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Abstract: Olive mill wastes represent an important environmental problem. Their high phenol,
lipid, and organic acid concentrations turn them into phytotoxic materials. Specifically, wet olive
pomace (WOP) is the waste generated in the two-phase continuous extraction process. WOP is
a paste with around 60% water. The total volume of WOP generated is around 0.25 L/kg of
olives processed. Its current waste management practices result in environmental problems as
soil contamination, underground seepage, water-bodies pollution, and foul odor emissions. Some
valorization alternatives include composting, biological treatments, direct combustion for energy
production, or direct land application. The leather industry is making great efforts to apply cleaner
processes while substituting chemical products for natural products. In this way, different alternatives
are being studied, such as the use of zeolites, triazine derivatives, grape seed extract, olive leaf extract,
etc. In this work, the use of wet olive pomace is presented as a possible alternative to conventional
vegetable tannins (mimosa, quebracho, chestnut, etc.). Although different projects and studies have
been developed for the valorization of olive mill wastes, there is completely a new approach to the
WOP application for tanning purposes. This study shows that WOP has a significant number of
polyphenolic substances, so it has a great potential to be used as a tanning agent. Specifically, this
study has been able to determine that, of the polyphenols present in WOP, 39.6% correspond to
tannins that are capable of tanning the skin. Additionally, it contains 14.3% non-tannins, that is,
molecules that by themselves do not have the capacity to tan the leather but promote the tanning
mechanism and improve the properties of the tanned leather.

Keywords: wet olive pomace; polyphenols; vegetable tanning; leather

1. Introduction

On the one hand, the leather industry transforms rawhide into leather through me-
chanical and chemical processes. When a ton of raw hides is converted into approximately
250 kg of leather, around 500 kg of chemicals are added during the tanning process; and
between 20–50 m3 of wastewater are generated, between 600–900 kg of solid waste and
40 kg of emissions in the form of volatile compounds [1].

In this way, the leather industry is making great efforts to apply cleaner processes
while substituting chemical products for natural products and searching for alternatives
to chrome tanning such as organic tanning consisting of phenolic synthetic products,
aluminum salts, as well as vegetable tanning [2–5].

Currently, the raw materials used in vegetable tanning are natural tannins obtained
from different parts of plants, including woods, barks, fruits, and leaves. The most common
tannins are obtained from chestnut (Castanea sativa), from quebracho wood (Schinopsis
lorentzii), from Tara pods (Caesalpinia spinosa), and from the extract of mimosa obtained
from the bark (Acacia mearnsii) [6].
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The chemical constituents of plant tannins are made up of polymeric polyphenolic
molecules. The molecules of vegetable tannins cover a wide range of molecular mass that
oscillates between 300 and 5000 Da. The tanning action of polyphenols depends on the
molecular mass (particle size) and the number of phenolic hydroxyl groups -OH. There is
no clear theory of the fixation of plant tannins in the hide structure, although this practice
has been investigated for decades. The most acceptable reaction is binding to the CO-NH
bond of the protein through the phenolic hydroxyl group of the vegetable tannin, among
other secondary reactions [7,8].

The terms “hydrolyzable” and “condensed” tannins are used to distinguish between
the two important classes of plant tannins, that is, tannins derived from gallic acid and
derived from flavan-3,4-diol, respectively. Vegetable tannins are classified according to their
chemical structure: Pyrogallol or hydrolyzable tannins and Catechol or condensed tannins.
Hydrolyzable tannins are divided into gallic and ellagic tannins. The most common class of
condensed tannins or proanthocyanidins capable of tanning the hide are the procyanidins,
which consist of polymer chains of catechin or epicatechin monomer units [9].

In conventional tanning extracts, along with tannins, there are other compounds that
are separated from plant sources during extraction and concentration processes to generate
commercial tannin powder. These materials, called non-tannins, are made up of carbohy-
drates of various types, organic acids; simple phenols that reach the molecular magnitude
of tannins, salts contained in plant tissue, proteins, and lignin compounds. Among these,
non-tannins are molecules that, although they cannot react with the hydroxylic groups of
collagens, promote the tanning mechanism. Non-tannins can contribute to the tanning
process by giving added value characteristics to the leather, such as lightfastness, which is
improved by the presence of gallic acid.

