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Abstract: (1) Background: We performed this study to evaluate the agreement between novel auto-
mated software of three-dimensional transesophageal echocardiography (3D-TEE) and multidetector
computed tomography (MDCT) for aortic annular measurements of preprocedural transcatheter aor-
tic valve replacement (TAVR); (2) Methods: PubMed, EMBASE, Web of Science, and Cochrane Library
(Wiley) databases were systematically searched for studies that compared 3D-TEE and MDCT as the
reference standard for aortic annular measurement of the following parameters: annular area, annular
perimeter, area derived-diameter, perimeter derived-diameter, maximum and minimum diameter.
Meta-analytic methods were utilized to determine the pooled correlations and mean differences
between 3D-TEE and MDCT. Heterogeneity and publication bias were also assessed. Meta-regression
analyses were performed based on the potential factors affecting the correlation of aortic annular area;
(3) Results: A total of 889 patients from 10 studies were included in the meta-analysis. Pooled corre-
lation coefficients between 3D-TEE and MDCT of annulus area, perimeter, area derived-diameter,
perimeter derived-diameter, maximum and minimum diameter measurements were strong 0.89
(95% CI: 0.84-0.92), 0.88 (95% CI: 0.83-0.92), 0.87 (95% CI: 0.77-0.93), 0.87 (95% CI: 0.77-0.93), 0.79
(95% CI: 0.64-0.87), and 0.75 (95% CI: 0.61-0.84) (Overall p < 0.0001), respectively. Pooled mean
differences between 3D-TEE and MDCT of annulus area, perimeter, area derived-diameter, perimeter
derived-diameter, maximum and minimum diameter measurements were —20.01 mm? ((95% CI:
—35.37 to —0.64), p = 0.011), —2.31 mm ((95% CI: —3.31 to —1.31), p < 0.0001), —0.22 mm ((95% CI:
—0.73 t0 0.29), p = 0.40), —0.47 mm ((95% CI: —1.06 to 0.12), p = 0.12), —1.36 mm ((95% CI: —2.43
to —0.30), p = 0.012), and 0.31 mm ((95% CI: —0.15 to 0.77), p = 0.18), respectively. There were no
statistically significant associations with the baseline patient characteristics of sex, age, left ventricular
ejection fraction, mean transaortic gradient, and aortic valve area to the correlation between 3D-TEE
and MDCT for aortic annular area sizing; (4) Conclusions: The present study implies that 3D-TEE
using novel software tools, automatically analysis, is feasible to MDCT for annulus sizing in clinical
practice.

Keywords: novel software; three-dimensional transesophageal echocardiography; multidetector
computed tomography; transcatheter aortic valve replacement

1. Introduction

Transcatheter aortic valve replacement (TAVR) has evolved as a safe and effective
intervention alternative to surgical aortic valve replacement (SAVR), allowing high-risk,
intermediate-risk, and recently low-surgical risk patients to be treated for severe symp-
tomatic aortic stenosis (AS) by replacing the native valve with a bioprosthetic valve [1-7].
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Accurate sizing of the aortic annulus is a crucial step towards the success of TAVR and
is the preferred source of the transcatheter heart valve (THV) selection [8-11]. However,
paravalvular aortic regurgitation (PAR), device embolization, aortic root rupture, conduc-
tion disturbances, and prosthesis-patient mismatch (PPM) have all been linked to incorrect
valve selection [12-15].

A multidetector computed tomography (MDCT) procedure for pre-TAVR planning
has been recommended to be the gold standard method due to the ability to accurately
measure the dimensions of the ascending aorta, the aortic root, and the aortic annulus
(AA) [16-19]. However, renal impairment increases the risk of contrast-induced nephropa-
thy, making MDCT unavailable for patients with compromised renal function [20-22]. As
a result, three-dimensional transesophageal echocardiography (3D-TEE), which does not
require iodinated contrast, may be a useful imaging tool during TAVR, providing accurate
measurements of the aortic root and geometry as an alternative to MDCT [23-27].

Recently, many studies performing automated quantification software in 3D-TEE data
provided a high agreement compared to the MDCT, and reduced time consuming with
less observer-dependent compared to 3D-TEE manual technique or direct planimetry for
aortic annular measurements [28-31].

Therefore, the purpose of this systematic review and meta-analysis was to evaluate
evidence on the comparison between 3D-TEE automated software and MDCT for TAVR
annular measurements.

2. Materials and Methods

This systematic review was conducted in agreement with the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) statement [32]. The PRISMA
checklist was used to describe our study lists in Table S1.

