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Neutrophil extracellular traps (NETs), products of neutrophil death when exposed to
certain stimuli, were first proposed as a type of response to bacterial infection in infectious
diseases. Since then, extensive studies have discovered its involvement in other non-
infectious inflammatory diseases including thromboembolism, autoimmune diseases, and
cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world.
NET formation is closely associated with tumorigenesis, progression, and metastasis in
CRC. Therefore, the application of NETs in clinical practice as diagnostic biomarkers,
therapeutic targets, and prognostic predictors has a promising prospect. In addition,
therapeutics targeting NETs are significantly efficient in halting tumor progression in
preclinical cancer models, which further indicates its potential clinical utility in cancer
treatment. This review focuses on the stimuli of NETosis, its pro-tumorigenic activity, and
prospective clinical utility primarily in but not limited to CRC.

Keywords: neutrophil extracellular traps, colorectal cancer, metastasis, clinical application, tumor microenvironment
INTRODUCTION

Neutrophils, the most abundant white blood cells, play an important role in the immune system,
especially for innate immunity (1). When exposed to exogenous pathogens, activated neutrophils
can function in various ways, such as phagocytosis, cytokine release, and degranulation. Upon the
activation of different signaling pathways, neutrophils may undergo different types of cell death,
including apoptosis, necrosis, necroptosis, autophagy, pyroptosis, and NETosis (2). As a unique
form of neutrophil programmed death, NETosis is characterized by the formation and release of
NETs out of the cells. Neutrophil extracellular traps (NETs), mainly consisting of granule proteins
and chromatin, were first described by Brinkmann et al. as a form of innate immune response to
bacteria (3). Subsequently, several studies demonstrated the involvement of NETs in various non-
infectious diseases, such as chronic inflammatory conditions, autoimmune disease, thrombosis,
coronavirus disease 2019 (COVID-19) and malignancies (4–7). In addition, studies have reported
that NETs mainly contribute to the progression of many types of tumors (7, 8). However, they can
act as a double-edged sword, occasionally exerting anti-tumor effects (9).
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Colorectal cancer (CRC) is the third most common cancer in
the world, with approximately 1.3 million new cases and >600,000
deaths reported every year (10). CRC has a high probability of, and
approximately half of the patients develop metastasis when
diagnosed with CRC, which is also the main cause of death in
patients (11). The currently available therapeutic strategies of CRC
include surgical resection, chemotherapy, radiotherapy, and
immunomodulatory therapy. However, approximately 40% of
patients with CRC eventually have recurrence or metastasis,
resulting in a 5-year survival rate of <15% (12, 13). Therefore, it
is imperative to identify the exact mechanisms of CRC
development and develop novel therapeutic strategies.

This review discusses stimuli that promote oncogenic
NETosis, the structure of NETs and the involvement of NETs
in non-neoplastic disease progression. Many studies have
implicated that NETs can promote the progression of multiple
tumors, including CRC, in different ways (14–16), indicating the
importance of NETs in CRC and their potential value in clinical
application. Therefore, in this review, we elucidated the impact of
NETs mainly on CRC progression in terms of different stages
and discussed the potential value of NETs in clinical application
including diagnosis, therapeutic targeting, and prognostic
prediction in cancer.
BASIS OF NETS

Stimuli of NETosis and Formation of NETs
NETosis is a process in which NETs are expelled out of
neutrophils to the extracellular space. There are mainly two
types of NETosis, namely, vital NETosis commonly occurring in
infection and lytic NETosis often occurring in sterile injury (17,
18), which form NETs in two different ways, respectively.
NETosis is also considered a form of cell death, different from
apoptosis and necrosis, and is characterized by the extrusion of
decondensed chromatin and protein contents to the extracellular
space, forming NETs (19). A few important cellular events are
involved in the process of NET formation, including the
production of reactive oxygen species (ROS), migration of
neutrophil elastase (NE) and myeloperoxidase (MPO) to the
nucleus, histone citrullination, and chromatin decondensation
(20). This series of events in neutrophils can be triggered
under the influence of multiple cells and their paracrine
components (Figure 1).

Lipopolysaccharide (LPS), one of the dominant components
of Gram-negative bacterial cell wall, is a common inducer of
NETosis. Many studies have shown that the formation of NETs
is increased in patients with infection and have verified the effect
of LPS on the formation of NETs to some extent (3, 21). In
addition, LPS promotes NETosis via a ROS-dependent
mechanism, and ROS production is closely associated with
inflammation, cancer, and neutrophil modulation (22, 23).

Endothelial cells (ECs) can promote NETosis upon activation
via exposure to oxidative stress in injury, inflammation, or some
compounds such as phorbol 12-myristate 13-acetate (PMA) and
thapsigargin (24, 25). Activated ECs can release inflammatory
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cytokines including interleukin-8 (IL-8) (26), which has been
validated to partially participate in EC-mediated NET formation
when co-cultured with neutrophils in vitro (25).

