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Drones (uncrewed aerial vehicles or UAVs) introduce new opportunities to improve vaccine distribution
systems, particularly in regions with limited transportation infrastructure where maintaining the cold
chain is challenging. This paper addresses the use of drones to deliver vaccines to hard-to-reach popula-
tions using a novel optimization model to strategically design a multimodal vaccine distribution network.
The model is illustrated in a case study for distributing routine childhood vaccines in Vanuatu, a South
Pacific island nation with limited transportation infrastructure. Our research incorporates multiple drone
types, recharging of drones, a cold chain travel time limit, transshipment delays for switching transport
modes, and practical limits on the vaccine paths and drone trips. The goal is to locate facilities (distribu-
tion centers, drone bases, and relay stations) and design vaccine paths to minimize transportation costs,
including the fixed costs for facilities and transportation links and variable costs for transportation
through the network. Results show large potential cost savings and improved service quality provided
by incorporating drones in a multimodal vaccine distribution system. Results also show the impact of
introducing drones on the usage of other more expensive or slower transport modes.
Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Drones (uncrewed aerial vehicles or UAVs) provide new oppor-
tunities to improve vaccine distribution systems, especially in
hard-to-reach regions where vaccination programs are challenged
by limited and slow transportation systems and/or poor cold
chains. Small drones are particularly suited for transporting small
amounts of vaccines quickly across regions without transport
infrastructure and for delivery to remote locations. Large drones,
similar to small airplanes, can carry larger doses of vaccines to
remote airstrips that do not have regular air service. In this paper,
we apply optimization models to minimize transportation costs for
the distribution of routine childhood vaccines using two types of
drones, with a case study for Vanuatu. Vanuatu is a nation of 83
mountainous, primarily small islands stretching across about
800 km of the South Pacific Ocean. It was the site of drone delivery
trials in 2018 [1,2], which included the world’s first vaccination of
a child using commercial delivery of vaccine by a drone [3]. In this
paper, we focus on the first step of in-country distribution of vac-
cines by optimizing vaccine transportation using drones and other
transport modes from the national depot to local health zone dis-
tribution centers (DCs). For research on optimizing the second step
of vaccine delivery in Vanuatu from the local health zone DCs to
clinics and remote aid posts using small drones, see [4]. For more
details on our earlier optimization models, see [4,5]. While our
focus is on drone use in less developed countries (LDCs) which
include hard-to-reach areas, our models can easily be applied to
regions with better infrastructure, though the benefits of drones
are likely to be smaller when existing transportation options are
efficient and effective.

The benefits of re-designing vaccine supply chains are well doc-
umented and studies on vaccine supply chain redesign for global
health include projects in Benin [6], Nigeria [7], Zambia [8] and
the Democratic Republic of Congo [9,10]. There are several recent
surveys of vaccine supply chain optimization modeling [11–13];
however, none of these surveys address the use of drones. A com-
mon tool for optimizing vaccine supply chains is mathematical
programming and several recent papers develop models for differ-
ent settings. Rastegar et al. [14] develop a multi-period location-
inventory mixed integer linear programming (MILP) model for
equitable distribution of COVID-19 vaccines in LDCs. Lim et al.
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Fig. 1. Vanuatu map including the borders of 6 provinces. The national depot is in
Shefa province. Black dots represent the DC candidates.
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[15] use an MILP model to locate DCs and clinics in a network with
three transportation modes for Sub-Saharan Africa. Lim et al. [16]
present a linear programming (LP) model for multi-period vaccine
distribution in LDCs, with an application in Niger. Chen et al. [17]
develop an MILP model for multi-period influenza vaccine supply
chain network design. Yang et al. [18] develop a vaccine network
design MILP model to optimize intermediate facility locations
between the national depot and clinics, with applications to Sub-
Saharan Africa. Recent work has also addressed the distribution
of vaccines for COVID-19, usually in more developed settings. Xu
et al. [19] provide a simple integer programming model to design
a hub-and-spoke system that maximizes coverage for COVID-19
vaccine distribution, with an application in New Jersey. Georgiadis
and Georgiadis [20] provide an MILP model for operational deci-
sions in vaccine distribution with a fixed set of facilities. They solve
the model with a decomposition heuristic and provide a case study
for COVID-19 vaccines in Greece. None of the works above consider
drones, nor do they have a transportation time limit to ensure the
cold chain is maintained across a long distribution path with mul-
tiple stops and multiple modes of transport.

However, drones are now playing an important role in global
healthcare, especially in Africa [21], and some research has consid-
ered drones for vaccine distribution in less developed regions. Hai-
dari et al. [22] use the HERMES simulation software to evaluate
integrating drones into the vaccine supply chain in Mozambique,
with case studies showing about 20% cost savings. Walia et al.
[23] present a binary programming model for a three-level hierar-
chical distribution network with trucks and drones, where drones
are limited to the lowest tier. Prosser et al. [24] employ commercial
supply chain network design software to study alternative supply
chain designs, including the limited use of small drones in Mada-
gascar and Guinea. Several recent studies employ optimization
modeling for health care drone delivery in developed regions, with
reliable road networks where trucks and drones can work together,
in disaster relief and emergency settings [25–28]. There is also a
growing literature of reports from field testing of drone delivery
in LDCs, summarized in the Medical Drone Delivery Database
[29]. In our research, we use drone data based on field experiences
with drone delivery in less developed regions from [30].

