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Skull sex estimation is one of the hot research topics in forensic anthropology, and has important research value in the fields of
criminal investigation, archeology, anthropology, and so on. Sex estimation of skull is crucial in forensic investigations, whether in
legal situations that involve living people or to identify mortal remains. 2e aim of this study is to establish a skull-based sex
estimation model in Chinese population, providing a scientific reference for the practical application of forensic medicine and
anthropology. We take the superior orbital margin and frontal bone of the skull as the research object and proposed a technology
of objective sex estimation of the skull using wavelet transform and Fourier transform. Firstly, the supraorbital margin and frontal
bone were quantified by wavelet transform and Fourier transform, and then the extracted features were classified by SVM, and the
model was tested.2e experimental results show that the accuracy rate of male and female sex discrimination is 90.9% and 94.4%,
respectively, which is higher than that of morphological and measurement methods. Compared with the traditional methods, the
method has more theoretical basis and objectivity, and the correct rate is higher.

1. Introduction

In the practice of forensic identification, it is often the case
that a corpse is dismembered and highly decomposed
leaving only skeletal remains, or that only skeletal remains
are left in a major disaster. It is very important to get the
identity information of the dead from the fragmentary
bones. Sex estimation is the first and key step of skeletal
remains identification, which can reduce the number of
possible identity matching by nearly 50%, and also provide
basic reference for face reconstruction. Human identity is
not only a prerequisite for an individual who officially de-
clares death but also a basis for tracing people, investigating
crime, mass disasters, or war atrocities [1, 2].

2e identification of unknown skeletal remains is an
important part of anthropological and forensic research. Sex
estimation of unknown bones is a very important part of
anthropological and forensic analysis. In the context of
forensic analysis, sex estimation together with assessment of

racism, population affinity, and stature is important for the
process of individual identification.2e sex estimation based
on skeletal remains is based on sexual dimorphism, which is
generally present to varying degrees in bones of human
skeleton. Pelvis and skull are the most widely used sites for
determining skeletal sex [3, 4]. However, the pelvis is not
easy to store and fragile, and the skull is composed of hard
tissue, which in most cases can be well preserved, and the
stability of the sexual dimorphic features is better [5, 6].
2erefore, the skull has become the most commonly used
bones in sex estimation, and skull sex estimation has im-
portant research significance and application value.

2e traditional methods of skull sex estimation are
mainly morphological discrimination and measurement
discrimination. Morphological discrimination mainly relies
on the expert’s understanding of the differences in mor-
phological characteristics between male and female skulls.
Experts’ subjective understanding of skull morphological
features has an important influence on sex estimation. 2e
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measurement discriminant method refers to first identifying
the feature points of the skull, measuring some sex-specific
feature index items of the skull, and then using these geo-
metric quantities to establish a discriminant function to
determine the sex.

In the morphological approach, anthropologists com-
pare visual forms of unknown skulls and draw conclusions
through visual observation and experience. Wells [7] used
the anthropologists and standard methods in the field of
skull sex to assess the sex of the skull. Studies have shown
that cognitive bias has an impact on the sex estimation of the
skull, and the skull is effective in identifying sex in human
skeletal remains. Krogman [8] used morphological methods
to identify 750 skulls of known sex. 2e correct rate was
82–87%. Ramsthaler et al. [9] used kappa statistics to
quantify the differences between two different observers in
sex visual morphology assessment, and the consistency was
only 90.8%. 2erefore, the visual form assessment method is
subjective, low in reliability, low in recognition rate, and
theoretically insufficient.

2e measurement discriminant method is further di-
vided into physical measurement methods and computer-
aided measurement methods. 2e physical measurement
method is to measure the physical object of the skull and
establish a sex discriminant function. Some scholars have
done a lot of research using this method and have achieved
good results [10–14]. However, the biggest disadvantage of
this method is that it may cause secondary damage to the
skull during the measurement process, and the measure-
ment results are not accurate enough due to human factors.
With the rapid development of computer technology,
computer-aided measurement is increasingly used for the
measurement of skull feature items. 2is measurement
method is to digitalize the skull object, generate the three-
dimensional model of the skull, and realize the measure-
ment with the help of computer program or software. At
present, the method of computer-aided measurement is the
most commonly used method, and many scholars [15–23]
use this method to study the sex problem of the skull.
Compared with the morphological method, this method is
more objective, but the measurement accuracy is still
difficult to guarantee. Williams and Rogers [24] showed
that when different observers measured some sex differ-
ences, most of the measurement variables had errors of
more than 10%.

2e morphologies of the frontal bone and superior
orbital margin are commonly used skull features with sexual
dimorphism [23, 25–28]. 2e male cranial forehead is more
inclined, the frontal nodules are not obvious, and the nasal
root sag is deeper, while the female cranial forehead is
steeper, the frontal node is large and obvious, and the nasal
root depression is shallow [23]. Male skulls are characterized
by a wider, rounded, “blunt thick” supraorbital margin,
while female skulls typically have a thin “sharp, like the edge
of a slightly dulled knife” supraorbital margin [29], as shown
in Figure 1.