Activated platelets are also one of the contributors to NET
formation (27). Upon activation, platelets can directly bind to
neutrophils through multiple molecular interactions and
subsequently stimulate NETosis (28). On the one hand,
activated platelets can translocate P-selectin to their surface
(29), where it can bind to the neutrophil surface receptor P-
selectin glycoprotein ligand-1 (PSGL-1) and further strengthen
their adhesion (30), eventually leading to the release of NETs. On
the other hand, platelets can express toll-like receptor-4 (TLR4)
and high-mobility group box 1 (HMGB1), which are important
contributors to platelet-stimulated NETosis (21, 27).
Simultaneously, the newly generated NETs activate platelets to
achieve a prothrombotic state, thus forming a positive feedback
loop between NETosis and coagulation (31).

Tumor cells can activate neutrophils to release NETs by
promoting the expression and release of multiple pro-NETotic
factors such as granulocyte colony-stimulating factor (G-CSF)
(32), IL-8, and extracellular vesicles (EVs). Some studies have
indicated that G-CSF can be secreted abundantly by cancer cells
in either murine or human tumors and can activate neutrophils by
binding to the G-CSF receptor on the surface of these cells (33, 34).
Mélanie et al. showed that overexpression of G-CSF in patients with
cancer can lead to an overabundance of neutrophils in the blood
and increased sensitivity toward NET generation in a ROS-
dependent manner (35). IL-8 is a common cytokine to recruit
neutrophils to the sites of inflammation, which can be released by
multiple cancer cells including glioblastoma, diffuse large B-cell
lymphoma (DLBCL), bladder cancer, and CRC, and the released IL-
8 can stimulate NETosis in human neutrophils ex vivo (7, 14, 36–
38). In addition, the cytokine IL-1b is associated with NETs in some
tumors (39, 40). Protein arginine deiminase 4 (PAD4) is an essential
enzyme of NETosis, and its expression increases either in the blood
or tumor tissues of patients with malignancies (41). High PAD4
levels provide enough enzyme for histone citrullination, which may
be considered another potential way for tumor cells to promote
NET formation. As a type of membrane-enclosed particles formed
by membranes of the parent cell (42), EVs are considered one of the
most crucial components that affect NETosis in cancer (43).
According to recent studies, EVs promote NETosis mainly in two
ways: First, through the effect of bioactive contents present in EVs,
including ILs and G-CSF that induce NETosis (44); second, by
inducing proinflammatory activity of neutrophils, for example, IL-8
secretion (45).

In addition to the abovementioned factors, microRNAs
(miRNAs), a type of small non-coding RNAs that are involved in
almost all physiological processes in the human body, modulate the
process of NETosis (46, 47). Arroyo et al. revealed that miR-146a, a
negative regulator of the inflammatory response, inhibited NETosis
in vivo, and miR-146a knockout in neutrophils resulted in a higher
level of citH3 and NETs relative to the wild-type neutrophils upon
PMA stimulation (47). In addition, miR-155 promotes the
generation of NETs by positively regulating the neutrophil
expression of PAD4 (48).
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Because NETs are prone to be induced in the inflammatory
environment, which, in turn, can promote inflammation, we
speculate that NETs are closely related to inflammation-associated
factors. Theoretically, factors that promote inflammation can also
promote NETosis. This understanding expands the range of
influencing factors associated with NETs and provides a direction
for further exploration of the inducers of NETs.

Role of NETs in Disease Progression
In recent years, it has been discovered that NETs play an
important role not only in the immune system but also in
other pathologic processes such as thrombosis, autoimmune
diseases, aseptic inflammation, metabolic disease, and the
development of multiple tumors.

As a network in the circulatory system, NETs can capture and
activate free platelets to promote thrombosis, especially during
infection and inflammation (49). Many studies have validated
the prothrombotic effect of NETs. For example, Fuchs et al.
reported that NETs promoted fibrin deposition and thrombus
formation, and blocking the production of NETs with DNA
enzymes or PAD4 inhibitors reduced the incidence of deep vein
thrombosis in animal models (50).

NETs released from neutrophils inevitably carry some
intracellular proteins, that is, neutrophil-derived antigens. After
these autoantigens are recognized by the immune system, they
can drive the activation of autoreactive B cells to induce
corresponding autoantibodies and result in autoimmune
diseases (5). The association between NETs and autoimmune
disease was firstly observed in patients with small-vessel
vasculitis, whose serum was positive for anti-neutrophil
cytoplasmic autoantibody (ANCA) against MPO and
proteinase 3 in NETs (51). In some studies, NETs and
autoantibodies have been detected in synovial fluid from
patients with rheumatoid arthritis, and anti-citrulline protein
Frontiers in Oncology | www.frontiersin.org 3
antibody is the most significant of all autoantibodies (52). In
addition, anti-ribonucleoprotein (anti-RNP) antibodies in
patients with systemic lupus erythematosus (SLE) can induce
NETosis, and SLE NETs activate plasmacytoid dendritic cells
(PdCs) to produce high levels of IFN-a, which renders
neutrophils more susceptible to NETosis upon stimulation of
anti-RNP antibodies (53).