The key features of our research, compared to prior optimiza-
tion models for vaccine distribution, are that we (i) focus on the
use of drones, (ii) model multiple travel modes with transship-
ments, (iii) optimize the facility locations (rather than using given
locations), and (iv) include a cold chain travel time limit (i.e., the
maximum time that a vaccine can be out of refrigeration on a vac-
cine path from a national depot to a DC), all to serve hard-to-reach
less developed regions. In our study, we determine both the cost to
transport vaccines and the service level (time from the national
depot to the local DC) for multimodal trips across a region span-
ning hundreds of km. We adopt a strategic network flow perspec-
tive, rather than assuming vaccines are sent through a hierarchical
set of distribution facilities (e.g., from national depot to provincial
depot, then to regional depot, then to local depot). Our case study
is an island nation (Vanuatu) that poses different challenges than
do land regions, as boat transport and plane transport are heavily
used, and ground (truck) transport is very limited. In a review of
19 prior studies about accessing hard-to-reach vaccination sites,
Ozawa et al. [31] suggested that total costs were 1.3–2 times
higher than in other regions, with the main determinants of
”hard-to-reach” being geography (distance and terrain). Only 3 of
19 studies addressed routine immunization for ”hard-to-reach”
populations in lower middle-income countries and none addressed
transportation costs specifically. Cox et al. [32] provides a compre-
hensive overview and a complex ”systems map” of the economic
considerations for getting vaccines to hard-to-reach populations.
2

2. Problem description

This research is motivated by recent testing of vaccine delivery
using drones undertaken by the government of Vanuatu and UNI-
CEF [33], which provided instrumental data and practical informa-
tion for this research. Vanuatu is an LDC in the South Pacific with
poor transportation infrastructure consisting of 63 inhabited
islands in 6 provinces (see Fig. 1). The recent drone tests included
two companies (Swoop Aero and Wingcopter) [34], and docu-
mented the feasibility of vaccine delivery by drones under real-
world conditions in Vanuatu, and by extension in other LDCs. In
this paper, we complement this documented practical success with
an optimization model and case study to design a national-level
vaccine distribution network with multiple transportation modes
including drones. The goal is to identify what role drones would
play in optimal vaccine distribution for LDCs, where there are chal-
lenges from long distances, infrastructure limitations, difficult ter-
rain, and cold chain requirements. Drones possess unique
advantages to overcome these challenges.

We model the strategic design of a distribution system for rou-
tine childhood vaccines (not emergency medical supplies). Vacci-
nes that originate from a national depot must be distributed on a
regular basis (e.g., monthly) to each local health zone vaccine dis-
tribution center (DC) (e.g., a hospital or clinic), where each DC
stores the vaccines needed for its own health zone. The vaccine dis-
tribution network consists of a set of facilities and connecting
transportation links that allow vaccines to be transported via var-
ious modes (boats, planes, trucks, drones, etc.). Each transportation
link reflects the use of a particular mode (vehicle) to move vaccines
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between two facilities, and each mode has a corresponding capac-
ity, speed, cost, etc. The endpoints of the transportation links are
the facilities in the network, and transport modes have associated
facilities, as with airports for plane transportation. Because we are
especially interested in the role of drones, we consider two types of
drone facilities to be located: a drone base (DB) facility must be
located at the beginning of any drone trip, and a drone relay station
(RS) facility allows drones to be recharged (or have the battery
swapped, or be refueled). Recharging allows a drone with a limited
flight range to carry vaccines over a long distance. In general, the
facilities in the vaccine distribution network model include one
or more national depots, candidate locations for DCs, DBs and
RSs, and transshipment locations (such as airports) to allow con-
nection of two transport links. Each transportation link in the net-
work reflects a particular transportation mode, so more than one
transportation link may connect the same two facilities (locations).
For example, two locations can be connected by boat, road, and
drone transport. A vaccine path is a set of connected travel links,
possibly via different modes, that provide a path for vaccines to
be sent from the national depot to a health zone DC. This usually
involves transshipments between multiple links (e.g., from a truck
link to a boat link). Transshipment may incur a time to load/unload
and switch vehicles, if needed.

The objective of our strategic vaccine distribution problem is to
minimize the transportation costs for the vaccine flows through
the network by: (1) selecting the locations of DCs, DBs, and RSs
from a set of candidate locations, and (2) determining the vaccine
paths from a national depot to one selected DC in each health zone.
Each health zone has a given (monthly) demand for vaccines that
must be delivered via some path (i.e., a sequence of transportation
links) that does not violate the cold chain time limit, or other prac-
tical constraints. To ensure the drone range limits and the cold
chain time limit are not violated, it is necessary to track both the
vaccine travel time from leaving the national depot and the drone
flight time once it begins a trip. The set of vaccine flows determines
the amount of vaccine carried on each transportation link, as sev-
eral paths may use the same link, and the cost to traverse a link
depends on the vehicle type and the amount of vaccine sent. In
some cases, as with small drones, multiple trips on a link in one
month may be required to transport the needed vaccine. Finally,
both the decisions on the facilities to open and the transportation
links to use should be made concurrently.