In traditional methods, the accuracy is very low when
these two commonly used features are used as skull sex
estimation features. Studies have shown that even if two
experienced experts use the visual observation method to
estimate the sex of the skull, at least 50% of the observations
differ [30]. For these reasons, alternative approaches have
been developed based on premises other than simple visual
assessment and measurement methods. One of these ap-
proaches is the introduction of shape analysis into forensic
anthropological, namely, thin-plate splines [31] and Eu-
clidean distance matrix analysis [32]. Alternatively, Schiwy-
Bochat [33] attempted to quantify the roughness of the
supranasal (glabellar) region for sex estimation from pho-
tographs by applying the box-counting method from fractal
geometrics. Although advances have been made in 3D laser
or CT scanning technology, most of the studies use land-
mark-based or contour-based approaches rather than sur-
face quantification.

Based on the above analysis, we propose a new method
for skull sex estimation. In the sex estimation, we first use
wavelet analysis to quantify the supraorbital margins of the
skull and quantify the frontal sagittal arc using Fourier
transformation. 2en, we fuse the quantified features and
construct a sex classifier using support vector machine
method, which ultimately achieves the sex identification of
the skull.

Compared with the traditional methods, the innovation
and the main contribution of this method are: (1) it gives a
clear explanation about the importance of the skull local area
for classification, (2) it proposes a promising tool for in-
experienced observers to determine the sex of a skull without
much human-computer interaction, and (3) it is without
tedious manual measurement, quantifies the features, the
results are more objective and accurate, and got rid of the
influence of the skull size.

2emethod flow chart of this paper is shown in Figure 2.

2. Materials

2e skull data used in this study are from Han Adults in
northern China. Under the principle of informed consent, the
CT images of living human head were obtained by using the
multirow detector spiral CT scanner made by Siemens in
Germany. 2e three-dimensional modeling of the skull was
realized by computer software developed by ourselves, and
the three-dimensional model data of the skull were obtained
and saved inOBJ format. A total of 133 skulls, 73males and 60
females, aged between 22 and 28, were collected. All skulls are
essentially intact; that is, each skull contains all the bones from
the parietal bone to the jaw bone and has intact teeth. In
addition, their birth date, sex, and residence information were
recorded in detail. Patients who had undergone craniofacial
surgery, cleft lip or palate or other craniofacial lesions or with
syndrome were excluded. 2is study has been approved by
Northwest University ethics committee. Distribution of skulls
in male and female of all ages is shown in Table 1.
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3. Methods

3.1. Quantitative Extraction of Supraorbital Margin Features

3.1.1. Segmentation of Supraorbital Margins. 2e segmen-
tation process of supraorbital margins mainly includes the
following steps:

(1) Skull image acquisition: the image used here is a
skull image that is completely separated from the

skeleton. 2e skull image data are used in this paper
to import the three-dimensional model of the skull
into the Geomagic Studio 12.0 software and obtain
the frontal image of the skull through the image
acquisition function of the software. 2e supraor-
bital margins region of all images is complete and
clear.

(2) Image gray processing: the skull image obtained in
the previous step is a color image, and the color
image should be further converted into a gray image.
2is is because color information has no effect on sex
and reduces the amount of calculation.

(3) Image scaling: to ensure accuracy, we scale the image
to increase the image pixel rate.

(4) Noise reduction: in the denoising process, the me-
dian filter is used to smooth the image, protect the
edge information, and increase the image clarity.2e
main reason to increase the clarity of the image will
be clearly able to identify the shape of the supra-
orbital region for sex estimation of the skull.

Database

Input skull
image

Input skull
image

Preprocessing

(a) Image graying
(b) Image scaling

(c) Denoising
(d) Segmentation

Preprocessing

(a) image graying
(b) median filtering

(c) contour
extraction

Supraorbital margin

Skull contour

Classification
(SVM)

Output

Male or female

Extraction of
supraorbital

margin features
by wavelet
transform

Extraction of
frontal sagittal
arc features by

fourier
transform

Figure 2: Method flow chart of this paper.

Table 1: Distribution of skulls in males and females of all ages.

Age (years) Male Female Total
22 10 7 17
23 12 10 22
24 14 12 26
25 12 10 22
26 10 9 19
27 8 6 14
28 7 6 13
Total 73 60 133

(a) (b) (c) (d)

Figure 1: Difference of frontal bone and supraorbital margin between male and female skulls. (a) Frontal bone of male skull. (b) Frontal
bone of female skull. (c) Supraorbital margin of male skull. (d) Supraorbital margin of female skull.

BioMed Research International 3



(5) Segmentation: it is the process of extraction of re-
quired part of the image. Here, it is necessary to
clearly extract the supraorbital margin region to
determine the sex of the skull. In this paper, the fuzzy
C-means clustering algorithm is used to realize the
segmentation process.