In addition, NETs are involved in some processes of aseptic
inflammation. During the early inflammatory phase of
atherosclerosis, cholesterol crystals can induce the generation of
NETs, which, in turn, primes the transcriptional expression of IL-6
and IL-1b genes in macrophages and subsequently promotes the
activation of T helper 17 cells, which enhance the recruitment of
immune cells to atherosclerotic lesions (54). The pro-inflammatory
effects of NETs have been demonstrated in the process of ischemia–
reperfusion (IR) injury, during which neutrophils are recruited to
the sinusoids of the ischemic liver lobes and release NETs in
response to various stimuli, including the release of HMGB1 and
histones from injured hepatocytes. In addition, inhibition of NET
formation with PAD4 inhibitor or DNase I can protect hepatocytes
and alleviate inflammation after liver IR injury, indicating the
pathophysiological role of NETs in liver IR injury (55). Moreover,
in mouse models of Alzheimer’s disease, NETs have been observed
in areas with amyloid-b (Ab) deposits. Depletion of neutrophils or
blocking their trafficking process improves Alzheimer’s disease-like
neuropathological features and cognitive performance in mice (56).
As a nonspecific inflammatory bowel disease, ulcerative colitis (UC)
has close relationship with NETs, which has been proven to be over-
produced in inflamed colon of UC patients. The released NETs, in
turn, significantly promoted IL-1b and TNF-a expression in
mononuclear cells, leading to more NETs release (57).
Meanwhile, the close relationship between UC and CRC has been
acknowledged (58), which could be in part attributed to increased
NETs in patients with UC.
FIGURE 1 | Multiple cells such as tumor cells, platelets, bacterial cells, and endothelial cells and their released factors are involved in NETosis. These factors
from different types of cells can bind to their respective receptors on neutrophils, leading to NET formation. The released NETs are composed of a DNA skeleton
and decorated granular and cytosolic proteins such as citH3, NE, and MPO. Thereafter, they can further activate and capture platelets, leading to venous
thromboembolism. NETs can also entrap circulating tumor cells, promoting extravasation and metastasis.
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Furthermore, NETs play a potential role in the pathogenesis
of some metabolic diseases, such as obesity and diabetes mellitus
(DM). Studies have shown that NET levels in patients with
obesity are higher than those in the healthy population (59, 60),
which is consistent with high levels of inflammatory cytokines in
patients with obesity. Obesity is characterized by low-grade
chronic inflammation, which underlies neutrophil activation
and NET formation. Released NETs can, in turn, modulate
inflammatory markers including IL-8, heat shock protein 90
(HSP90), and the E1 heat shock protein family (HSPE1),
eventually contributing to metabolic profile alterations in
obesity (60). Wong et al. reported that neutrophils derived
from patients with DM were more susceptible to NETosis
because of elevated PAD4 expression (61), which also means
increased level of NETs in these patients compared to normal
individuals. In addition, many studies have showed that obesity
and DM were positively related to the incidence of CRC (14, 62,
63). Therefore, considering the role of NETs in CRC progression,
high levels of NETs in patients with obesity and DM may be one
of the reasons for obesity and DM being risk factors for CRC.
NETS PROMOTE COLORECTAL CANCER
DEVELOPMENT AND METASTASIS

The initiation and development of tumors are complex
pathophysiological processes involving a series of genetic,
biochemical, and molecular biological changes. To date, many
studies have shown that NETs are involved in the development of
various tumors, such as breast cancer, pancreatic cancer, gastric
cancer (GC), and CRC.Moreover, systemic neutrophils derived from
patients with CRC and age-matched healthy volunteers possess
different vulnerabilities to NETosis, and the serum levels of NETs
between them are also distinct (64). Therefore, to some extent, NETs
have potential effects on CRC development. Furthermore, the role of
NETs in the growth and metastasis of CRC and beyond in terms of
three important stages of tumor progression, namely, the local
microenvironment, circulatory system, and pre-metastatic
microenvironment, is described below (Figure 2).