To illustrate the problem for Vanuatu, Table 1 summarizes the
characteristics of each province in Vanuatu to highlight the geo-
graphical disparity and demand variability. Demand is expressed
in kg required per month, based on 17 doses of vaccines in the first
year of a child’s life; see Appendix B for details. These data reflect
how provinces and health zones vary greatly, with the farthest pro-
vince, Torba, having 14 widely separated islands grouped into 6
health zones with low demands (low population). In contrast,
Sanma has 8 health zones on one large island (including small pop-
ulations from five neighboring islands), and one health zone com-
prised of three smaller islands, where the largest health zone in
Sanma has a demand over twice as large as the total demand for
Table 1
Characteristics of provinces of Vanuatu. Demand is in kg of vaccines (with diluent and ice/co
km. HZ = health zone.

Province # of Health # of Inhabited Monthly Min D
zones Islands Demand in a

Torba 6 14 18.4 0
Sanma 9 9 89.1 3
Penama 10 3 48.1 2
Malampa 12 15 47.2 1
Shefa 3 15 28 3
Tafea 8 5 61.3 0

3

Torba Province. The last two columns of Table 1 show the distance
from the national depot and the distance between the farthest DC
candidates for each province.
3. Methodology

One approach to model vaccine distribution is to assume a hier-
archy of facilities (e.g., provincial depots, regional depots, local
depots) and allow transportation only between adjacent levels in
the hierarchy (e.g., from the provincial depot to a regional depot).
This may reflect administrative operations and it simplifies the dis-
tribution planning considerably, as well as the modeling (the set of
decisions is restricted). However, it does not necessarily lead to an
optimal distribution network. An alternative approach is to allow
more freedom in the design by not assuming an exogenous hierar-
chy of facilities or restrictions on vaccine flows. This approach
leads to better (lower cost) solutions, but also a larger and harder
problem, as vaccine paths may be longer and more complex. In our
research, we adopted this latter approach to seek better solutions
and to explore how large are the benefits from using drones.

A key element for modeling vaccine distribution (and other per-
ishable products) is tracking the time out of refrigeration. This is
especially important in LDCs where reliable refrigeration during
transport and in storage is limited. Our models include a cold chain
travel time limit (e.g., 7 h) to ensure all vaccines traveling on any
path to a DC remain viable on arrival at the DC. Further, because
drones have a limited range (distance or endurance) our models
track the drone travel time from the start of a drone trip or its most
recent recharging, which may include multiple drone transporta-
tion links. We handle the time dimension implicitly in our models
by encoding the time for both vaccine flows and drone trips into a
layered ”feasible path network” (FPN). This virtual FPN is gener-
ated from the initial network (which reflects the real-world loca-
tions and transportation links) by tracing feasible vaccine paths
and creating duplicate network nodes (locations) to reflect the dif-
ferent arrival times at a location (the use of ”layered” reflects the
duplication of nodes into separate layers based on arrival time at
the node). The FPN has more nodes (locations) than the initial net-
work, due to the duplication of nodes for arrival times on different
vaccine paths, but it has a simpler structure with directed links
tracing the paths. For details on generating the layered FPN, see
[5]. In spite of its size, the FPN allows for very efficient optimal
solutions with a straightforward MILP. Another advantage of using
an FPN is that it allows a wide variety of practical considerations
(e.g., limiting the number of transshipments in a path) to be incor-
porated into solutions.

Our optimization model differs from earlier work in [5] by
including mode transfer times (e.g., from plane to boat), setup
times at the start of trips, and refined costs for drone transporta-
tion that depend on the payload (weight) carried. Our modeling
framework is presented in four steps in Fig. 2. The first step is to
collect the needed data on transportation modes and vehicles,
demand for vaccines, transshipments, transportation links, and
oling packs). Distance from National Depot is to approximate center of the Province in

emand Max Demand Distance from Size of
HZ in a HZ National Depot Province

.9 5.7 472.8 213.7

.6 37.1 294.9 123.3

.2 6.5 267.9 75.6

.3 9.4 180.5 121.7

.6 14.2 - 122.8

.5 25.9 226.9 189.9



Fig. 2. Modeling framework of the vaccine network optimization.
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available facility locations. The transportation links and facility
locations provide the initial model network that reflects the real-
world physical network. This includes geographic locations of the
various (candidate) facilities and the relevant transportation links
between them (e.g., drone links are shorter than the drone flight
range, plane links reflect scheduled airline services, etc.). Each loca-
tion in the model (as in the real-world) can correspond to more
than one facility type (i.e., a location may be an airport, and a can-
didate DC and RS). Every transportation link is mode specific and
may have an associated capacity, distance, travel time, fixed cost
to establish the link, and a variable cost per unit of distance or
time, all reflecting travel by the appropriate vehicle type (e.g., boat,
scheduled airline, truck, small drone, etc.).