On the other hand, olive mill wastes represent an important environmental problem
in Mediterranean areas where they are generated in huge quantities in short periods of
time. Their high phenol, lipid, and organic acid concentrations turn them into phytotoxic
materials, but these wastes also contain valuable resources such as a large proportion of
organic matter and a wide range of nutrients that could be recycled. Therefore, there is
a need for guidelines to manage these wastes through technologies that minimize their
environmental impact and lead to sustainable use of resources. Several studies have proven
the negative effects of these wastes on soil microbial populations on aquatic ecosystems
and even in air mediums [10].

Previous studies show that WOP has a significant number of polyphenolic substances
and therefore we think they could be used as tanning agents [11,12]. Specifically, one of the
most relevant in the leather industry is related to the application of the olive leaf called
wetgreen® OBE tanning agent, developed and patented. It is a plant-based concentrate
produced from an aqueous olive leaf extract. The active tanning agents are the same
ones present in some natural cosmetic articles and in extra virgin olive oil [13]. Olive oil
is extracted directly from the fresh fruit of an olive tree (Olea europaea L.) using only
mechanical methods, in order to maintain its natural organoleptic characteristics according
to the European Commission Regulation No. 1513/2001 [14].

In an olive, there can be between 18% and 32% oil. The rest of the waste generated
is vegetable water and wet olive pomace (pulp and stone). Oil extraction is carried out
by centrifugation. Three different systems are normally used: the traditional batch press
process (traditional mills), and continuous processes; the three-phase decanter centrifuge
and the two-phase decanter centrifuge [15]. There are continuous three-phase mills, from
which oil, vegetable water, and WOP come out separately, and two-phase mills (most of
them), in which the vegetable water and WOP come out mixed [16].

Figure 1 is described a general vision of products, by-products, and residues in the
olive oil industry [17].
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Figure 1. General vision on products, by-products, and residues in the olive oil industry.

The application of a novel industrial process based on the hydrothermal treatment
of olive oil waste (WOP) led to a final liquid phase that contained a high concentration of
simple phenolic compounds. After olive oil extraction, only a low percentage of the total
phenolic compounds present in the olive fruits are found in virgin olive oil. The remaining
phenolics (98–99%) end up in WOP, a by-product of the modern two-phase processing
technique used in olive oil production [18]. As such, this material should be considered an
important source of polyphenols [19].

WOP phenolic composition has been described by literature: catechol, 4-methylcatechol,
hydroxytyrosol, tyrosol, oleuropein, p-coumaric, and other flavonoids [20]. WOP has a
high-water content (up to 65%) and may contain between 2–8 g of polyphenols per kg of
pomace. Other flavonoid substances can contribute to the antioxidant capability of WOP.

According to Peralbo-Molina et al., phenols identified from WOP can be classified
in six different typologies: hydroxitirosol and tyrosol derivatives, iridoid precursors,
secoiridoids, and derivatives, flavonoids (antioxidant activity), lignans, and phenolic
acids [21].

Phenolic acids include vanillic, ferulic, gallic, or caffeic monomeric units which can
contribute to confer value added to the leather when polymeric units are generated from
these original monomers. Flavonoids within the molecular range of 500–3000 Da will be
also an object of this study to determine their capability to interact with collagen generating
hydrothermal stability to the leather.

Although different studies have been developed on the recovery of waste from the
olive industry, the research presented in this article aims to contribute to a completely new
approach to the application of WOP for tanning. For this reason, a characterization of the
polyphenols that can be obtained in two varieties of olive as well as in different by-products
obtained from olive oil extraction has been carried out: wet olive pomace (spent olives in
Figure 1), degreased olive pomace, pulp, and stone (husk).