NETs in the Tumor Microenvironment
NETs promote tumor growth in different ways in the tumor
microenvironment. First, NETs can affect the state and infiltration
of mesenchymal cells in the microenvironment to mediate tumor
progression. In addition, NETs can promote pancreatic tumor
growth by activating pancreatic stellate cells (PSCs) by interacting
with RAGE receptors; however, deficiency in RAGE receptors
attenuates the carcinogenic effect. In a study, serum levels of
NETs were strongly correlated with the tumor stage of patients
with pancreatic duct adenocarcinoma, indicating the potential of
NETs as biomarkers in human cancer (65). Dirk et al. discovered
that neutrophil infiltration and NET formation were observed in a
murine model of nonalcoholic steatohepatitis, followed by the
presence of monocyte-derived macrophages, which produced
inflammatory cytokines and promoted the progression of
hepatocellular carcinoma (HCC) (66).
Frontiers in Oncology | www.frontiersin.org 4
In addition, NETs can affect the malignant biological
behavior of cancers by altering the metabolic characteristics of
tumor cells. Yazdani et al. found that NETs controlled
mitochondrial homeostasis in tumor cells (67), and inhibition
of PAD4 remarkably reduced tumor mitochondrial density and
mitochondrial DNA and ATP production and subsequently
affected the growth of tumor cells.

NETs can affect the behavioral characteristics of tumor cells
by directly activating some receptors and pathways associated
with proliferation, migration, and metastasis. In a study, NETs
increased cell proliferation and migration of DLBCL cells in vitro
and tumor growth and lymph node dissemination in vivo.
Mechanistically, NETs directly upregulated the TLR9 pathway
in DLBCL and subsequently triggered the NF-kB, STAT3, and
p38 pathways to promote tumor progression. Correspondingly,
disruption of NETs or suppression of TLR9 inhibited tumor
progression in preclinical models (37). Li et al. found that
destruction of the integrity of NETs in vitro promoted
apoptosis and inhibited invasion and metastasis of GC cells by
regulating the Bcl-2, Bax, and NF-kB pathways, suggesting an
anti-apoptotic effect of NETs on tumor cells (68).

The invasion and metastasis ability of tumor cells depend on
various factors, such as tumor cell motor capacity, angiogenesis,
remodeling of the extracellular matrix, and epithelial–
mesenchymal transition (EMT). In a study, NETs were found
to drive the transformation of typical epithelial morphology to
the mesenchymal phenotype and increase the expression of
tumor stem cell-related markers in human breast cancer MCF7
cells, which was accompanied by enhanced invasion and
migration ability (8). In addition, NET-associated cathepsin G
has been reported to facilitate the invasion and metastasis of
HCC cells both in vitro and in vivo (69). The DNA component
of NETs can directly act on the CCDC25 receptor on the surface
of cancer cells and activates the ILK–b-parvin cascade to
enhance the motor capacity of cells (70). Two NET-associated
proteases, NE and matrix metalloproteinase 9 (MMP9), can
cleave and remodel laminin to reveal an epitope that can
subsequently activate FAK/ERK/MLCK/YAP signaling,
eventually activating and awakening dormant tumor cells (71).

Furthermore, there is a positive feedback effect between the
formation of NETs and CRC progression. For example, NETs
can directly promote the secretion of IL-8 from CRC cells,
although it can be secreted without NET stimulation (14, 36).
As an inflammatory factor, IL-8 can recruit neutrophils and
activate neutrophils to produce more NETs, thus aggravating
CRC progression. Anquan et al. demonstrated the association
between CRC cell-derived exosomes with NETosis, indicating
that exosomes originating from KRAS-mutated CRC cells can
activate neutrophils to promote NET generation (15), thereby
accelerating the deterioration of CRC.

NETs have a close relationship with tumor immune evasion.
As major executors of the killing of malignant cells in the tumor
immune microenvironment, CD8+ T and natural killer (NK)
cells determine the sensitivity of patients to immunotherapy to
some extent. NETs may compromise the ability of these cells to
kill cancer cells because NET aggregation can enwrap and shield
June 2022 | Volume 12 | Article 848594

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Neutrophil Extracellular Traps in Colorectal Cancer
tumor cells to avoid contact with CD8+ T and NK cells (72, 73).
Therefore, inhibition of NET formation via PAD4 inhibitors
may sensitize tumors to immunotherapy.

In addition to tumor progression, the role of NETs in tumor
recurrence after treatment is also noteworthy. First, NETs can
activate dormant cancer cells by cleaving laminin to remodel
ECM in mouse models (71), leading to tumor recurrence.
Second, cancer cells can acquire stem cell properties under the
influence of NETs (8), and the generation of tumor stem cells is
considered an important way through which tumors acquire
drug resistance and relapse, which is another way for NETs to
promote tumor recurrence.

Despite the carcinogenic effects of NETs revealed in extensive
studies, controversial observations have also been reported, such
as in vitro-produced NETs having anti-tumor effects on CRC.
Arelaki et al. found that either PMA or sepsis serum-induced
NETs could impede growth and induce apoptosis in CRC cells in
vitro. However, these inhibitory effects could be abrogated
through the destruction of NETs by DNase (74).