The second step is to generate the layered feasible path network
(FPN) from the initial model network. The FPN ensures that all vac-
cine paths to be considered in the optimization step obey the cold
chain travel time requirement, and that all drone trips do not
exceed the drone range (i.e. that drones are recharged at an RS
before exceeding the drone flight range). The FPN can also reflect
a limit on the number of transshipments in a vaccine path, as too
many transshipments may endanger the cold chain and require
more complex coordination and synchronization in practice. Gen-
erating the FPN is implemented using the ”all-simple-edge-paths”
algorithm from NETWORKX library in PYTHON.

The third step in the modeling framework is to solve an MILP
using the FPN that minimizes the total transportation cost to
meet all health zone demands. This provides the optimal set of
DC, DB, and RS facilities and the optimal vaccine flows on the trans-
portation links. The cost in our model includes: (i) fixed costs for
opening and operating DCs, DBs, and RSs, (ii) fixed costs of estab-
lishing transportation links, and (iii) transportation costs based
on the amount and distance that vaccines must travel. The trans-
portation cost reflects the capacity of the transportation vehicle,
as large vehicles (e.g., a truck) may make a single trip per month
carrying all the vaccine needed for that month, while a smaller
vehicle (e.g., a small drone) may make multiple trips per month
to carrying the required vaccine. Thus, when the vehicle capacity
is large relative to the demand, monthly transportation cost is a
fixed cost (i.e., the cost is independent of the vaccine volume being
sent). Alternatively, when the volume of vaccines on a link exceeds
the vehicle capacity, then multiple vehicle trips on the link are
needed, and the cost depends on the volume transported on the
link. The cost function is detailed in Appendix A.

The main constraints for the optimization (MILP) model can be
categorized as follows:

1. Select (open) exactly 1 DC in each health zone.
2. Ensure each health zone receives the required vaccine volume

(demand) at its selected DC.
3. Ensure the total amount of vaccine shipped out of each national

depot does not exceed the depot supply.
4. Ensure conservation of vaccine flows (the vaccine flowing into a

location equals the vaccine used to satisfy demand at the loca-
tion plus the vaccine flowing out of the location).

5. Ensure that no transportation link carries more vaccine than its
monthly capacity.

6. A DB is located at the start of every drone path, where a drone
path is a sequence one or more drone flights.
4

7. An RS to recharge drones is located when needed, to ensure no
drone paths exceed the drone range.

This model provides considerable flexibility for the vaccine
paths as DC locations may serve as transshipment points. For
example, a vaccine path might include five transportation links
using three modes (including three links by a small drone using
a recharge) as follows: (i) from a national depot to an airport by
plane; (ii) from the airport to the DC for HZ 1 by truck; (iii) from
the DC for HZ 1 to the DC for HZ 2 by small drone; (iv) from the
HZ for DC 2 to an RS; (v) from the RS to the DC for HZ 3 by small
drone. Our model allows multiple types of drones, where each
has a distinct DB and RS. The MILP optimization model is solved
using an off-the-shelf solver, e.g., Gurobi Optimizer.

Step 4 of the framework is to analyze results, generate service
performance for the optimal vaccine paths and assess the cost
and service trade-offs. One important trade-off is between the
complexity and length of the vaccine path and the transportation
costs (longer paths with more transshipments and slower, lower-
cost transportation may provide lower transportation costs). How-
ever, our optimization model provides flexibility to the decision
maker to adjust the service requirements while systematically
determining the minimal cost network design; see Section 4.3.
For details on the methodology and examples see [5].
4. Case study of Vanuatu

In this section, we describe the implementation of our modeling
framework on a case study in Vanuatu. To keep the results clear,
we focus on three scenarios and highlight key insights about drone
use.

4.1. Data

Vanuatu consists of 6 provinces with a total population of about
307;000, with about 9000 children born each year. It is divided
into 48 health zones, with 3 to 12 health zones per province, where
large islands may include several health zones and small neighbor-
ing islands may collectively form a single health zone. Vanuatu
includes three main airports and 24 other minor ”airports”, that
are mostly grass or dirt airstrips, on 20 of the islands. Currently,
vaccines from foreign countries arrive and are stored at a single
national depot in the capital city Port Vila, in Shefa Province.
(The inbound vaccine supply chain to Port Vila is not considered
in this research.) There are very limited roads, and limited plane
service, with extensive opportunities for boat transport. In addition
to planes (reflecting scheduled airline service of Air Vanuatu),
boats and trucks, we consider two types of drones: large fixed-
wing drones (LFW) and small fixed-wing drones (SFW). SFWs are
small battery-powered drones that can take off from and deliver
to sites without additional infrastructure, and can have their bat-
teries changed or charged. LFWs are like small aircraft, have a large
payload capacity (greater than the monthly demand of any pro-
vince), require runways for takeoff and landing, and use liquid fuel
(e.g., gasoline). Thus, a ”recharge” for a LFW is actually a refueling.
We assume a transfer time for every transshipment which depends
on the incoming and outgoing transportation modes. Based on the
drone characteristics, and geographic and health data for Vanuatu,
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we created data sets for all provinces including relevant airports,
boat ports, candidate locations for DC, DB, and RS, and the relevant
transportation links between pairs of locations. The demand for
each health zone is the average monthly weight of vaccines,
including diluents and cooling packs, for 17 doses of nine types
of vaccines in a child’s first year, from [33]. Data details are
included in Appendix B.
4.2. Scenarios

The goal of our case study is to estimate the value of employing
two types of drones for multi-modal vaccine distribution in Vanu-
atu. In the next section, we compare cost and service measures for
all six provinces of Vanuatu, and for the country as a whole, in
three scenarios:

� Baseline scenario (B): this is based on current practice without
any drones. For the baseline, vaccine distribution is organized
by province with vaccines first sent from the national depot
by airplane to six provincial depots; then, vaccines are sent
from the provincial depots to the health zone DCs by combina-
tions of boats, trucks, and airplanes.