2. Material and Methods

A characterization of WOP composition (polyphenolic compounds, fats, tannins, and
non-tannins) to assess the feasibility of using the by-products obtained from olive oil
extraction as an alternative to totally/partially replace the usual tanning extracts and other
synthetic tannin agents used today was performed.

Specifically, two types of olive were characterized: arbequina and palomar, and
the fractions studied were: wet olive pomace, degreased olive pomace (after the second
extraction), pulp, and stone.

From each of them, the following characterization was performed:
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- Chemical characterization: pH, moisture by gravimetry, inorganic matter, and organic
matter (according to ISO 4098:2018 Determination of water-soluble matter, water-
soluble inorganic matter, and water-soluble organic matter) and fats (according to
ISO 4048:2018 Determination of matter soluble in dichloromethane and free fatty
acid content).

- Polyphenol characterization according to standard ISO 14088:2020 Quantitative analy-
sis of tanning agents by filter method

- Polyphenol characterization by high-performance liquid chromatography (HPLC-DAD)
- Polyphenol characterization by HPLC-ESI/MS (Electrospray ionization, high resolution)

2.1. By-Products from Olive Oil Extraction

As mentioned before, two types of wet olive pomace were characterized, obtained
from two different varieties of olive, grown in two Catalan towns, in 2018:

Sample 1. Palomar wet olive pomace, grown in Olesa de Montserrat (Barcelona, Spain).
The olives were harvested from the tree in December 2018. They were milled in the Olesa
de Montserrat mill. The virgin oil and wet olive pomace were obtained. See Figure 2.
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Figure 2. Wet olive pomace.

Sample 2. Wet olive pomace that comes from Arbequina olive from Santa Maria de
Miralles (Barcelona, Spain). The olives were manually harvested from the tree in December
2018. They were milled in the Agro Igualada Cooperativa mill. The virgin oil and wet olive
pomace were obtained. See Figure 2.

Both wet olive pomace was kept at 4 ◦C in the refrigerator, with the addition of
preservative Thiol S30 from KrabChemical SL (Barcelona, Spain) until use.

Additionally, three samples from General d’Olis i Derivats, S.L. (Les Borges Blanques,
Spain) were characterized: degreased spent olives, pulp and stone, all of them obtained
from the 2019 harvest.

Sample 3. Degreased olive pomace. It is the biomass obtained from the pomace of
two or three phases once it has been partially destoned, humidity reduced in trommel-type
dryers, and degreased in physical-chemical extraction plants. It is biomass that, like stone,
comes from olives and is produced in large quantities in Spain. It is normally used as
biomass fuel in industrial boilers for thermal and electrical production. It is the fuel used
in a large part of the boilers of the agri-food industry associated with olives. In the last
decade, it is exported in large quantities to Europe for fuel for industrial boilers

Sample 4. Olive pulp. It is obtained by aspiration and screening of the degrease olive
pomace, being the olive pulp is a perfect protein supplement for animal feeding.

Sample 5. Olive stone. Normally it is obtained directly from the wet olive pomace or
two-phase pomace through a centrifugation and screening process, it can also be obtained
from the pomace by a suction and screening process. It is one of the best biomasses known,
due to its high lignin content that provides a great calorific value, low ash, and good
conservation. It is highly appreciated for consumption in domestic and industrial boilers
and in other processes such as the production of activated carbon, etc.
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2.2. HPLC-DAD Analysis

To determine the polyphenolic composition of the studied samples, the high-
performance liquid chromatography (HPLC) method was used according to the reversed-
phase separation method.

This alternative method to the official method of determination in the vegetable matter
(ISO 14088:2018) that is used in the leather industry sector, allows a faster and less expensive
estimation of tannin levels. It is based on the observation of the peaks obtained in the
chromatograms of the analyzed samples, their identification through the spectral library,
and the summation of all the areas obtained. The existing library has been completed
with commercial tannin samples: mimosa, quebracho, chestnut, tara, etc., and with new
polyphenolic standards like tyrosol, protocatecuic acid, hydroxytyrosol, p-cumaric acid,
vanillic acid, trans-ferulic acid, catechin, epicatechin, oleuropein, and procianidine B-2. The
retention time and the similarity with respect to the spectra of the identified compounds
calculated by a spectral comparison algorithm have been taken into account.

