (orange), bulk specific
(cyan), and shared (green).

doi:10.1371/journal.pcbi.1004892.9002

(98.6%) were co-expressed at both single-cell and bulk levels. In contrast, among 329 co-
expressed genes of the mitochondrial ribosomal complexes, all of them are bulk specific
(Fig 2C). These results suggest that the synchronized expression of members in protein
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complexes is governed through different types of co-expression relationships, reflecting distinct
regulatory mechanisms.

Single-cell specific co-expressed genes are enriched for distinct
biological functions

We next examined whether co-expressed genes tend to share similar biological functions. To
this end, we calculated the semantic similarity of the biological process (BP) terms of gene
ontology (GO) [21] between two genes using GOSemSim [22]. Our analyses demonstrated that
the shared and bulk specific co-expressed gene pairs tend to have similar biological functions.
Specifically, the fractions of shared and bulk specific co-expressed genes having the same func-
tions were 4.6 and 1.5-fold higher than the expectation, respectively (Fig 3A). In contrast, the
single-cell specific co-expressed genes were not enriched for function similarity (0.997-fold, Fig
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Fig 3. Different types of co-expressions are associated with distinct biological functions. (A) The fraction of co-expressed genes that have the similar
biological functions. (B) The same fraction in function of correlation coefficients. (C) Gene function network of top 1,000 co-expressions. Genes with the same
functions are placed around circles. Two genes are connected in lines if they have single-cell specific (orange), bulk specific (cyan), or shared (green) co-

expression.

doi:10.1371/journal.pcbi.1004892.9003
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3A). Nevertheless, gene pairs with the highest correlation coefficients (R > 0.4) at the single-
cell level were also enriched for function similarity (Fig 3B).

The three groups of co-expressed gene pairs are enriched for different biological functions.
Again, we checked the biological functions associated with the genes from the top 1,000 shared,
single-cell specific, or bulk specific co-expression pairs. For single-cell specific co-expressed
genes, GO terms including biological adhesion, and regulation of apoptosis were enriched (Fig
3C and S9 Fig). The shared co-expressed genes were associated with translational elongation, and
oxidative phosphorylation. It is also interesting to note that these genes are also enriched in
neurodegenerative diseases, such as Parkinson’s disease, given the neuronal origin of glioblasto-
mas (Fig 3C and S9 Fig). The bulk specific co-expressed genes were significantly associated with
oxidative phosphorylation and neurodegenerative diseases. These results further demonstrated
that the different functional modules were associated with different types of co-expressed genes.

Distinct regulatory mechanisms are responsible for three types of co-
expressed genes

To determine whether the underlying regulatory mechanism of co-expression at single-cell
level is different from those at the bulk level, we analyzed the possible regulatory relationships
for the three groups of co-expressed genes. We examined two distinct and complementary
mechanisms for co-expression (Fig 4A). First, we tested whether the co-expressed genes tend
to have synchronized activity of their cis-regulatory elements across different physiological
conditions. Second, we checked whether the cis-regulatory elements governing each pair of co-
expressed genes more likely have physical contact in the three-dimensional nuclear space.

We computed the accessibility of gene promoters annotated by DNase I hypersensitive sites
(DHSs) and corresponding DHS signal correlations across 125 human cell types and tissues
[23]. Our analysis revealed that shared and bulk specific co-expressed gene pairs had signifi-
cantly higher DHS correlation than the random expectation. For example, RPL9 and RPS6
belong to the shared co-expressed gene group, and the accessibility of their promoters was per-
fectly synchronized across the 125 cell types (R = 0.98, Fig 4B). Similarly, the accessibility of
another pair, FRYL and RAPGEFS6, bulk specific co-expressed genes, was also highly correlated
(R =0.98). Overall, the highest peak of the distribution of DHS correlation for shared and bulk
specific co-expressed gene pairs were located at 0.81 and 0.79, respectively (Fig 4C). In contrast,
the correlation coefficient for single-cell specific co-expressed genes was much lower than the
other two groups (P < 1.0E-300, student’s t-test). For example, DHS signal of two genes, GIS
and GSS, was not correlated (R = 0.068, Fig 4B). The correlation coefficients of single-cell spe-
cific genes were much broader distributed, with the highest peak located at 0.12 (Fig 4C).