2.1. Search Strategy

A systematic search of the PubMed, EMBASE, Web of Science, and Cochrane Library
(Wiley) databases was performed by two reviewers (C.M., M.W.) independently to identify
relevant studies published till 30 August 2020. Supplementary Materials lists the searched
terms in Table S2.

2.2. Eligibility Criteria

Studies were considered eligible in the meta-analysis if they met the following criteria:
(1) studies which included patients with symptomatic aortic stenosis or/and underwent
TAVR for aortic valve replacement; (2) studies evaluating the aortic annulus measurements
by automated or semiautomated 3D-TEE as an index test and MDCT as a reference standard;
(3) studies which assessed the correlation coefficient or agreement between the finding of
MDCT and 3D-TEE for aortic annular measurements; and (4 ) original published articles as
type of study.

Exclusion criteria were (1) single-arm studies; (2) studies using 3D-TEE manually as
the measurement technique; (3) studies with patients presenting normal aortic valve; (4)
non-English studies; and (5) case studies.

2.3. Data Extraction

Data were independently extracted by two investigators (C.M., W.]J.). We extracted
the following information from published papers (1) study characteristics (author, year of
publication, total number of patients, study design, study period, hospital or institution,
and country; (2) patient characteristics (sex, age, body mass index, body surface area, atrial
fibrillation, hypertension, diabetes mellitus, aortic valve area, mean transaortic gradient,
and left ventricular ejection fraction; (3) imaging characteristics (3D-TEE technique and
vendor, MDCT technique and vendor, measurement phase, software used for 3D-TEE
annulus sizing); (4) study outcomes as assessed in the individual studies(correlation
coefficient and sample size for pooling correlation; mean, standard deviation, and sample



Diagnostics 2021, 11, 751

30f15

size for pooling mean difference). There were six parameters used for comparison in
annular sizing between 3D-TEE and MDCT: annular area, annular perimeter, area derived-
diameter, perimeter derived-diameter, maximum and minimum diameter.

2.4. Quality Assessment

We evaluated the methodological quality of individual studies using the QUADAS—2
tool and summarized quality assessments per fulfilled QUADAS-2 domains: patient selec-
tion, index test, reference standard, and flow and timing. Each domain was assessed in
terms of risk of bias and rated as “low”, “high” or “unclear”. Concerns regarding applica-
bility were assessed only for the first three domains and categorized into “low”, “high”, or

VZa7i

“unclear”. Signaling questions could be answered with “yes”, “no”, or “unclear” [33].

2.5. Data Synthesis and Analyses

The correlations between novel software 3D-TEE and MDCT measurements from
each study were transformed to Fisher z correlation coefficients for analysis and backtrans-
formed to report as correlation coefficient (r) and 95% Cls, while the mean differences
were pooled and reported as mean difference and 95% ClIs [34]. Random-effects models of
DerSimonian and Laird were used to calculate pooled effect sizes. The Cochran Q statistic
and the 12 test were used to assess studies heterogeneity [35]. Funnel plot and Egger’s
regression test were used to assess for potential publication bias [36].

The influencing factors of sex, age, left ventricular ejection fraction, aortic valve
area, and mean transaortic gradient were analyzed using a meta-regression analysis (The
DerSimonian-Laird method) on the correlation of aortic annular area.

Statistical analyses were performed using the “meta” package in R software (Version
4.0.3, R Foundation for Statistical Computing).

3. Results
3.1. Study Characteristics

The article selection process is described in detail in Figure 1. After the study selection
process, a total of 889 patients from 10 studies were included in the meta-analysis [37-46].
The detailed characteristics of the included studies are reported in Tables 1-3. The sizes of
the original study populations ranged from 31 to 175 patients, with the mean patient ages
ranging from 80 to 88 years. All individual studies were retrospective study. Six studies
included were reported using the automated techniques [38,40—42,45,46], while the other
four studies reported semiautomated techniques [37,39,43,44] as the using novel software
of 3D-TEE comparing to MDCT for annular measurements to calculate weighted effect size
of this study.

Table 1. Study characteristics of included studies.