All types of tannins have strong absorption of ultraviolet light since they are consti-
tuted by the polymerization of polyphenols. To carry out the qualitative determination
of tannins in plant extracts by means of HPLC, it must be taken into account that tannins
share the same chromophore group. In the case of hydrolyzable tannins, it is gallic acid
and in the case of catechinic tannins, it is catechin and to lesser extent epicatechin.

In this study, different polyphenolic patterns of the catechinic and hydrolyzable type
(galotanins and ellagitannins) have also been incorporated into the existing library.

The chromophores of polyphenols of the catechinic, galotanin, or elagitanin type are
different from each other, a characteristic that allows the classification of each polyphenol
in the sample into one of these groups, even though its structure has not been completely
identified nor is its molecular weight known. See Figure 3.
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Figure 3. UV-Vis spectrum of catechin compounds (left) and gallotanines compounds (right).

In this way, knowing that all tannins share the same chromophore group, we can
have molecules of very different molecular weight, but which have practically the
same UV-Vis spectrum. Small differences in configuration will slightly modify peak
wavelengths and molar absorptivity values but will always follow the same pattern
with respect to the spectrum.

The equipment used is an HPLC Alliance from Waters (Barcelona, Spain). An XBridge
Phenyl separation column (3.5-micron particle size, 15 cm length, 130 Å pore diameter from
Waters) is used with a PDA detector between 200 and 400 nm. Specifically, at 271.1 nm.
XBridge Phenyl columns have applicability in separations where alternative selectivity
is needed, especially as the analytes of interest contain an aromatic ring. These columns
offer alternative selectivity over straight-chain alkyl columns, providing great flexibility in
difficult-to-resolve separations.

The mobile phase was composed of eluent A (ultrapure water acidified with 0.1%
formic acid) and eluent B (acetonitrile acidified with 0.1% formic acid). The reverse-phase
working method is constituted by a gradient of eluents according to the following work
program: 95%A-5%B from 0 to 6 min, 74% A-26% B, from 6 to 30 min, 0% from A-100% B
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from 30 to 34 min. The mobile phase flow is 1 mL/min. The working temperature of the
column was set at 35 ◦C.

All the reagents used are of the necessary quality for HPLC assays. Millipore quality
ultrapure water is used for the preparation of the solutions. All solutions are filtered
through 0.45µm nylon filters prior to HPLC-DAD analysis.

2.3. HPLC-ESI/MS Analysis

To complete the characterization, the olive pulp was studied by means of the HPLC-
ESI/MS analysis. To this purpose, an aqueous solution of olive pulp from 1 to 25 is prepared
in ultrapure water. The solution is homogenized using vortex for 10 min and filtered with
filter paper and later with a 0.45 µm syringe filter.

The methodology used is mass spectrometry coupled to LC / MS high-resolution
liquid chromatography (high-resolution ESI). The LC / MSD-TOF instrument used is a
mass spectrometer with a time-of-flight analyzer.

The mass technique (MS) used in the sample test corresponds to the Electrospray (Ion
Spray) (ESI-MS).

The positive and negative ions are read. The detector consists of a source with a
double nebulizer, which allows the simultaneous introduction of internal reference by
means of an independent nebulizer, for the measurement of exact masses.

The working conditions in the mass spectrometer were as follows: capillary 4000 V
(+), 3500 V (−), drying Gas 10.0 L/min, nebulizer pressure 30 Psi, gas temperature 325 ◦C,
fragmenter 175 V (+), and scan 105–2000 m/z.

To analyze the degree of response of the sample and optimize the values of the
working parameters, the previously prepared solution of the sample was carried out by
direct introduction (ESI (+ and −)).