We then calculated the probability that two genes physically interact with each other based
on chromatin interaction data [24]. In IMR90 cell lines, we discovered that the single-cell spe-
cific and bulk specific co-expressed genes were more likely to have physical interactions than
expectation (Fig 4D). In contrast, the shared co-expressed genes were not enriched for chroma-
tin interactions (Fig 4D). The same observation was confirmed in an independent cell line of
hESC (510 Fig). Our results demonstrated that the datasets obtained from bulk tissues (e.g.
DHS and chromatin interactions) could partially explain the co-expression at bulk and single-
cell levels, and different types of co-expressions might be regulated by different mechanisms.

Most of single-cell co-expressed genes were from different
chromosomes

Previous co-expression studies at the bulk level have shown that genes within the same topo-
logical domain were more likely to interact with each other [24]. Here we asked whether a pair
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doi:10.1371/journal.pcbi.1004892.9004

of co-expressed genes resided on the same chromosome or even within the same topological
domain. Interestingly, for bulk specific co-expressed genes, we observed that 16.9% were found
on the same chromosome, whereas only 5.3% of single-cell specific co-expressed genes were
encoded on the same chromosome, which was almost the same as randomly selected gene
pairs (average 5.4%, Fig 5A). If we only focused on the top 1,000 highest co-expressed gene
pairs, the difference between two levels became even more significant, 47.5% and 5.5% of bulk
and single-cell specific genes were located in the same chromosome, respectively (Fig 5B). We
further asked to what degree the intrachromosomal co-expressed genes were from the same
topological domain [24]. Our analysis revealed that 3-6% of shared and bulk specific intra-
chromosomal co-expressed gene pairs were located at the same topological domain (Fig 5C).
By contrast, no single-cell specific gene pairs were from the same topological domain.

When we separated the co-expressed genes based on whether they were encoded on the
same chromosomes, we found that the interchromosomal chromatin interactions were
enriched for single-cell specific co-expressed genes (Fig 5D). This result suggests that many co-
expressed genes in single cells were co-regulated through interchromosomal interactions, by
which the cis-regulatory elements of genes were physically connected and co-regulated by com-
mon regulators such as enhancers (Fig 4A).
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Co-expressed genes could serve as a prognosis signature for
glioblastomas

Recent studies demonstrated that network-based classification approaches provided more
power in prediction of clinical outcomes than individual genes [25-27]. We searched the sub-
networks within the three types of co-expression networks to identify a set of co-expressed
genes that could stratify patients with most significantly different survival time. We classified
120 patients with RNA sequencing from TCGA into two groups based on the expression pro-
files of genes within each subnetwork (or combination of subnetworks) and compared the sur-
vival rates between the two groups (Fig 6A). By examining all subnetworks and the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004892  April 21,2016 10/18



COMPUTATIONAL
BIOLOGY

©PLOS

Single-Cell Co-expression Analysis

A

(Three types of co-expression networks)

56 shared, 42 single-cell specific,
and 15 bulk specific subnetworks

Stratify 120 patients into two groups based on genes
in each subnetwork, and perform survival analysis
v
[ Identify 7 shared, 1 single-cell specific, and 1 bulk ]

specific significant subnetworks in survival analysis

v
Combine significant subnetworks to select
one of the best performance with survival

Validate the best gene setin
101 independent glioblastomas

|
RAB3GAP2

,FI N I I| l PLXNA4
| ] |
PJA2

NRXN3
I GDI2
C210rf33

D
|_Ll:l
4 0 4

Survival probability

Survival probability

1.0

0.6

0.2

600 1000
Time (days)

Validation set

o
o
1

=
N
1

1500
Time (days)

Fig 6. A set of co-expressed genes can serve as a prognosis signature for glioblastomas. (A) Flow chart of the selection of co-expressed genes for
prognosis analysis. (B) Six genes were selected to classify the patients. Four genes are shared co-expressed (green), and two genes are single-cell specific
co-expressed (orange). (C) Kaplan-Meier survival curves in two groups of 120 sequencing samples. Log-rank test was used. (D) Survival curves for an

independent validation set.

doi:10.1371/journal.pcbi.1004892.9006

combination of the subnetworks, we discovered a combination that achieved the best separa-

tion of patient survival rates, which consisted of 4 shared and 2 single-cell specific co-expressed
genes (Fig 6B). The two groups of patients were well separated based on the silhouette plot
(S11 Fig). The survival rates of the two groups were significantly different (P = 3.9E-4, log-rank
test, FDR < 0.1, Fig 6C). As comparison, we performed the same analysis to bulk co-expressed
genes, but no subnetwork was found to classify the patients with significant difference in sur-
vival rates (S12 Fig), suggesting that single-cell expression profiles help to improve the progno-
sis of glioblastoma. Furthermore, we classified the patients into four subtypes according to
TCGA classification scheme [28], and their survival rates were not significantly different (S13
Fig).