NETs in the Circulatory System
There are several pathways for tumor metastasis including
lymphatic, hematogenous metastasis, and implantation
metastases, of which hematogenous metastasis is the most
common pathway for multiple tumors, such as colorectal liver
metastasis. Circulating tumor cells (CTCs) are important for
metastasis (75). After detachment from the primary tumor and
intravasation, CTCs have to overcome many adverse factors to
achieve successful colonization in target organs, a process in
which NETs perform a series of functions.

NETs are widely distributed in the blood and physically
sequester CTCs as a network structure in the microvessels of
distant organs to develop metastasis (76). In addition, Rayes et al.
Frontiers in Oncology | www.frontiersin.org 5
reported that the levels of circulating NETs were higher in patients
with multiple cancers, especially those at an advanced stage, than in
healthy volunteers (77), indicating the potential role of NETs in
distant metastases. However, in addition to physical capture, there
may exist certain underlying molecular mechanisms through which
NETs can trap CTCs to strengthen their adhesion.

The potential molecular nature of their adhesion was revealed
by Najmeh et al. for the first time, and their data shed light on the
important role of b1-integrins in mediating the adhesion of
tumor cells to NETs (78). In their study, both tumor-derived and
NET-derived b1-integrins mediated the adhesion of cancer cells
to NETs in vitro and in vivo. Correspondingly, decreased cancer
cell adhesion to liver sinusoids was observed in vivo through b1-
integrin blockade by its antibody. Considering the multiple
effects of NETs on cancer cells, the detailed molecular
landscape of interaction between them may be complicated
and warrants further investigation.

CTCs are present in the form of single cells and clusters, and the
latter possesses greater metastatic capabilities than the former (79).
In addition, single cells can form clusters through adhesive
molecules in the circulatory system (80). Therefore, we speculated
whether NETs affect the formation of clusters from single cells,
which can be explained in terms of the following aspects. First,
NETs provide scaffolds for the adhesion of CTCs and areas for their
encounter, thus providing a spatial basis for the formation of tumor
clusters from single cells. In addition, the adhesion of CTCs to NETs
partially depends on integrins, which are reported to mediate cell–
cell adhesion in tumors (81). CTCs that have successfully attached
to NETs should have relatively high expression of integrins on the
surface, which constitutes the molecular basis to form clusters.
Therefore, we speculate that NETs drive the aggregation of single
CTCs into cell clusters, although no direct evidence is available to
validate this speculation.
FIGURE 2 | Multiple functions of NETs during colorectal cancer liver metastasis. (A) NETs present in blood vessels can entrap cancer cells and promote
extravasation. Dormant cancer cells in the liver can be awakened via NET-induced ECM remodeling and hence promote metastasis and recurrence. (B) Neutrophils
can be recruited by CRC cells because of the presence of chemokines and hypoxia in the tumor microenvironment, leading to more NETosis triggered by IL-8 and
exosomes released by cancer cells. Cancer cells undergoing EMT are more prone to intravasate after stimulation of NETs.
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One of the critical steps for the successful colonization of
CTCs in target organs is extravasation; however, it is not easy for
tumor cells to penetrate the intact blood vessel walls. NETs can
facilitate vascular leakage and endothelial-to-mesenchymal
transition through elastase-dependent proteolysis of the
intercellular junction protein VE-cadherin and activation of b-
catenin signaling (82). Therefore, NETs formation within the
circulatory system can compromise endothelial integrity, which
leaves tumor cells more prone to extravasation. In addition, the
presence of NETs decreases the flow rate of CTCs in blood
vessels and provides more time for their extravasation
and colonization.

NETs in Liver Metastasis and Beyond
CRC, especially in the advanced stage, is prone to distant
metastasis usually in the lung, bone, and liver, among which
the most common site of metastasis is the liver (83). This
phenomenon can be attributed to many factors. In terms of
anatomy, blood from the vein draining the colorectum primarily
flows toward the portal vein into the liver, which is also the first
site CRC cells reach after detachment. Furthermore, the liver is
rich in blood supply and hence provides sufficient nutrition for
tumor cell proliferation. Pre-metastatic niche remodeling in the
liver is also an important factor, and several studies have
indicated the significance of NETs in this process.

Lee et al. reported that NETs could be detected in the
omentum of ovarian tumor-bearing mice (TBM) and women
with early-stage ovarian cancer without metastasis (84),
indicating that NETs formation at the metastatic site occurs
before metastasis. The existing NETs at the site capture cancer
cells and promote metastasis. To further verify the crucial
function of NETs in metastasis, decreased omental metastases
were observed in TBM with neutrophil-specific deficiency of
PAD4 or those treated with PAD4 pharmacological inhibitors
(85). Rayes et al. also observed a significant increase in hepatic
adhesion of intrasplenically injected colon cancer cells in TBM
compared with non-TBM, DNase1- or NE inhibitor-treated
TBM, and PAD4–/– TBM. The results demonstrated that colon
primary tumor-induced NETs could promote adhesion of CTC
to the liver (77).