Study/Year Total No. of Patients  Study Design Study Period Hospital/Institution Country
Thalappillil /2020 [46] 47 Retrospective 1 ];2};122;021071;0 1 Tufts Medical Center United States
Maia/2020 [45] 107 Retrospective D(}Cairﬁ:f}r’ ggg to Cenég;}%ziiiﬂf de Portugal
Stella/2019 [44] 175 Retrospective  OCtOPer 201 o August - San Rafﬁgl;g;ive“ity Ttaly
Queiros /2018 [43] 101 Retrospective SAe ;%:I;tbze(l)‘lfoi(; ?éo\lz(i)réieszc_g?;g;?)l Germany
Prihadi/2018 [42] 150 Retrospective NA The&zﬁ‘f:l [CJZ‘;‘;E?W The Netherlands
Podlesnikar/2018 [41] 83 Retrospective July 2015 to March 2017 The Leiden University The Netherlands

Medical Center
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Table 1. Cont.

Study/Year Total No. of Patients  Study Design Study Period Hospital/Institution Country
The Tokyo Bay
Kato/2018 [40] 43 Retrospective January to October 2016 Urayasu-Ichikawa Japan
Medical Center
. . University of Chicago .
Mediratta /2017 [39] 52 Retrospective NA Medical Center United States
. . . March 2012 to March Ramo'n y Cajal .
Garcia-Martin/2016 [38] 31 Retrospective 2014 University Hospital Spain
Columbia University
. . November 2011 to Medical Center/New .
Khalique /2014 [37] 100 Retrospective January 2013 York Presbyterian United States

Hospital

NA = Not available.

Records identified through database searching
— PubMed=194
= Embase=486
° Web of Science=824
‘é Cochrane Library (Wiley)=102
=i (n=1606)
=
=
7]
o
Ll
v
—_— Records after duplicates removed
(n=1167)
of
=1
oo
8 Records excluded (n =1132)
g Y = Unrelated Studies (n=618)
9] Records screened = Letters/editorials/ conference abstracts (n=237)
(n=1167) = Review articles/ meta-analysis (n=173)
(— = Case reports/series (n=95)
l =  Guidelines/statements/consensus (n=9)
—
Full-text articles assessed
= for eligibility
3 (n=35)
&
= Full-text articles excluded, with reasons
v (n=25)
»  3D-TEE manual technique (n=15
Studios included in 3D-TEE m{mu\wl tc.chmqm (n=15)
o . * Non-English Studies (n=1)
qualitative synthesis i .
o = Studies with the same data (n=2)
(n=10)
= Data not extractable(n=2)
o = Single-arm studies (n=4)
o v = Case Reports(n=1)
=
o Studies included in
.5 quantitative synthesis
(meta-analysis)
(n=10)

Figure 1. PRISMA flow diagram of the study selection process. 3D-TEE = Three-dimensional
transesophageal echocardiography, n = Number of literatures, PRISMA = Preferred Reporting Items
for Systematic Reviews and Meta-analyses.
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Table 2. Patient characteristics of included studies.