� Optimized with no drones (OND) scenario: this is the minimum
cost solution from our optimization modeling using only air-
planes, boats, and trucks as available modes. This scenario does
not require transportation first to the provincial depot.

� Optimized with drones (OD) scenario: this is the minimum cost
solution from our optimization modeling with all transporta-
tion modes available, including both LFW and SFW.

For OND and OD scenarios, the cold chain limit is assumed to be
7 h. This is based on the general guidelines in [35] to transport vac-
cines for a maximum of 8 h (even though repeated replenishment
of cold packs might be able to keep vaccines cooler for longer). We
consider a 1-h ”cushion” for unexpected delays. Also, in the OND
and OD scenarios, the maximum number of transshipments on a
vaccine path is set at either 3, 4, or 5 (depending on the distance
of the province from the national depot). The maximum number
of drone stops per vaccine path is set to 3, to allow flexibility
beyond single drone flights. These limits are based on our prelim-
inary results on the added value of allowing longer and more com-
plex paths, see Section 4.3.
4.3. Results

Fig. 3 shows the total transportation cost for the three scenarios
for each province. The percentage savings for the OND solution
range from 0% to 27%, which shows that in some cases optimizing
distribution without adding drones can be useful. Farther pro-
Fig. 3. Total transportation cost for each province under the Baseline (B), optimized with
bars show the percentage savings relative to the baseline scenario.
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vinces from the national depot tend to have larger costs, as
expected, but the relative savings seem little related to distance
from the national depot. The percentage savings from using drones
(scenario OD versus scenario B) ranges from 40% to 61% across the
six provinces. This shows strong potential for drones to reduce
transportation costs in all provinces. While the amount of savings
tends to be larger in the provinces with a more expensive baseline
(i.e., more remote provinces), the relative savings as a percentage
of baseline cost seem rather stable at 45–61% for the provinces that
do not include the national depot. For Vanuatu as a whole, the
aggregated savings total 53%. The savings with drones (OD) rela-
tive to optimized distribution without drones (OND) (not shown
in Fig. 3) is a little smaller at 35% to 52% across the six provinces,
and totals 47% in aggregate for Vanuatu.

Fig. 4 illustrates the cost per dose and service for each province
and for Vanuatu in aggregate. The service measure is the average
delivery time to the selected DCs weighted by their required
demands. Arrows connect the same province from the Baseline
solution (blue) to the Optimized with Drones solution (orange).
This clearly shows that: (1) Drones reduce costs for every province,
sometimes substantially (e.g., Torba), (2) Drones reduce the aver-
age delivery times for farther provinces (on the right), but may
increase the average delivery time a small amount for some pro-
vinces (e.g., Tafea and Sanma), (3) In aggregate (summed over all
provinces), drones both reduce cost and improve service.

However, Fig. 4 with average service times does not capture the
distribution of delivery times across the provinces. Fig. 5 illustrates
the percentage of vaccine doses delivered within every hour for 3
provinces (Malampa, Tafea, and Sanma) that have the same aver-
age delivery time of 2.5 h (see the three vertical blue dots in
Fig. 4). Observe in Fig. 5 that Sanma has a maximum delivery time
of over 8 h, while Malampa has a maximum delivery time of 5 h
and Tafea has a maximum delivery time of only 4 h. The OD solu-
tion with drones does not include any deliveries above 7 h due to
enforcing the cold chain time limit. Fig. 6 provides aggregated
delivery time results for Vanuatu to illustrate how optimizing cost
also improves service in aggregate (relative to the baseline), espe-
cially by increasing the percentage of vaccine doses delivered in 2-
3 h and eliminating any long deliveries.

To illustrate the differences in vaccine distribution with drones,
Fig. 7 shows the Baseline scenario, and Fig. 8 shows the OD solution
for Malampa Province. In the Baseline, the total demand of the pro-
vince (51 kg) is sent by plane from the national depot (not shown
in the figure) to the provincial depot (location 14). From the
provincial depot, the vaccine demands of all health zones are dis-
tributed by either truck, plane, or boat. The unusual plane paths
(e.g., locations 14 to 101 and then 100) are due to the limited avail-
ability of plane flights in the Air Vanuatu schedule. The total trans-
portation cost in the baseline scenario is 53;400 !. Under the OD
no drones (OND), and optimized with drones (OD) scenarios. The numbers atop the