Ten microliters of the sample solution prepared above were injected into the spectrom-
eter through an Agilent 1100 HPLC system, using a mixture of water: Acetonitrile 1:1 and
0.1% formic acid as eluent, applying a flow of 220 µL/min.

2.4. Lab Scale Application

In order to assess the wet olive pomace capacity of tanning, it was applied on leather,
on pickled hide, following the formulation shown in Table 1.

Table 1. Formulation for WOP application.

Operation ◦C % Product Time (min)

Washing 20 200 Water 10

Drain

Tanning 20 60 Water

0.1 EDTA

3.0 Disulphonic synthetic agent

1.0 Naftalensulphonic synthetic agent 60

40 Wet olive pomace

3.0 Phenolic synthetic agent

1.0 Naftalensulphonic synthetic agent

2.0 Sulphited oil 60

40 Wet olive pomace

1.0 Naftalensulphonic synthetic agent

3.0 Phenolic synthetic agent Drum all night
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Table 1. Cont.

Operation ◦C % Product Time (min)

40 100 Water

Formic acid 90

pH = 4 Drain
Washing 40 100 Water 5

Drain

Fatliquoring 40 80 Water

0.2 EDTA 5

5.0 Sulfated oil

1.0 Crude oil

0.5 Sulphited oil 90

1.0 Disulphonic synthetic agent 30

1.0 Formic acid 30

pH = 3,4 Drain

Washing 20 100 Water 10

Drain
Rest 24 h.

3. Results and Discussion

As mentioned before, the aim of this study is to assess the feasibility of using the
by-products obtained from olive oil extraction as an alternative to totally/partially replace
the usual tanning extracts and other synthetic tannin agents used currently.

3.1. Chemical Characterization

The first stage consisted of determining the chemical characterization and content of
the polyphenols of the 5 samples under study in order to choose the most suitable fraction
to be able to tan leather. The results obtained are shown in Table 2.

Table 2. Chemical characterization of the five fractions of WOP.

Sample % Moisture % Inorganic Matter (540 ◦C) % Organic Matter (540 ◦C) pH % Fats

Palomar WOP 6.8 2.73 90.44 5.3 10.7

Arbequina WOP 10.8 2.46 86.76 5.6 7.8

Degreased WOP 6.8 6.25 86.94 5.2 3.4

Olive pulp 6.4 6.10 87.54 5.2 4.2

Olive stone 9.3 0.74 89.93 5.4 0

All the values are calculated on real weight.

As mentioned before, in the leather industry sector, the number of polyphenols able to
tan leather are determined according to standard ISO 14088:2020 Quantitative analysis of
tanning agents by filter method that allows the quantification of tannin content, no tannins,
non-soluble substances, soluble substances, and solids by gravimetry. The results can be
seen in Table 3.

As can be seen in Tables 2 and 3, Palomar and Arbequina WOP contain 10.7% of fats
and 7.8%, respectively, and contain between 2.6–3.0% tannins, 66% moisture, and 28%
non-soluble substances.
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Table 3. Quantification of tannin content of the five fractions of WOP.

Sample % No
Tannins

% Soluble
Substances % Solids % Tannins % Non-Soluble

Substances % Moisture

Palomar WOP 2.2 4.7 33.5 2.6 28.8 66.5

Arbequina WOP 2.7 5.7 32.8 3.0 27.1 67.2

Degreased WOP 6.7 10.3 93.4 3.7 83.1 6.6

Olive pulp 12.9 16.4 93.6 3.5 77.2 6.5

Olive stone 0.3 0.9 89.9 0.7 89.9 10.1

The degreased olive pomace contains 3.7% tannins, 83.1% non-soluble substances, and
3.4% fat. It contains 6.25% inorganic matter, 3% more than the inorganic matter in WOP.

The olive pulp contains 3.5% tannins, 77.2% non-soluble substances, 4.2% fat, and
6.1% inorganic matter. As it contains almost no olive stone, it reduces the content of
non-soluble solids.

The olive stone contains almost no tannins, just 0.7%. It contains many non-soluble
substances, specifically 89.9% and 0.74% of inorganic matter.