Mean Transaortic

Studv/Year Sex Age BMI (kg/m?) BSA(m?) Atrial Hypertension Diabetes AVA (cm?) Gradient (mmHg) LVEF (%)
Y (M/F) (Mean + SD) (Mean + SD) (Mean + SD) fibrillation (%) (%) Mellitus (%) (Mean + SD) (Mean + SD) 8 (Mean + SD)
Thalappillil /2020 [46] 23/24 809 +7 NA NA NA NA NA 0.74 +£0.23 32+12 NA
Maia /2020 [45] 47/60 81+59 26.98 £+ 4.45 1.74 + 0.18 37.5 77.5 48.3 NA 49.16 £ 15.23 NA
Stella/2019 [44] 77/98 81.3+6.3 252 +438 NA 30.9% NA NA 0.77 £ 0.3 484 + 139 564 +11.3
ueiros 43 . . X . . . . . . . .
Queiros /2018 [43] 39/62 83.0 £5.1 NA NA 36.6 91.1 29.7 0.72 £0.19 474+ 174 545+ 14.6
Prihadi/2018 [42] 74/76 80.7 £7.2 26.7 £5.5 NA NA NA NA 0.8 +0.3 435+ 19.6 50.0 £ 11.8
Podlesnikar/2018 [41] 39/44 81.7 +£ 6.7 27.0+ 4.5 1.84 +0.23 NA NA NA 0.7 +£0.2 44 + 16 57.7 £ 215
Kato/2018 [40] 16/27 83.9 £49 NA 1.45 4+ 0.18 NA 81 9 0.58 £0.12 47.0 £ 16.8 NA
Mediratta /2017 [39] 28/24 81+8 NA 19+03 NA NA NA 0.8 +0.2 40 £ 13 57+ 16
Garcia-Martin /2016 [38] 10/21 81.6 £17 NA NA NA 31 7 0.7+ 0.2 463 + 16 582 £ 11
Khalique /2014 [37] 45/55 87.8 +£ 8.3 NA NA NA NA NA 0.67 +£0.17 NA NA
NA = Not available, M = Male, F = Female, BMI = Body mass index, BSA = Body surface area, SD = Standard deviation, AVA = Aortic valve area, LVEF = Left ventricular ejection fraction.
Table 3. Imaging characteristics of included studies.
3D-TEE MDCT Software Used for Time for the AA
Study/Year Mea;;ll:zrenent 3D-TEE Annulus (;;7;) Analysis (s)
3D-TEE Technique Vendor MDCT Technique Vendor Sizing (Mean + SD)
s A 128-slice/ 64-slice Dual-S CT .
Thalappillil /2020 [46] Automated SCZOOOC ?SSi(;rrlnens) Manual slice/ (;i;?ﬁeng)a ource Systole eSie Valves Al 23/24 NA
. Acuson 64-detector row .
Maia /2020 [45] Automated SC2000 (Siemens) Manual CT(Siemens) Systole eSie Valves 47/60 NA
» . GE Vivid E9 64-slice CT
Stella/2019 [44] Semiautomated (GE Healthcare) Manual (GE Healthcare) Systole 4D Auto AVQ 77/98 50+ 7
. . GE Vivid E9/E95 Multidetector 64-ch 1
Queiros /2018 [43] Semiautomated (GE Ilzéalthc/a re) Manual uitide (eéé) I;Iealcthacgflei scanner Systole Speqle3D 39/62 339+95
o ) iE33 and EPIQ7 (Philips 64—detector row /320-detector row CT (Toshiba Aortic Valve Navigator .
Prihadi/2018 [42] Automated Medical Systems) Manual Medical Systems) Systole [AVN] 74/76 4.8 £ 1.2 (min)
Podlesnikar /2018 [41] Automated G(Ecgi‘(/ﬁ;i/e }31?5 Manual 320-slice MDCT scanner (Toshiba Medical Systems) Systole 4D Auto AVQ 39/44 NA
Kato/2018 [40] Automated SCZOSOC?SSS:ILens) Manual 320-slice MDCT scanner (Toshiba Medical Systems) Systole eSieValves 16/27 30.1 £5.79
Mediratta/2017 [39] Semiautomated iE33 (I;};SI:S;I;/)IedlcaI Manual 256-slice scanner (Philips Medical Systems) Systole Quarz\t/igzilti\;ih[]f/IVQ] 28/24 NA
Garcia-Martin/2016 [38] Automated iE33 (I;};;E;l;/)[edlcal Manual 64-slice MDCT (Philips Medical Systems) Systole eSieValves 10/21 NA
Khalique /2014 [37] Semiautomated iE33 (I;}}l]islilg;l;/)[edical Manual 320-slice MDCT scanner (Toshiba Medical Systems) Systole Quarﬁifgzglti\;il‘[]ls/IVQ] 45/55 NA

NA = Not available, 3D-TEE = Three-dimensional transesophageal echocardiography, MDCT = Multidetector computed tomography, AA = Aortic annulus.
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3.2. Quality Assessment

The results of the QUADAS-2 assessment are presented in Figure 2. Overall, one study
(10%) showed a high risk of bias in the “flow” and “timing” domains. Concerns regarding
applicability were rated “low” in all the domains.

Patient Selection [ IR
ndexTest [ N
Reference Standard [ IR
Flow and Timing _

0% 25% 50% 78%
Risk of Bias

DUncIear

100% 0% 25% 50% 75%
Applicability Concerns

. Low

100%

| W Hish

Figure 2. Quality assessment of included studies. Risk of bias and applicability of concerns domains
are presented as percentages based on modified Quality Assessment of Diagnostic Accuracy Studies-2
tool. Each bar shows percentage of studies with high (red), unclear (yellow), and low (green) risks of
bias and applicability of concerns.

3.3. Correlation between 3D-TEE and MDCT for Annulus Measurements

The pooled correlation coefficients between 3D TEE and MDCT of annulus area,
perimeter, area derived-diameter, perimeter derived-diameter, maximum and minimum
diameter measurements were strong 0.89 (95% CI: 0.84-0.92), 0.88 (95% CI: 0.83-0.92), 0.87
(95% CI: 0.77-0.93), 0.87 (95% CI: 0.77-0.93), 0.79 (95% CI: 0.64-0.87), and 0.75 (95% CI:
0.61-0.84) (Overall p < 0.0001), respectively. Figure 3 summarizes the forest plots with
provided heterogeneity test results. Figure 4 presents the funnel plots of each parameter
showed relatively symmetric funnel plots without significant publication bias (p > 0.05).