To confirm the classification power of co-expressed genes, we tested our gene signature
using an independent set of 101 glioblastomas whose expressions were profiled using microar-
ray from TCGA. The validation indicated that six-gene signature could significantly stratify
poor and favorable survival of the patients (P = 0.013, log-rank test, Fig 6D). These results sug-
gest that the co-expressed gene signature has a great potential to predict patient survival.
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Discussion

Our analysis revealed distinct characteristics for the co-expressed genes at single-cell and bulk
levels. The stark difference between the two levels suggests that the single-cell expression pro-
files provide novel biological insights when they are compared with bulk expression profiles.
Interestingly, the DHS and chromatin interaction datasets obtained from bulk tissues could
partially explain the co-expression at single-cell level. Nevertheless, we are fully aware of the
difference of gene regulation between bulk and single-cell levels. For example, two bulk co-
expressed genes could have the same accessibility of regulators in their promoters, whereas the
regulation of the two genes at single-cell level is independent to each other and could result in
un-correlated accessibilities of the promoters (Fig 4A). If we could deconvolute the signal from
the bulk tissues or obtain the datasets on gene regulation at single-cell level, we expect to obtain
stronger connection between co-expression and co-regulation. Although a few DHS or ChIP-
seq datasets at single-cell level are available [29-31], the data quality is still not optimal (e.g.
low sequencing depth). One interesting observation is that majority of the single-cell co-
expressed genes are located in different chromosomes, in line with a recent observation that
co-expressed odorant receptor genes was not restricted to single chromosome at single-cell
level [32]. While the current chromatin interaction analyses are mainly focused on intrachro-
mosomal interactions [33,34], our analysis suggests that interchromosomal interactions are of
biological interests.

In our analysis, a set of six co-expressed genes was used to stratify glioblastoma patients into
two groups with significantly different survival. Although these genes were selected without
prior knowledge of cancer biology, the genes are relevant to glioblastomas. For example,
PLXNA4 (plexin A4) has been shown to promote tumor angiogenesis and progression of glio-
blastoma cells [35]. Similarly, NRXN3 (Neurexin 3) was involved neuron cell-cell adhesion and
glioma cell migration [36]. Gene RAB3GAP2 (RAB3 GTPase activating non-catalytic protein
subunit 2) was implicated in neurodevelopment and Warburg Micro syndrome [37], whereas
PJA2 (praja ring finger ubiquitin ligase 2) degraded MOBL1 to support glioblastoma growth
[38]. Moreover, both GDI2 (GDP dissociation inhibitor 2) and C2I0rf33 (chromosome 21
open reading frame 33) was dysregulated in fetal Down syndrome brain [39,40]. All the genes
were related to glioblastoma or neural diseases, suggesting their underlying function in tumori-
genesis and progression of glioblastoma.

Materials and Methods
Expression profiles of single cells and bulk tissues

Single cell expression datasets were obtained from references [14,19]. For glioblastoma, 430
individual cells from 5 patients were sequenced for gene expression. For prostate cancer, 122
cells from 22 patients were sequenced. Bulk expression datasets were obtained from The Can-
cer Genome Atlas (TCGA, https://tcga-data.ncinih.gov/tcga/). In total, 120 glioblastomas and
398 prostate adenocarcinomas were measured by RNA sequencing at the bulk level.

For bulk expression profile, we excluded the genes whose average expression was below 100
RPKM (Reads Per Kilobase per Million mapped reads). For single-cell gene expression, we
excluded the genes if the expression levels across over two-thirds individual cells were equal to
zero. Only the genes that were measured at both single-cell and bulk levels were included for
further analysis. In total, 4,837 and 4,722 genes were analyzed for glioblastoma and prostate
adenocarcinomas, respectively. We performed log2-transformation for RPKM. In order to
avoid 0 value for invalid log2-transformation, we added 1 to RPKM value. We then performed
global centralization by subtracting corresponding average expression across tissues or cells.
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Quantile normalization of the expression was further conducted across all samples. All analyses
were performed in R platform (http://www.r-project.org/).

Co-expression analysis and hierarchical clustering

Pairwise correlations for all genes were calculated using Pearson correlation coefficient (R).
The formula is as follows

R— Z?:l (x, —X)(y; — )
VL =2 0 - 5)

where x, y are gene pairs, and # is the sample size. All gene pairs were ranked according to R
values. The hierarchical clustering of expression profiles took Pearson’s correlation coefficient
as similarity measurement, and used complete linkage. Similarly, we also used MIC (maximal
information coefficient) to measure expression correlation of gene pairs [18].