As can be seen in the results obtained, each type of olive and each type of fraction
present a different amount of fat and tannins. The difference in fats they present, apart
from the olive species, is also due to the type of mill used, which can have different yields
due to differences in working temperature and grinding pressure.

In this stage of the study, the olive stone is discarded due to the low tannin content
and the high non-soluble substances content. For this reason, the olive stone is rejected as a
matter to tan leather.

3.2. HPLC-DAD Characterization

Once the first quantification of polyphenols able to tan was obtained in the different
fractions studied, a semi-quantification by HPLC-DAD was carried out in order to identify
the types (i.e., catechin, epicatechin, gallic, ellagic, etc.).

As mentioned before, a comparison of the algorithms of the UV spectra of the peaks
of the chromatograms with those of the digital library was made. Each peak was individu-
ally reviewed, checking the coincidence of its retention time and UV spectrum with the
polyphenols of the spectra recorded in the library. Once the results were obtained, the sum
of the total area of the peaks identified in the chromatogram as non-tannins, tannins, and
unidentified was performed.

Table 4 shows a summary of the percentage in tannins, non-tannins, and unidentified
obtained by each of the fractions studied.

Table 4. Semi-quantification of tannin content of the five fractions of WOP by HPLC-DAD.

Sample Tannins (%) No Tannins (%) Unidentified (%)

Palomar WOP 16.5 4.5 79.0

Arbequina WOP 31.1 16.0 52.9

Degreased WOP 13.3 10.3 76.4

Olive pulp 39.6 14.3 46.1

The results by HPLC analysis show the same conclusions as the results obtained
following the Standard ISO 14088: 2020 Quantitative analysis of tanning agents by filter
method. The results show that the fraction that contains the most amount of tannins, and
of which more types can be identified according to the database of the equipment used, is
olive pulp.

In Figure 4 the chromatogram obtained from olive pulp can be seen. In addition, in
Table 5 the types of polyphenols that have been identified are detailed.
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Figure 4. Olive pulp chromatogram.

Table 5. Identification of polyphenolic compounds in the olive pulp.

Peak TR (min) Identification % Area/Total Area

1 1.65 2.0

2 1.79 1.7

3 2.04 1.4

4 2.10 2.5

5 2.31 5.2

6 2.44 Gallic tannin (chromophore present in oak) 10.0

7 2.58 1.3

8 2.65 2.9

9 3.01 2.5

10 3.14 0.4

11 3.30 Catechin tannin (chromophore present in
quebracho) 0.7

12 3.96 0.2

13 4.18 0.3

14 4.64 0.5

15 5.19 Protocatechuic acid chromophore 2.3

16 5.45 Catechin tannin (Same chromophore as
procyanidin B2) 28.9

17 7.99 0.4

18 8.62 1.6

19 8.93 Tyrosol 7.3

20 10.54 0.4

21 11.46 0.6

22 11.72 0.3
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Table 5. Cont.

Peak TR (min) Identification % Area/Total Area

23 11.98 Vanillic acid 3.1

24 13.61 0.3

25 13.90 0.3

26 15.34 0.3

27 16.01 0.4

28 17.16 0.9

29 17.43 0.2

30 17.70 0.2

31 18.05 0.2

32 18.24 0.2

33 18.62 0.3

34 18.77 0.2

35 19.18 0.5

36 20.10 0.2

37 20.79 0.2

38 21.20 Hydroxytyrosol chromophore 0.6

39 21.74 0.2

40 22.06 0.3

41 22.81 0.3

42 24.17 Hydroxytyrosol chromophore 0.7

43 25.64 0.2

44 26.76 0.3

45 29.72 Coumaric acid chromophore 0.2

46 32.14 0.2

47 33.08 15.6

48 34.05 0.2

Tannins 39.6

No tannins 14.3

Unidentified 46.1

As can be seen in Table 5, in the olive pulp there are 39.6% tannins, that is, 39.6% of
polyphenols that may be suitable for tanning. However, with the HPLC-DAD technique,
there are still 46.1% of unidentified substances. To improve the identification and see if more
tannins can be obtained, an identification of polyphenols was carried out by HPLC-ESI/MS
that in addition to identifying more compounds the molecular mass can be determined.
Therefore, it will be possible to better define the polyphenols that will have the tan capacity
(i.e., polyphenols with a molecular mass between 300 and 5000 Da).