Study Total Correlation COR 95%-Cl Weight Study Total Correlation COR 95%-Cl Weight
Stella/2019 172 0.85 [0.80;0.89] 19.9% Stella/2019 172 089 [085,0.92] 235%
Prihadi/2018 150 0.91 [0.88;0.93] 19.5% Prihadi2018 150 083 [0.77,0.87] 23.0%
Kato/2018 43 M 086 [0.75:092] 14.4% Kato/2018 43 & 082 [0.69,090] 155%
Mediratta/2017 52 W 091 [0.85.005] 15.4% Mediratta/2017 52 1 090 [083,094] 169%
Garcia-Martin/2016 31 —8- 074 053,087 125% Khalique/2014 100 B3 090,095 21.0%
Khalique/2014 100 [30.94 [0.91;096] 18.3% ;
alaue . ost; 1 Random effects model 517 ¢ 0.88 [0.83; 0.92] 100.0%
H P 2_
Random effects model 548 ¢ 0.89 [0.84; 0.92] 100.0% Heterogeneily: I" = 74%, +*=0.0310, p < 0.01
Heterogeneity: /2 = 78%, =2 = 0.0444, p < 6.01 5 0 05
05 0 05
(a) (b)
Study Total Correlation COR  95%-Cl Weight Study Total Correlation COR  96%-Cl Weight
Maia/2020 107 W 077 (068084 265% Thalappill/2020 47 Ml 085 [0.74,0.91] 233%
Thalappili/2020 47 M 085 [0.74,091] 233% Maia/2020 107 M 077 [068;084] 265%
Mediratta/2017 52 089 [082.094] 23.8% Megdiratta/2017 52 Eo.ag [0.82;0.94] 23.8%
Khalique/2014 100 0.93 [0.90.0.95] 263% Khalique/2014 100 [3093 [0.90;0.95] 26:3%
Random effects model 306 < 0.87 [0.77; 0.93] 100.0% Random effects model 306 < 0.87 [0.77; 0.93] 100.0%
Heterogeneity: /° = 86%, =2 = 0.0867, p < §.01 Heterogeneity: /> = 86%, = * = 0.0867, p < 6.01
05 0 05 -0.5 0 05
(©) (d)
Study Total Correlation COR 95%-Cl Weight Study Total Correlation COR 95%-Cl Weight
Maia/2020 107 i 062 [049;073] 246% Maia/2020 107 M 066 (053,075 329%
Stella/2019 172 il 0.89 [0.85;0.92] 256% Prihadi/2018 150 071 [062,078] 347%
Prihadi/2018 150 0.75 [0.67;0.81] 25.4% Khalique/2014 100 il 085 [0.78;090] 325%
Khalique/2014 100 0.80 [0.72;0.86] 24.4%
: Random effects model 357 <> 0.75 [0.61; 0.84] 100.0%
Random effects model 529 <> 0.79 [0.64; 0.87] 100.0% Heterogeneity: / = 84%, =* = 0.0453, p <0 01
Heterogeneity: /2 = 91%, t 2= 0.0814, p < b.01 05 0 05
05 0 05
(e) ®

Figure 3. Forest plots of correlation between 3D-TEE and MDCT for annular sizing parameters. (a) Aortic annular area;
(b) Aortic annular perimeter; (¢) Annular area-derived diameter; (d) Annular perimeter-derived diameter; (e¢) Annular
maximum diameter; (f) Annular minimum diameter. 3D-TEE = Three-dimensional transesophageal echocardiography,
MDCT = Multidetector computed tomography, CI = Confidence interval, COR = Correlation coefficient.
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Figure 4. Funnel plots to detect publication bias of correlation between 3D-TEE and MDCT. Bias and p values of asym-
metry derived from Egger’s test are shown for annular sizing parameters. (a) Aortic annular area (bias = —1.40, p = 0.67);
(b) Aortic annular perimeter (bias = 0.15, p = 0.97); (c¢) Annular area-derived diameter (bias = 0.11, p = 0.99); (d) An-
nular perimeter-derived diameter (bias = 0.92, p = 0.92); (e) Annular maximum diameter (bias = —16.67, p = 0.34); (f)
Annular minimum diameter (bias = 10.36, p = 0.69). 3D-TEE = Three-dimensional transesophageal echocardiography,

MDCT = Multidetector computed tomography.
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Experimental