Fig. 4. Cost and service trade-off for the Baseline (B) versus the Optimized with
Drones (OD) scenario for each province and for Vanuatu in total (”Aggregated”).
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scenario (Fig. 8), the total demand of the province (51 kg) is sent by
LFW drone to location 19, and then the LFW drone continues on to
the provincial depot 14 with 27 kg to be distributed by SFW drones
for health zones in the far north of the province. The rest of the
health zones are served by SFW drones from a drone base at loca-
tion 19. Thus, there are two SFW drone bases, at locations 19 and
Fig. 5. Distribution of delivery time under the baseline scenario

Fig. 6. Distribution of delivery time for the Baseline (B) and Optimi

6

14, and one LFW drone base at location 0 (the national depot).
The total transportation cost under scenario OD is 24;829 ! (53%
lower than the Baseline scenario). Even though the maximum
number of drone stops (for each drone type) was set to 3, in the
optimal solution every vaccine path includes only 1 or 2 drone
stops for LFW or SFW. Interestingly, in the OD solution, the
demand at location 17 (4.5 kg) is met via 2 vaccine paths; 0.5 kg
from location 19 to 18 to 17, and 4 kg through provincial depot
14. This is to make efficient use of the limited capacity of SFW
(4 kg), and shows how optimization provides the flexibility to meet
the demand using alternative paths that minimize total cost. A
similar distribution plan is used to meet the 4.6 kg demand at loca-
tion 30 (4 kg through location 19 and 0.6 through location 36). If
each DC was required to be served on a single vaccine path, that
condition could be easily added to the optimization model. In this
example, adding such a limitation would increase costs by about
12% (The alternative solution to meet the demand at DC location
17 is to send 31.5 kg by LFW from 19 to the provincial depot 14,
and then use two SFW trips to send 4.5 kg from 14 to 17; the alter-
native to meet demand at DC location 30 is to use two SFW trips to
send 6.5 kg from 19 to 36, and two SFW trips to send 4.6 kg from
36 to 30.).

The above results for scenario OD used a limit of 3 transship-
ments per vaccine distribution path. This was determined after
an initial analysis of the trade-off between solution quality (cost
and service) and required computational time. We observed that
considering 4 transshipments instead of 3 would only result in less
for 3 provinces with a weighted average service of 2.5 h.

zed with Drones (OD) scenarios aggregated over all provinces.



Fig. 7. Solution of the baseline scenario (B).

Fig. 8. Solution of the optimized scenario with drones (OD).
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than 1% lower total cost while increasing the computational time
over 500%. Interestingly, while allowing more transshipments per
vaccine path can reduce the total cost, it may worsen service. For
instance, in Torba, moving from 3 and 4 transshipments per path
increases the average weighted delivery time (weighted by the
vaccine demands) from 3:7 to 3:9 hrs, while the cost decreases
by 0:85%. We observed small savings when moving from 4 to 5
transshipments per vaccine path (less than 3%), which may be con-
sidered not significant.
7

We also highlight how the introduction of drones naturally
changes the use of other transport modes. As shown in Figs. 7,8,
for Malampa Province the LFW and SFW drones completely replace
the other modes (boat, truck, and plane). However, in other pro-
vinces planes are still used (to meet the cold chain requirement),
and other settings might well use some boat or truck links. In
aggregate for Vanuatu, in the OD scenario, the percentage of dis-
tance traveled by SFW, LFW, and plane is 57.4%, 39.6%, and 2.9%,
respectively. In contrast, in the Baseline scenario, the percentage



Table 2
Summary of the relevant notation for the input sets and parameters.

EM set of transportation links from location i to location jfor
transportation mode m

EMT set of all possible layered links ðir ; jt ;mÞ (reached via different
feasible paths) from location i
arrived at time r to location jarrived at time t via transportation
mode m.

M set of all transportation modes.
MD set of drone modes, MD #M, to allow for different types of drones
S set of national depots
D set of distribution center candidates
Bm set of drone base candidates for drone type m
Rm set of relay station candidates for drone type m
f set of facility types to be located; f ¼ fDC;DB;RSg
jm
1 vaccine capacity limit (kg) for a vehicle of transportation mode m

jm
2 mass (kg) of an empty vehicle of transportation mode m

Cfi;fg fixed cost of opening and operating facility type f 2 f at location i

Fði;j;mÞ fixed cost of establishing the transportation link from location i to
location jusing transportation mode m

Dði;j;mÞ distance from location i to location jvia transportation mode m

fði;j;mÞ variable cost of vaccine flow ($=traversal) on link between location i
and j via transportation mode m
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of distance traveled by boats, trucks, and planes is 73.2%, 18.2%,
and 8.5%, respectively. Effectively, the availability of LFW and
SFW drones allows the LFW drones to replace most plane trips
and the SFW drones to replace the slower and more expensive
truck and boat trips.
5. Conclusion