Regarding liver metastasis, a study reported that NETs
generation in the liver preceded liver metastasis in a breast
cancer-bearing mouse model, which occurred earlier than NET
formation at the primary tumor site and was elevated in the
plasma (70). Studies have also found that the NETs are evident in
the liver but have very low levels in other organs, such as the skin
and lungs (70, 86), suggesting that NETs favor the liver for
metastasis over other sites. This may be partially attributed to the
enhanced adhesive capacity of liver sinusoidal endothelial cells
(LSECs) to neutrophils, especially during endotoxemia. LSECs
can initiate neutrophil adhesion upon the activation of TLR4
receptors by LPS through a CD44/HA/SHAP-dependent
mechanism, and Kupffer cells in the liver sinus also contribute
to neutrophil recruitment (87). In addition, the liver can retain
NETs through the expression of von Willebrand Factor (VWF)
in liver sinusoids, which facilitate the adhesion of NETs to LSECs
by binding to histones (86).
Frontiers in Oncology | www.frontiersin.org 6
The formation of liver metastasis can be attributed to the
activation of pre-existing dormant cancer cells in the liver, and
NETs have been reported to participate in this process. In a
murine model of inflammation, induced NETs remodeled ECM
via NE and MMP9 (71), thus revealing an epitope that triggered
dormant cancer cells through integrins and the FAK/ERK/
MLCK/YAP signaling pathway. This is also one of the reasons
for the postoperative recurrence of cancer.

Neutrophils and NETs can remodel the pre-metastatic niche
by facilitating several pathological processes of hepatic diseases
(88). Neutrophils are involved in the pathogenesis and
progression of alcohol-associated liver disease (ALD); however,
they also form an important defense line against infection, which
is a leading cause of mortality (89–91). Terence et al. found that
NET formation was decreased in a model of ALD, which
simultaneously impaired the ability of macrophages to
eliminate NETs in the liver, and this impaired ability of
clearance aggravates hepatic injury and inflammation (92).
Non-alcoholic fatty liver disease (NAFLD) is affected by
peripheral metabolic conditions including hepatic fat and
insulin resistance (93). Recent studies have implicated that NE
participates in the pathogenesis of insulin resistance and obesity
(94, 95) and hence influences the progression of NAFLD.
Although there is no direct evidence to confirm the impact of
NETs on metabolic syndrome and insulin resistance, these
studies indicate that some components of NETs can affect the
pathogenesis of NAFLD through peripheral mechanisms.

Some clinical studies have shown that neutrophils and NETs
are closely related to the liver metastasis of tumors. In patients
with HCC or colorectal liver metastasis undergoing hepatectomy
(96, 97), a higher neutrophil-to-lymphocyte ratio often predicts a
poorer clinical outcome. NETosis induced by postoperative
infection promotes hepatic metastasis in a murine model of
lung carcinoma (76). Similarly, in a study, a postoperative
increase in the level of NETs promoted the progression of liver
metastasis in a murine model of liver IR injury and was
associated with reduced disease-free survival in a cohort of
patients with colorectal liver metastasis undergoing curative
liver resection (98).
POTENTIAL VALUE OF NETS FOR
CLINICAL APPLICATION

Diagnostic Biomarker
At present, liquid biopsy including CTCs, cell-free nucleic acids and
extracellular vesicles, has become a promisingmethod for oncology-
related examination (99) owing to its characteristics of safety,
convenience, and minimal invasion. NETs, which are widely
present in the serum, are suitable for detection through liquid
biopsy as well. In addition, cfDNA in liquid biopsy, whose clinical
diagnostic value has been validated in various tumors (100–102),
contains DNA fromNETs. However, only a few studies are available
to validate the value of solely NETs for tumor diagnosis.

Zhang et al. found that NETs had better diagnostic value than
carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9
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(CA19-9) in GC by comparing ROC curves (103). In addition,
the serum levels of NETs were associated with some
clinicopathological features such as lymph node metastasis;
however, no relationship was found between the levels of
NETs in the tumor tissue and clinicopathological factors.
Another study reported that the levels of NETs increased in
proportion to the stage of breast cancer, and the levels of NE–
DNA complexes were higher in regional and metastatic disease
than in localized disease, which was consistent with the
speculation that the formation of NETs may result in cancer
progression and metastasis (104). However, similar studies on
CRC have not yet been reported.

We speculate that, as a new biomarker that can be detected in
multiple tumors, NETs may lack specificity used for the diagnosis of
a particular tumor type. However, NETs may have better sensitivity
and specificity for tumor diagnosis when combined with other
tumor-associated markers such as AFP, CEA, and CA199, and their
clinical utility should be validated in future studies.