We then classified the co-expressed genes into three groups: bulk specific, single-cell spe-
cific, and shared. Since the distributions of correlation coefficients are quite different between
single cells and bulk tissues, we could not choose a uniform cutoff to define the positive correla-
tion. Instead, we developed a shuffled-expression-based algorithm to determine the cutoffs for
single-cell and bulk expression separately. Firstly, we shuftled the expression for each gene
across the samples, and generated a corresponding distribution of correlation coefficients. We
then set the correlation coefficient at the top percentage of 10~ as cutoff for positive correla-
tion. After setting the cumulative probability of no correlation in random distribution to 0.3
for each side around zero correlation, we obtained the cutoffs of no correlation. The criteria for
positive correlation and no correlation are very stringent here because we want to make sure
the selected groups of gene pairs are indeed bulk specific or single-cell specific. Those positively
correlated gene pairs at both single-cell and bulk levels were assigned to the group of shared
co-expressed genes. Single-cell specific co-expressions were those gene pairs with positive cor-
relation at the single-cell level but no correlation at the bulk level. Similarly, those gene pairs
with positive correlation at the bulk level but with no correlation at the single-cell level were
assigned to bulk specific co-expressed genes.

Integration with protein-protein interactions and protein complexes

In order to associate gene co-expressions with protein-protein interactions (PPIs), we down-
loaded PPIs from BioGrid [20]. We calculated the fraction of co-expressions with PPIs in each
type of co-expressed genes. Meanwhile, we generated one thousand sets of 1,000 pairs of genes
randomly selected from all gene pairs as control gene pair sets. Each set of control gene pairs
were associated with PPIs as well. To calculate the proportion for different ranges of expression
correlations, we divided co-expressed genes into equal-interval groups with 0.1 bin size of the
correlations.

The components of protein complexes were from CORUM database [41]. All shared and
specific co-expressions were mapped to each protein complexes. The layout and view of co-
expression network of protein complexes were performed in Cytoscape [42].

Analysis of GO similarity and function enrichment

We used R package GOSemSim to calculate the semantic similarity of the biological process
(BP) terms of gene ontology (GO) [22] between two genes. If similarity value of gene

pair > 0.5, the genes were called with GO similarity. Based on this criterion, we calculated the
percentage of co-expressed gene pairs and randomly selected gene pairs with GO similarity.
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To identify the enriched GO terms, we each chose the top 1,000 co-expressed gene pairs
from three groups of co-expressions, respectively. We obtained 129 unique genes from top
1,000 shared co-expressions. After excluding the genes were overlapped between shared and
single-cell specific co-expressions, we obtained 319 single-cell specific genes. Besides, 640 genes
were unique to bulk specific co-expressions. These three groups of genes were separately per-
formed function enrichment analysis through DAVID software [43]. According to the
enriched functions, co-expression networks of top 1,000 correlations were organized into dif-
ferent modules. The genes were assigned to the most significant module if they were enriched
in multiple functional modules.

DHS correlation, chromatin interactions and location of co-expressed
genes

DNase I hypersensitive sites (DHSs) in 125 human cells and tissues were downloaded from
ENCODE project [23]. DHSs within the promoter regions (upstream 1,000 base pairs relative
to transcription start sites (TSSs)) were associated to genes. If no DHS peaks were found within
the promoter regions, the intensity of DHSs of genes was assigned to zero. We then calculated
DHS correlations of gene pairs across 125 cell types.

To identify chromatin interaction of co-expressed genes, we used Hi-C data from previous
publication [24]. The DNA regions across upstream 5,000, gene body, and downstream 5,000
were used to identify whether gene pairs have chromatin interaction.

Chromosomal relationships of co-expressed gene pairs were plotted using Circus [44].
Topological domains in genome were reported by a previous study [24]. According to the loca-
tions of TSSs, gene pairs were determined whether they were located in the same chromosome
or topological domain.

Identification of gene signature for glioblastoma survival

We constructed three networks separately from single-cell specific, bulk specific and shared
co-expressions. Using ‘Fast Modularity’ software [45], we then determined 56, 42, and 15
dense subnetworks within these three co-expression networks, which reflect the functionally
related gene groups. For each subnetwork, we performed hierarchical clustering of patients
based on the bulk expression levels of the genes within the subnetwork. The patients were clas-
sified into two groups according to the clustering and then compared of their survival using the
Kaplan-Meier method [46]. The significance of differential survival between two groups of
patients was assessed with a log-rank test. After testing all the subnetworks, 7 shared, 1 single-
cell specific and 1 bulk specific subnetworks were found to be able to separate the patients with
significantly different survival rates (P < 0.05, log-rank test). We then further examined the
combination of at most three significant subnetworks using the same procedure and discovered
one combination with the best performance for tumor prognosis. We then estimated the false
discovery rate (FDR) using Benjamini and Hochberg approach [47]. The quality of partition of
patients was assessed through silhouette graph [48].