3.4. Mean Difference between 3D-TEE and MDCT for Annulus Measurements

The pooled mean differences between 3D-TEE and MDCT of annulus area, perime-
ter, area derived-diameter, perimeter derived-diameter, maximum and minimum diam-
eter measurements were —20.01 mm?2 ((95% CI: —35.37 to —0.64), p = 0.011), —2.31 mm
((95% CI: —3.31 to —1.31), p < 0.0001), —0.22 mm ((95% CIL: —0.73 to 0.29), p = 0.40),
—0.47 mm ((95% CI: —1.06 t0 0.12), p = 0.12), —1.36 mm ((95% CI: —2.43 to —0.30), p = 0.012),
and 0.31 mm ((95% CI: —0.15 to 0.77), p = 0.18), respectively. Figure 5 summarizes the
forest plots with provided heterogeneity test results. Figure 6 presents the funnel plots
of annulus area, perimeter, area derived-diameter, maximum and minimum diameter
showed relatively symmetric funnel plots without significant publication bias (p > 0.05).
However, annular area derived-diameter and annular perimeter derived-diameter could
not be analyzed by Egger’s test because of only two studies reported.

Control Experimental Control

Study Total Mean  SD Total Mean  SD Mean Difference MD 95% I Wieight Study Total Mean D Total Mean  SD Mean Difference MD  86%-CI Weight
Stella:2019 172 42600 976000 172 44410 965000 — -18.10 [-3861; 241] 21.4% Stela2019 172 7330 81000 172 7660 78000 —l— 330 (498 162) 1%
Queirs2018 101 41540 762000 101 46820 895000 —fl— 5280 [75.72; 29.88] 19.6% Podiesnikar2018 83 7570 77000 B3 78.40 8.3000 270 (514 028) 187%
Podlesnikari2018 83 45600 950000 83 47000 95.0000 = -12.00 [-40.90; 16.00] 156% Kabr2018 4 704071000 48 71.70 7.1000 130 (430 170] 11.0%
Kato2018 43 38060 771000 43 30370 81.0000 L 3 -13.10 [-46.52; 20.32] 131% 2017 K 1 o7
Mediratta2017 52 498.00 11,0000 52 504.00 100.0000 -6.00 [-46.61; 34.61] 10.1% E,.’:,'.’TZ%’TJ ‘gé ?3% 388% 13(2) gggg gggg dml ?% %E E;' gg} 2? 3',:
Khaliquei2014 100 43490 813000 100 442.80 78.9000 - -7.90 [-30.10; 14.30] 20.1% St & =55
Random effects model 651 651 - 20,01 [36.37; 4.64] 100.0% Random effects mode| 450 450 - 231 [331;131) 100.0%
2 2 Heterogenety: I =0%, v =0,p=042

Heterogeney: I” = 50%, 1 = 177.0068. p = 0.08

P

T
0 2 4 &

&
» 4

-60-40 20 0 20 40 60
(a) (b)
Experimental Control
Experimental Control Study Total Mean  SD Total Mean  SD Mean Difference MD  95%-Cl Weight
Study Total Mean SD Total Mean sD Mean Difference MD 95%-Cl Weight
Mediratta/2017 52 2500 30000 52 26.00 3.0000 ——&—— -1.00 [-215,0.15] 24.1%
Mediratta/2017 52 2500 30000 52 25.00 2.0000 —————— 44— 000 [0.98:098] 27.0% Khalique:2014 100 23.80 22000 100 24.10 2.1000 —-—— -0.30 [-0.80;0.30] 759%
Khalique/2014 100 2340 22000 100 2370 21000 —F—— -0.30 [0.90;0.30] 730%
Random effects model 162 102 _— 022 1073 029) 100.0% Random effects model 162 162 e 047 [-1.06; 0.12] 100.0%
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Figure 5. Forest plots of mean differences between 3D-TEE and MDCT for annular sizing parameters. p values derived from
the pooled mean difference of each parameters are shown. (a) Aortic annular area (p = 0.011); (b) Aortic annular perimeter
(p <0.0001); (c) Annular area-derived diameter (p = 0.40); (d) Annular perimeter-derived diameter (p = 0.12); (e) Annular
maximum diameter (p = 0.012); (f) Annular minimum diameter (p = 0.18). 3D-TEE = Three-dimensional transesophageal
echocardiography (Experimental), MDCT = Multidetector computed tomography (Control), CI = Confidence interval, MD
= Mean difference, SD = Standard deviation.
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Figure 6. Funnel plots to detect publication bias of mean difference between 3D-TEE and MDCT. Bias and p values of

asymmetry derived from Egger’s test are shown for annular sizing parameters. (a) Aortic annular area (bias = 1.72, p =
0.56); (b) Aortic annular perimeter (bias = 0.45, p = 0.84); (c) Annular area-derived diameter (Unable to test); (d) Annular
perimeter-derived diameter (Unable to test); (e) Annular maximum diameter (bias = 4.62, p = 0.80); (f) Annular minimum
diameter (bias = —0.03, p = 0.98). 3D-TEE = Three-dimensional transesophageal echocardiography, MDCT = Multidetector
computed tomography.