Therapeutic Target
The role of NETs in the pathogenesis of several tumors and
inflammatory diseases has been validated in many studies (6,
105, 106). Therefore, targeting NETs may be of great potential
for cancer therapy. NETs can be targeted by blocking the
inducers of their formation, inhibiting their formation
pathway, destroying their structure, and impeding the tumor–
NET interaction (107). Recent studies have reported that
therapeutics targeting NETs mainly focus on the following two
aspects: inhibition of NETosis and destruction of NET integrity
after formation (Table 1).

Extensive efforts have been made to inhibit the generation of
NETs pharmacologically to suppress cancer progression. As a
critical enzyme in NETosis, PAD4 has been considered the target
to block the pro-tumoral effects of NETs. To date, several reports
have demonstrated the efficacy of some compounds in inhibiting
PAD activity including Cl-amidine, related compounds that are
irreversible non-selective PAD inhibitors (108, 119), and the
reversible selective PAD4 inhibitor GSK-484 (109). Another
small-molecule inhibitor, BMS-P5, was demonstrated to abrogate
NET formation induced by multiple myeloma cells and delay
disease progression in a murine model (110). In addition, some
clinical antitumor drugs affect NET formation. Zeng et al. found
that kaempferol, whose inhibitory effects on primary tumor growth
have been widely investigated, can suppress NETosis by inhibiting
the ROS–PAD4 pathway (111). Anthracyclines, ranked among the
most effective chemotherapeutics against cancer that act through
DNA intercalation, oxidative stress, and topoisomerase II poisoning
(120), suppress both NADPH oxidase-dependent and independent
NETosis in human neutrophils (112), which further elucidates the
antitumor mechanism of anthracyclines. Similarly, free 5FU, a
chemotherapeutic agent, leads to a significant and rapid increase
in the total amount of NETs in the blood. However, when 5FU-
loaded amphiphilic poly-N-vinylpyrrolidone nanoparticles were
studied under the same conditions, the level of NETs in the blood
was not elevated, indicating the significant potential of nanoparticles
as delivery agents for chemotherapeutic drugs in antitumor
therapy (113).
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Another way to suppress the pro-tumoral effects of NETs is to
destroy their structural integrity by targeting DNA, comprising their
backbone and affiliated proteins. DNase I has antimetastatic activity
and can inhibit NETs (32); however, its short biological half-life
limits its clinical utility. Xia et al. demonstrated that adeno-
associated virus-mediated DNase I liver gene transfer inhibited
neutrophil infiltration and NET formation, increases the
proportion of CD8+ T cells at the tumor site, and eventually
attenuates the progression of liver metastasis in a mouse model of
colorectal liver metastasis (114), representing a novel and effective
therapeutic strategy for CRC. A recent study reported that DNase-I-
coated melanin-like nanospheres promoted dissolution of NET
structure in sepsis-associated NETosis, thereby preventing further
progression of the disease; however, its antitumor effects warrant
further investigation (115). Some protein components of NETs play
a significant role in the development of tumors, which can also be
targeted to impair NET function. In a study, HMGB1 derived from
NETs strengthened themalignancy of cancer cells in amousemodel
of liver metastasis with inflammation. However, thrombomodulin
(TM) potentiated HMGB1 proteolysis via thrombin and
consequently inhibited the induction of NETs, thereby preventing
pancreatic cancer metastasis to the liver (116). In addition,
recombinant TM (rTM) can suppress histone-induced NET
release both in vitro and in vivo by binding to histones (117).
Rayes et al. discovered that NET-associated carcinoembryonic Ag
cell adhesion molecule 1 (CEACAM1) was an important element
for tumor progression and metastasis, and blocking CEACAM1 on
NETs or its knockout in a mouse model significantly compromised
cell adhesion, migration andmetastasis in colon carcinoma (118). In
a recent study, a novel method was introduced to use NETs as anti-
tumor drug delivery vehicles by re-engineering neutrophils to
express the apoptosis-inducing chimeric eGFP-TRAIL protein on
NETs, which can simultaneously entrap and kill tumor cells while
reserving their antibacterial capabilities (121), making NETs a
promising candidate for the delivery of antitumoral agents.

Furthermore, NETs are associated with therapy resistance.
Inhibition of neutrophils or PAD4-dependent NETosis can
increase sensitivity to immune checkpoint blockade in
pancreatic cancer (122), indicating that NETs are a potential
candidate for improving immunotherapeutic efficacy.

Prognostic Prediction
The pro-tumoral effects of NETs are suggestive of their potential
as a novel prognostic predictor of cancers (123), which has been
reported in several studies. Elevated levels of NETs are strongly
associated with a higher risk of metastasis. Decker et al. showed
that increased NETosis in blood could be used as a biomarker to
detect early head and neck cancer and predict the possibility of
developing tumor metastasis (124).