In TCGA, another 123 glioblastomas were measured using microarray platform, of which
22 samples were also profiled with RNA sequencing. In order to make the expression levels
comparable between microarray samples and sequencing samples, we used one of patients
(TCGA-06-0156), which was measured both by RNA sequencing and microarray, for normali-
zation. After log2-transformation of sequencing data, expression profile of each patient sub-
tracted the average expression of TCGA-06-0156 from RNA sequencing. Similarly, expression
profiles measured by microarray also subtracted the average expression of microarray-mea-
sured TCGA-06-0156. Using the gene signature obtained from the 120 glioblastomas, we then
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predicted the class of additional 101 microarray-measured glioblastomas (a validation set)
through a nearest shrunken centroid [49].

Supporting Information

S1 Fig. Expression correlation of ATP9B and MORCH4 at single-cell and bulk levels. Gene
correlation at the single-cell level is separately showed for five glioblastomas. Pearson’s correla-
tion coefficient (R) and corresponding P value are indicated in the panel.

(TIF)

S2 Fig. Expression correlation of REST and ROCK?2 at single-cell and bulk levels. Gene cor-
relation at the single-cell level is separately showed for five glioblastomas. Pearson’s correlation
coefficient (R) and corresponding P value are indicated in the panel.

(TTF)

S3 Fig. Expression correlation of RPL41 and RPS14 at single-cell and bulk levels. Gene cor-
relation at the single-cell level is separately showed for five glioblastomas. Pearson’s correlation
coefficient (R) and corresponding P value are indicated in the panel.

(TIF)

$4 Fig. The distribution of top maximal information coefficients at single-cell and bulk lev-
els of glioblastomas. Green, orange, and cyan lines represent shared, single-cell specific, and
bulk specific correlations, respectively.

(TTF)

S5 Fig. Scatter plot of average and bulk-level expression in glioblastoma. Each point repre-
sents a gene.
(TIF)

S6 Fig. The distribution of gene correlations at single-cell and bulk levels in prostate can-
cer. Green, orange, and cyan lines represent shared, single-cell specific, and bulk specific co-
expressions, respectively.

(TIF)

S7 Fig. The division of correlation patterns at single-cell and bulk levels. The cutoffs of neg-
ative, no and positive correlations (vertical dashed lines) were set according to 1,000 times of
the distributions of gene correlations of shuffled expression (only one example showed:
R-S-MGH and R-B-GBM for single-cell and bulk levels, respectively). The shared, single-cell
specific, and bulk specific co-expressions are highlighted in dash-dotted lines.

(TTF)

S8 Fig. The number of gene pairs in each correlation pattern. The symbols +’, ‘0’, and -’
separately represent positive, no, and negative correlation. The three groups of gene pairs
which are shared, single-cell specific, and bulk specific co-expressions are highlighted in green,
orange, and cyan color, respectively.

(TTF)

S9 Fig. Enriched functions of three types of co-expressed genes. The significant value for
term ‘Translation elongation’ is equal to 90 and truncated for view. The bar-plot is correspond-
ing to Fig 3C.

(TIF)

$10 Fig. Chromatin interaction of co-expressed genes in hESC. The dash horizontal line rep-
resents an average percentage of control gene pairs with chromatin interaction. The asterisk
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indicates the percentage is significantly higher than control in statistics.
(TIF)

S11 Fig. Silhouette plot of the division of patients. The figure shows that the patients are sim-
ilar to other patients within the group than patients in another group. Each line represents a
patients. The color of the line indicate the group of patients.

(TIFF)

$12 Fig. Kaplan-Meier survival curves of 120 glioblastoma patients based on the best sub-
network from bulk co-expressed networks. The two-gene set was one of 13 subnetworks in
bulk co-expressed network which divides 120 glioblastomas to two size-balanced groups. Log-
rank test was performed to assess the significance of survival difference.

(TTF)

$13 Fig. Kaplan-Meier survival curves of 120 glioblastoma patients based on four TCGA
subtypes. Log-rank test was performed to assess the significance of survival difference.
(TIF)
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