3.5. Meta-Regression Analysis

There were no statistically significant (p > 0.05) associated to the baseline patient
characteristics of sex, age, left ventricular ejection fraction, aortic valve area, and mean
transaortic gradient to the correlation between 3D-TEE and MDCT annular area. The
correlation between 3D-TEE and MDCT annular area of baseline patient characteristics

presented in Table 4.

Table 4. Meta-regression of correlation between 3D-TEE and MDCT annular area sizing.

Variables No. of Studies Estimate Standard Error 95% CI (p Value)
Male 6 2.510 1.315 —0.068, 5.088 (p = 0.056)
Age 6 0.046 0.036 —0.025, 0.118 (p = 0.205)
Left ventricular rejection fraction 4 —0.041 0.031 —0.102, 0.019 (p = 0.18)
Aortic valve area 6 0.404 1.420 —2.379,3.187 (p = 0.776)
Mean transaortic gradient 5 —0.044 0.024 —0.090, 0.003 (p = 0.065)

3D-TEE = Three-dimensional transesophageal echocardiography, MDCT = Multidetector computed tomography, CI = Confidence interval.
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4. Discussion

The aortic root, which runs from the aortic valvular cusps’ basal attachment to the
sinotubular junction, is a direct continuation of the left ventricular outflow tract. The aortic
annulus diameter, the virtual ring, and the complex structure initially assumed to have a
circular structure, is defined as the plane transecting the three aortic cusps’ lowest hinge
-points, measured in systole to determine prosthesis size and prosthetic valve selection of
the TAVR procedures [10,18,47,48].

In the TAVR prep-procedural planning, accurate measurement of the aortic annulus is
critical of the successful protocol [11,18,19,27]. PAR, device embolization, aortic root rup-
ture, conduction disturbances, coronary obstruction, and PPM have all been linked to the
oversizing and the undersizing of THV valve selection [12-14,49]. The asymmetric shape
of two-dimensional echocardiography (2D) made it ineffective for annular measurements,
the disadvantage of providing a diameter measurement in a single plane and assuming a
circular orifice that underestimated the cross-sectional measurements of 3D-based sizing
with annulus’ elliptical geometry [9,37,38].

There has been significant interest in defining the shape by alternate imaging methods.
Three modality imaging, 3D-TEE, cardiovascular magnetic resonance (CMR), and MDCT
have emerged as the preferred, accurate, and reproducible techniques for cross-sectional
dimensions, especially the annular area and perimeter [10,50-53]. Moreover, CMR may
have a developing role for annular sizing, particularly in patients with renal dysfunction,
though this is less implemented in the clinical work station [54]. Recently, MDCT is
routinely used as the reference standard imaging modality in assessment of the aortic
annulus for pre-TAVR procedure. However, MDCT has its own radiation exposure limits,
higher costs, and contraindications to kidney failure and contrast allergy that are not
appropriate for screening or repetitive control, particularly with the expansion of younger
individual patients at lower surgical risk [7,20,21,55].

Notably, previous studies demonstrated that cross-sectional 3D-TEE manual mea-
surements of the aortic annulus were underestimated obtained by MDCT, thus potentially
resulting in prosthesis undersizing when implanted in the sizing algorithms recommended
by manufactures [56-59]. When compared to the 3D-TEE manual technique, the intro-
duction of novel software that utilized 3D-TEE data semiautomatically and automatically
for the aortic annulus has dramatically used and allowed a more systematic approach
to minimize the observer’s influence and time-consuming [40,43-45]. Additionally, the
software tools demonstrated good to excellent agreement between 3D-TEE and MDCT
for the measurements of aortic annulus with low interobserver and intraobserver variabil-
ity [38—40,42].