This paper presents an optimization-based modeling frame-
work to strategically design a vaccine distribution network with
drones and other modes of transport. The modeling framework is
flexible to take practical considerations set by the decision maker
as model inputs, such as the maximum number of transshipments
and drone stops per trip, the transfer time when switching modes
along the way, and the setup time at the start of the trip. Also, the
transportation cost considers the limited capacity of a vehicle of a
particular transport mode (e.g., small drone) in the calculation of
required trips to make deliveries. The results show both cost sav-
ings and improvements in service (delivery time) as illustrated in
a case study for Vanuatu, a less-developed country with limited
transportation infrastructure. Results also show that using the
proper type of drone (sometimes mixed with other available trans-
portation alternatives) results in cost savings of 40% to 61% com-
pared to a baseline where no drones are used and no optimization
is performed. Furthermore, results illustrate that the value of
drones is consistently high across different geographies (savings
ranging between 35% to 52%) even if the optimization is per-
formed for distribution without drones. Finally, the value of flexi-
ble network structure has become evident. That is, forcing all the
required demands to be first shipped to a provincial depot and
then distributed to all health zones in a province does not result
in the lowest total cost and the most efficient delivery service.
Our modeling framework is applicable to other LDCs, and more
broadly to any other settings. However, it is expected that the
greatest benefit from using drones and optimization of vaccine dis-
tribution network design is in hard-to-reach areas with limited
transportation infrastructures. Real-world implementation would
require the support of the ministry of health and local staff to
explore integrating drones and optimization into their vaccine sup-
ply chain. Furthermore, variability in the real-world setting needs
to be accounted for in any implementation. Future research can
incorporate equity and uncertainty of delivery time to all health
8

zones into the optimization process. Also, modeling bi-directional
drones [36] is a promising and novel future research direction.
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Appendix A. Model formulation details

The modeling framework used in this paper is built upon the
Mixed Integer Linear Programming (MILP) layered network model
developed in [5]. The decision variables of this optimization model
are as follows:

� um
i;j: binary variable taking value 1 if the transportation link from

location i to location j via transportation mode m is selected for
the vaccine delivery, 0 otherwise.

� xi: binary variable taking value 1 if DC candidate i is selected to
operate, 0 otherwise.

� ymi binary variable taking value 1 if DB candidate i is selected to
operate for drone type m, 0 otherwise.

� zmi binary variable taking value 1 if RS candidate i is selected to
operate for drone type m, 0 otherwise.

� f s;dir ;jt ;m P 0: continuous variable representing vaccine flow (kg)
on the link from location i at time r to location j arriving at time
t via transportation modem that originated from national depot
s and is to be delivered to DC candidate d.

� tmi;j P 0: integer variable representing the number of trips
needed to distribute the vaccine flow from location i to location
j by a vehicle of transportation mode m

For brevity, we here discuss only the new additions and modi-
fications to the model from Enayati et al. [5]. Notation is in Table 2.
To account for the cost of multiple trips due to the limited capacity
of the SFW drone, we use the following objective function to com-
pute cost:

min
X

i2D
Cfi;DCgxi þ

X

m2MD

X

i2Bm

Cfi;DBgymi þ
X

m2MD

X

i2Rm

Cfi;RSgzmi

þ
X

ði;j;mÞ2EM
Fði;j;mÞum

i;j þ
X

ði;j;mÞ2EM

jm
2 �fði;j;mÞ

jm
1
þjm

2
tmi;j

þ
X

s2S

X

d2D

X

ðir ;jt ;mÞ2EMT

fði;j;mÞ
jm
1 þjm

2
f s;dir ;jt ;m

ð1Þ

The objective function (1) minimizes the total operating costs con-
sisting of five terms. The first three terms include the fixed setup
cost of opening DCs, DBs and RSs, respectively. The fourth term is
the fixed cost of establishing the link (arc) between two locations
via a particular transportation mode. The fifth term calculates the
cost of multiple trips required to distribute the vaccine flow
between two locations via a vehicle with limited capacity. The final
term is the variable transportation cost of vaccine flow through the



Table 3
Summary of geographic data for all provinces

Province # of Locations # of Transportation Links

DC Cand. SFW DBs/RSs LFW DBs/RSs All Boat Truck Plane SFW LFW

Torba 8 9 4 9 49 2 8 64 11
Sanma 20 19 1 20 220 57 1 340 1
Penama 19 21 5 21 321 86 1 420 25
Malampa 26 27 6 27 628 105 10 667 36
Shefa 5 13 5 14 76 10 3 110 16
Tafea 13 15 6 17 44 77 13 134 27
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network. In the Vanuatu case, given the monthly demand level, the
SFW drone is the only vehicle with limited capacity. Therefore, the
last two terms only apply to the SFW drones.

In addition to the MILP constraints in [5], we add the following
constraint to determine the required number of trips depending on
the vaccine flow:

jm
1 t

m
i;j P

X

s2S

X

d2D

X

ðir ;jt ;mÞ2EMT

f s;dir ;jt ;m; 8ði; j;mÞ 2 EM
Appendix B. Vanuatu Data

We used a wide variety of sources from Vanuatu and the global
health community for the Vanuatu case study data. Monthly
demand data for each health zone is based on the number of ”fully
immunized children” (FIC) born over 12 months, from Gustiana
[37]. In their first year of life, each FIC in Vanuatu is to receive
17 doses of 9 different vaccines which total 123.3 cc of vaccine
(and diluent) weighing 178 grams. Transportation guidelines indi-
cate a need for about 2.5 grams of icepacks for every gram of vac-
cine [33]. Thus, the average monthly demand is about 52 grams per
FIC per month. Note that this weight includes all necessary packag-
ing, cooling packs, sensors, etc. to ensure safe delivery of vaccines
by drones.