3.3. Polyphenol Characterization by HPLC-ESI/MS

To corroborate the tanning capacity of this raw material, the olive pulp was studied
by means of the LC/MS analysis (high-resolution ESI). As mentioned before, with this
technique it will be possible to refine the identification of all the polyphenols present in the
olive pulp sample and at the same time, by determining their molecular mass, it will be
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possible to determine which of them have tanning capacity. The results obtained can be
seen in Table 6. In Figure 5, the HPLC-ESI/MS chromatogram can be observed.

Table 6. Identification of polyphenolic compounds in olive pulp by HPLC-ESI/MS.

Compound Formula m/z Rt Comments

Hydroxytyrosol and Tyrosol derivatives

Hydroxytyrosol C8H10O3 153.0557 5.55 Fragments

Hydroxytyrosol Glucoside C14H20O8 315.1085 5.20 Mix

Hydroxytyrosol Diglucoside C20H28O13 475.1457 5.73 Fragments

Tyrosol C8H10O2 137.0608 24.78 Mix

Tyrosol Glucoside C14H20O7 299.1136 8.70 Mix

Iridoids precursors

Loganin C17H26O10 389.1453 13.80
17.78 Mix

Loganic acid C16H24O10 375.1297 7.64
11.68 Mix

Secologanin C17H24O10 387.1297
14.67
19.39
19.95

Mix

Oleoside C16H22O11 389.1089 13.53 Mix

Oleoside Diglucoside C28H42O21 713.2146 13.50 Mix

Oleoside Riboside C20H26O15 505.1195 17.67 Mix

Oleoside-11-Metilester C17H24O11 403.1246
19.10
15.86
20.28

Mix

Oleoside Dimetilester C18H26O11 417.1402 18.48
21.56 Mix

Secoiridoids derivatives

Oleuropein C25H32O13 539.177 29.78
31.27 Mix

Verbacoside C29H36O15 623.1981 25.96 Mix

3,4-DHPEA-EDA C17H20O6 319.1187 13.98
33.81 Mix

p-HPEA-EA C19H22O7 361.1293

18.96
19.30
30.03
33.08

Mix

Oleuropein Derivative 1 C25H36O13 543.2083
16.42
16.87
25.72

Mix

Oleuropein Derivative 2 C25H36O12 527.2134 17.07
29.02 Mix

Flavonoids

Rutin C27H30O16 609.1461 22.33 Mix

Luteolin C5H10O6 285.0405 32.30 Compound

Apigenin Glucoside C21H20O10 431.0984 15.33
19.07 Mix

Luteolin Glucoside C21H20O11 447.0933 24.41 Mix
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Table 6. Cont.

Compound Formula m/z Rt Comments

Quercetin C15H10O7 301.0354 32.05 Mix

Lignans

Hydroxypinoresinol C20H23O7 374.1371

27.33
27.86
28.25
28.66
29.09
30.62
33.76

Mix

Phenolic acids

Cinnamic acid C9H8O2 147.0452 17.43
19.22 Mix

P-coumaric acid C9H8O3 163.0401 17.75 Mix

Caffeic acid C9H8O4 179.035 11.70 Mix

Vanillic acid C8H8O4 167.035

4.75
12.34
20.0

23.63

Mix

Ferulic acid C10H10O4 193.0506 30.10 Mix
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As can be seen in Table 6, it has been possible to detect all the polyphenols present in
the sample, as well as classify them into: hydroxytyrosol and tyrosol derivatives, precursor
iridoids, derivative secoiridoids, flavonoids, lignans, and phenolic acids. With the HPLC-
ESI / MS technique, it was possible to detect polyphenols that had not been detected with
HPLC-DAD, such as oleuropein, quercetin, hydroxypinoresinol, etc.