Our meta-analysis is the first study that extracted data from 3D-TEE using novel
automated software semiautomatically and automatically compare to MDCT for annular
measurements. We found that 3D-TEE sizing for annular area, perimeter, area derived-
diameter, perimeter derived-diameter, maximum and minimum diameter was strongly
correlated with MDCT annulus measurements. However, the mean differences between
3D-TEE and MDCT of annular area, perimeter, area derived-diameter, perimeter derived-
diameter, and maximum diameter were underestimated except the annular minimum
diameter found to be slightly overestimated.

To the best of the authors” knowledge, the two previous studies have attempted to
methodically compare 3D-TEE and MDCT for TAVR sizing in the same patient popu-
lation [60,61]. Both studies, however, basically used the 3D-TEE manual technique for
annular measurements. Elkaryoni et al. reported a strong correlation for annular area (r =
0.84, p < 0.001), mean perimeter (r = 0.85, p < 0.001), and mean diameter (r = 0.80, p < 0.001),
while the Bland—Altman plots showed the mean bias was —2.22 mm?2 (95%CI, LOA: —12.79
to 8.36) for annular area between 3D-TEE manual and MDCT [60]. Rong et al. reported
the strong correlations between 3D-TEE manual and MDCT for annular area (0.86 (95%
CI, 0.80-0.90)), annular perimeter (0.89 (95%CI, 0.82-0.93)), and mean annular diameter
(0.80 (95%Cl, 0.70-0.87)) measurements, while the mean differences were slightly underes-
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timated for annular area (—0.12 cm2 (95%CI, —0.24 to 0.00), p = 0.05), annular perimeter
(—0.02 cm (95%CI, —0.65 to 0.61), p = 0.95), and mean annular diameter (—0.03 cm (95%CI,
—0.15 to 0.10), p = 0.68) between 3D-TEE manual and MDCT measurements [61].

PAR is one of the most common complications seen after TAVR as a result of incorrect
prosthesis size selection, and accurate aortic annulus measurements are crucial in reducing
the frequency [1,37,59]. There has been investigation in studies that showed that the
incidence of more than mild PAR was significantly lower when sizing of the aortic annulus
was performed using MDCT compared with sizing performed by 2D echocardiography [52,
62]. However, Khalique et al. utilized semiautomated 3D-TEE yielded the prediction of
mild or greater PAR with equivalent accuracy to MDCT [37].

The novel software’s clinical impact on the selection prosthetic heart valve may have
been shown with promising evidence mainly focused on the annular area and perimeter
based —3D sizing. Kato et al., using the automated software “eSieVaves”, found that the
3D-TEE automated and semiautomated measurements were 72% and 78%, respectively, for
the agreement to the size of prosthetic valve implanted [40]. Podlesnikar et al., using the
automated software”4D Auto AVQ”, found that the agreement between 3D-TEE automated
and MDCT measurements was an excellent agreement (kappa = 0.926) for selecting the
same TAVR prosthesis size [41]. Prihadi et al., using the automated software “Aortic
Valve Navigator (AVN)”, found that 3D-TEE automated and MDCT measurements yielded
excellent agreement (kappa = 0.90) in prosthesis size choice in the majority of patients
(93.3%) [42]. Queiros et al., using the automated software “Speqle 3D”, found that the
measurements of 3D-TEE were good sizing agreement against the true implanted sizes
(>77%) and against MDCT-based sizes (>88%) [43].

In the era of modern medicine, artificial intelligence has been the main subject to
the revolution of cardiovascular multimodality imaging that recently also applied in
echocardiography [63—66]. Al has the capacity to transcend human shortcomings such as
exhaustion or distraction, inter- and intraobserver uncertainty, and the time-consuming
and repetitive interpretation of huge data sets [65]. This study’s operating software may be
the beginning of the novel technique using 3D-TEE pre-TAVR assessment for the future
algorithm of the aortic annular quantification that needs further investigation.

There are some limitations in our study. First, all the included studies were obser-
vational studies; Second, statistical heterogeneity(I2) was high for most outcomes; Third,
novel software tools using in 3D-TEE for annular measurements were not totally the same
commercial software tools; Finally, our study has not reported other parameters of aortic
root sizing.

5. Conclusions

The present study implies that 3D-TEE using novel software tools for annulus sizing is
feasible for MDCT. As the software tool of 3D-TEE does analysis automatically, it is valuable
for saving time and reducing operator-dependency which may lead to the future study of
artificial intelligence in echocardiography. This application may be used instead of MDCT
in some situations, such as avoiding contrast nephrotoxicity, which is particularly necessary
for patients who are at high risk of renal failure, or in patients with serious allergies to
iodinated contrast, or in cases of arrhythmias that render ECG gating impossible for MDCT
acquisition.
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