We identified candidate DC locations in Vanuatu using detailed
data from Vanuatu including Gustiana [37] and detailed ”Health
Facility Location & Population Catchment Maps” from the Vanuatu
Ministry of Health for each province, while verifying with images
from Google Maps. LFW drones require a runway, and therefore
the LFW DBs and RSs were at airports/airstrips in Vanuatu. These
Table 4
Mode-Specific Case Study Data

Parameter

m=Boat m=Truck

jm
1 (kg) 200 200

jm
2 (kg) - -

Fði;j;mÞ ($/month) 2.0�Dði;j;mÞ 1.0�Dði;j;mÞ

fði;j;mÞ ($/traversal) - -

drone range (hours) - -
speed (km/hr) 25 50

Table 5
Transfer times when switching modes and setup time at the start of every trip at the nat

Transfer Times (hour)

from/to Truck Boat Plane

Truck 0.2 0.2 0.3
Boat 0.2 0.2 0.3
Plane 0.3 0.4 0.5
LFW 0.2 0.4 0.3
SFW 0.2 0.3 0.3

9

were identified from public sources, and verified with web
searches and on Google maps. There are three large airports in
Vanuatu, and to avoid conflicts between small drones and low-
flying aircraft, these large airports were not considered as DB or
RS candidate locations for SFW drones. All other airports and all
DC candidates were considered as SFW DBs and SFW RSs. Truck
and boat travel links were identified by detailed analysis of the
”Health Facility Location & Population Catchment Maps” and Goo-
gle Maps. Airplane links were identified using the online airline
schedules from Air Vanuatu and from Google Flights. We included
LFW drone links for all airport pairs (LFW DB candidates) within
the LFW drone range. We defined SFW drone links for pairs of
SFW DB candidate locations within the SFW drone range.

Table 3 provides information on the locations and transporta-
tion links for all provinces. Column ”All” under ”# of Locations”
consists of non-DC transshipment locations and airports in addi-
tion to DC, DB and RS candidates for each drone type. In our Van-
uatu data set, every DB candidate of a drone type is an RS candidate
as well. This table shows that 78% of the existing transportation
links (for the Baseline) are for boats, 20% are for trucks and 2%
are for planes. However, this varies across the provinces with Tafea
having most of its health zones (and DC candidates) on Tanna
Island with batter roads, so only 33% of the total links in the base-
line are boat links and 58% are truck links. All other provinces have
78%-85% boat links. Once drones are introduced, then the majority
of links are for SFWwith 49% in aggregate, and ranging from 45% to
55% across the provinces. The LFW drone links are a small number
(only 3.3% of the total links, since they must connect airports), but
are valuable to allow expensive plane trips to be replaced. In sum-
mary, a large number of drone links are possible, and the total
Values

m=Plane m=SFW m=LFW

3400 4 230
- 16 -

0.75�Dði;j;mÞ 0.4 0.55�Dði;j;mÞ

- 0.14�Dði;j;mÞ -

- 2.14 2.5
300 70 200

ional depot.

Setup Time

LFW SFW at National Depot (hour)

0.3 0.3 0.1
0.3 0.3 0.2
0.3 0.3 0.2
0.2 0.3 0.2
0.3 0.2 0.1
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number of links to consider in vaccine paths is more than doubled
by adding the SFW and LFW drones.

Table 4 summarizes the transportation mode-specific data used
in our case study. LFW drones have a long range of 500 km with a
2.5 h range (200 km/hr speed). SFW drones have a shorter range of
150 km with a 2.14 h range (70 km/hr speed). The fixed facility
costs are $15 and $5 per month for DBs and RSs, respectively.
Assessing fixed costs for DBs and RSs is a challenge because the
number of drone operations for routine vaccine distribution is
not likely to be large, and thus vaccine distribution should repre-
sent a small fraction of DB and RS operations, and costs. Further,
drone service providers may incorporate fixed costs within the
variable charges for drone flights. The values considered here
reflect low levels of fixed facility cost to explore the extent that
drones might be used. The fixed costs for all DC candidates are
set to zero in the modeling, as using the same values for all DCs
does not affect the optimization. The fixed and variable transporta-
tion link costs are reported in Table 4, using values from [30] as a

transportation rate multiplied by the link distance Dði;j;mÞ (in km),
except for the fixed link cost for SFW drones, which is $0.4/month
to account for the need to ensure a safe and reliable drone path.
The large vehicles (boats, trucks, planes and LFW) will make only
a single trip on a link per month, so the transportation cost is trea-
ted as fixed. The variable link cost (per link traversal) is required
only for the SFW drone as it has a low payload capacity of 4 kg that
may result in multiple drone flights per month on a link. Effec-
tively, the SFW drone is the only transportation mode in the case
study with a limited capacity in relation with the monthly
demands.

The vaccine path travel time limit is set as 7 h. This follows the
recommendations for keeping transport time to less than 8 h
[38,39], which we operationalize as a 7-h time limit to allow a 1-
h buffer for delays and transshipment. We consider mode transfer
times and setup times at the start of the trip as shown in Table 5.
The detailed data used in this research is available from the
authors.
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