Furthermore, increased levels of NETs have a strong
correlation with unfavorable survival in many types of tumors.
For example, higher preoperative serum NET levels were closely
associated with shorter recurrence-free survival (RFS) and
overall survival (OS) in patients with primary hepatic
malignancies (125). In addition, preoperative moderate
leucocytosis is correlated with increased levels of tumor-
infiltrating NETs in esophageal cancer (EC), which is
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associated with worse OS and disease-free survival (DFS). The
level of NETs is considered an independent prognostic factor for
survival in EC after surgery (126). In patients with GC, higher
baseline levels of NETs in the blood are significantly correlated
with worse progression-free survival (PFS) (103). However, in a
study on patients with high-grade ovarian cancer, a
contradictory conclusion was proposed, indicating that NETs
are related to favorable survival and better outcomes (127).

In addition, the level of NETs in the blood can be used to
predict the effectiveness of treatment regimens in patients with
cancer. Zhang et al. found that the level of NETs was inversely
correlated with short-term therapeutic efficacy in patients with
GC who had received advanced first-line treatment (103). This
study indicated the possibility of enhanced chemotherapeutic
efficacy through NETosis inhibition.

Venous thromboembolism (VTE), a common complication
in patients with cancer, can be induced and aggravated by NET
formation (128). Extensive studies have confirmed the
relationship between increased NET levels and a higher risk of
thrombosis in many diseases including cancer (50, 129), which
indicates the involvement of NETs in cancer-associated
thrombosis and the significance of NETs as prognostic
biomarkers to predict the risk of thromboembolism.

CONCLUSION AND PERSPECTIVES

Several studies have validated the role of NETs in tumorigenesis,
metastasis spread, and associated complications, indicating the
significant potential of targeting NETs for cancer therapy. On the
one hand, further investigation is required to study the detailed
molecular mechanisms of NETs formation and pro-tumoral
pathways affected by NETs to identify more therapeutic targets
and develop corresponding agents. On the other hand, solely
inhibiting overall NET formation may compromise immunity
because NETosis is a part of the immune system. Therefore, it is
necessary to develop therapeutics precisely targeting NETs in
tumor tissues but without adverse effects on immune function.
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At present, a gene therapy vector has been reported to specifically
express DNase in the liver and effectively inhibit colorectal liver
metastasis, which indicates the possibility of achieving tumor
precision therapy targeting NETs.

NETs can be used for tumor diagnosis and prognosis
combined with some classical tumor markers; however, the
results may not necessarily be reliable, limited by sample
number, species specificity, and other unknown factors.
Therefore, large-scale, multicenter studies should be performed
to further verify the potential of NETs as diagnostic and
prognostic biomarkers. In addition, fecal testing is currently
one of the key methods for early CRC screening. Therefore,
could NETs be present in the stool of patients with CRC and
considered an early screening indicator?

NETs are involved in inflammation in chronic liver diseases.
In patients with CRC, increased levels of NETs in the liver often
indicate a high metastatic rate. Therefore, the management of
chronic liver disease in patients with CRC is very important.
Controlling the levels of NETs in the liver as early as possible
may prevent or decrease metastasis. In addition, developing a
method for rapid, minimally invasive, inexpensive, and stable
detection of NETs is the basis for further clinical utility; however,
the currently available detection technology cannot meet these
requirements, which should be further improved.

CRC refers to colon cancer, including left and right colon cancer,
and rectal cancer, which have different molecular landscapes in
tumorigenesis despite a close relationship. Therefore, the role of
NETs in tumorigenesis is also different and should be investigated in
future studies.
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TABLE 1 | Published key therapeutics targeting NETs to date.

Category Treatment Target and Mechanism Ref.

Inhibition of NETs formation Cl-amidine and related
compounds

Pan PAD; non-selective irreversible PAD inhibitors Causey et al.
(108)

GSK-484 PAD4; reversible selective PAD4 inhibitor Lewis et al. (109)
BMS-P5 PAD4; selective PAD4 inhibitor Li et al. (110)
Kaempferol ROS‐PAD4 signaling; inhibited ROS production and dsDNA release Zeng et al. (111)
Anthracyclines Suppressed both NADPH oxidase-dependent and -independent NETosis Khan et al. (112)
5FU-loaded Amph-PVP
nanoparticles

Avoided NETs formation induced by free 5FU Basyreva et al.
(113)

Destruction of NETs’ structural
integrity

DNase I Digested DNA strands Park et al. (32)
AAV-mediated gene transfer of
DNase I

Increased DNase I secretion and cleave DNA strands Xia et al. (114),
2020

DNase-I-coated melanin-like
nanosphere

Alleviated NETosis factors; stabilize DNase I in the plasm and prolong its
duration of activity

Park et al. (115)

Thrombomodulin Degraded HMGB1 derived from NETs and inhibited the induction of NETs Kajioka et al.
(116)

Recombinant thrombomodulin Suppressed histone-induced NET release Shrestha et al.
(117)

5F4 mAb Blocked CEACAM1 on NETs Rayes et al. (118)
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