In Figure 6, an example of the spectrum (TIC) ESI-TOF (-) corresponding to the
compound Oleuropein can be seen, that jointly to hydroxytirosol have important biological
properties (anti-inflammatory, anti-atherogenic, anticancer, antimicrobial, and antiviral) as
shown in many studies, and that is why it has been gaining prominence in research [22,23].
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With this test it has been possible to find the molecular weights of all the polyphenols
present in the sample and therefore, those that have a molecular mass between 300 and
5000 Da can be determined and will be the ones that can be used as tannins for the tanning
industry. That is to say, according to the characterization carried out in this article, from
the olive pulp, the following can be obtained:

- Hydroxytirosol Glucoside, Hydroxytirosol Diglucoside;
- Iridoids prescursors: Loganin, Loganic acid, Secologanin, Oleoside, Oleoside Digluco-

side, Oleoside Riboside, Oleoside-11-Metilester, Oleoside Dimetilester;
- Secoiridoids derivatives: Oleuropein, Verbacoside, 3,4-DHPEA-EDA, p-HPEA-EA,

Oleuropein Derivative 1, Oleuropein Derivative 2;
- Flavonoids: Rutin, Apigenin Glucoside, Luteolin Glucoside, Quercetin;
- Lignans: Hydroxypinoresinol

All of these polyphenols can be considered tannins as they have a suitable molecular
weight for tanning. In addition, a tanning product with a high antioxidant activity can be
obtained due to the presence of oleuropein and hydroxytyrosol that can give added value
compared to the conventional vegetable extracts that are currently being used.

3.4. Lab Scale Application

Once it has been verified that wet olive pomace contains polyphenols that can be
considered tannins, it is applied to pickled hide following the formulation shown in
Table 1. In Figures 7 and 8, the obtained results can be seen.

As can be seen in Figures 7 and 8, leather presents a correct cross-section, and it is
correctly tanned. The shrinkage temperature obtained is 79 ◦C. The obtained results show
that the by-products obtained from olive oil extraction can be an alternative to partially
replace the usual tannin extracts. However, the wet olive pomace has to be optimized in
order to increase the number of tannins obtained and improve their application on leather.
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4. Conclusions

In this work, a characterization of the polyphenols that can be obtained in two varieties
of olive as well as in different by-products obtained from olive oil extraction has been
carried out: wet olive pomace, degreased olive pomace, olive pulp, and olive stone, with
the aim to assess the feasibility of using the by-products obtained from olive oil extraction
as an alternative to totally/partially replace the usual tanning extracts and other synthetic
tannin agents used today was performed.

Each type of olive and each type of fraction present a different amount of fat and
tannins. Olive stone is rejected as a matter to tan leather due to the low tannin and the high
non-soluble substances content.

From all the fractions studied, the fraction that contains the most number of tannins
and of which more types can be identified according to the database of the equipment
used is olive pulp. Specifically, in the olive pulp, there are 39.6% tannins, that is, 39,6% of
polyphenols that may be suitable for tanning.
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With the HPLC-ESI / MS technique, it had been possible to detect all the polyphenols
present in the sample, as well as classify them into: hydroxytyrosol and tyrosol derivatives,
precursor iridoids, derivative secoiridoids, flavonoids, lignans, and phenolic acids. Except
for phenolic acids, most parts of these polyphenols can be considered tannins as they
have a suitable molecular weight for tanning. In addition, a tanning product with a high
antioxidant activity can be obtained due to the presence of oleuropein and hydroxytyrosol
that can give added value compared to the conventional vegetable extracts that are currently
being used.

In order to optimize the number of tannins obtained, it would be convenient to
solubilize the olive pulp in order to use it as a raw material with a composition of tannins,
non-tannins, and adequate fat to be able to tan and thus obtain a new bio-based resource
for leather tannin.
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