3.1.2. Quantitative Extraction of Supraorbital Margins.
Let x(x, y) ∈ R2 be the vectorial notation of the 2D point.
2e continuous wavelet transform (CWT) of a 2D signal
f(x) is defined as follows [34]:

Wψ(b, a) �
1
��
a

√ ψ ∗
x − b

a
 f(x)dx, (1)

where ψ ∗ , b, and a represent the complex conjugate of the
analyzed wavelet ψ (or “mother wavelet”), the shifting pa-
rameter, and the dilation parameter (related to analyzed
scale), respectively.

Depending on the type of information extracted from
the signal, choose to use a different mother wavelet. For
example, Morlet wavelets are suitable for local frequency
analysis, while Mexican hats are suitable for edge detection
in image processing. Differential wavelets, such as the de-
rivatives of the Gaussian, are particularly suitable for ana-
lyzing singularities and extracting differential information
from the signal. 2erefore, in this work, we used the first
partial derivatives with respect to x and y of the 2DGaussian
function ϕ(x, y) denoted as ψx and ψy:

ψx(x, y) �
zϕ(x, y)

zx
,

ψy(x, y) �
zϕ(x, y)

zy
,

(2)

where the 2D Gaussian function is

ϕ(x, y) � exp
− x2 + y2( 

2
  � exp

− |x|2 

2
⎡⎣ ⎤⎦. (3)

In order to studymorphological variation of supraorbital
margin, we have assessed the potential of the wavelet for
numerical multiscale estimation of the gradient field of
morphological shapes. 2erefore, we have applied the 2D
wavelet transform (Wψx

and Wψy
) in the expanded surface

for the purpose of calculating the gradient ∇W, i.e.,

∇W � Wψx
, Wψy

  �
zf(x, y)

zx
,
zf(x, y)

zy
 . (4)

2e gradient-based measurement method has the ad-
vantages of translation and rotation invariance, which can
ensure that the anatomical correspondence of the supra-
orbital margin does not depend on the angle and direction of
the scanner. 2e entropy can be measured from the gradient
field to achieve a quantitative analysis of the disorder degree
of the surface vector direction, i.e., the entropy of the ori-
entation distribution E∇W, denoted as

E∇W � −  ρ(θ)log ρ(θ), (5)

where ρ(θ) is the probability of angle θ being incremented.
2e entropy is maximized when the probability of each

measurement is the same; thus, a high entropy value means
that the angles of the gradient field are evenly distributed. As
discussed earlier, the region of morphologic importance is
the valley region of the supraorbital margin, where the high
variation of the arrangement of the gradient vectors com-
pared with other regions can be seen in Figure 3.

Considering a small neighborhood of voxels at each
point (x, y) on the surface, the entropy is calculated locally,
and its value is assigned to the texture value of the supra-
orbital margin surface. Features are extracted from the
surface texture of entropy to describe the degree of sex
dimorphism in the supraorbital margin. Further, the valley
region of the supraorbital margin is divided by the method
based on threshold, which is convenient for subsequent
measurements. 2ere are two main thresholds here: one for
the surface height value th and another for the entropy te.
Two measures were obtained from the segmentation: area
and thickness, which was defined as the number of erosions
necessary to completely erode the area [35].

3.2. Quantitative Extraction of Frontal Bone Morphological
Features. After obtaining the skull image using Geomagic
Studio 12.0 software, the image is grayscaled and median
filtered, and then the processed image is extracted by canny
contour to obtain the lateral contour of the skull.

Frontal bones are important regions of skull sex dif-
ferences. Here, we use Fourier transform to quantify the data
of these two nonmeasurable features. Firstly, 18 points were
calibrated in the frontal bone regions of skull profile, and the
frontal line of three-dimensional skull was fitted by the cftool
curve fitting toolbox of MATLAB. Secondly, the spatial
curve is optimized by Levenberg–Marquardt algorithm.
Finally, the three-dimensional space curve is projected to the
two-dimensional plane XY, and the projection curve S is
Fourier transformed.

Fourier transform is used to quantify the shape of the
curve, i.e., divide the 32 segments on the X axis and then
calculate the Y value of the corresponding points on the
curve. Apply formula (6) to obtain A0, apply formulas (7)
and (8) to calculate 16 cosine coefficients Ak and 16 sine
coefficients Bk, respectively, and then synthesize into 16
amplitudes Pk using formula (9); finally, Pk is normalized to
Pk
′ using formula (10).

A0 �
1
32



31

m�0
Ym, (6)

Ak �
1
16



31

m�0
Ym × cos 2 · π · k ·

m

32
 , (7)

Bk �
1
16



31

m�0
Ym × sin 2 · π · k ·

m

32
 , (8)

Pk �

�������

A2
k + B2

k



, (9)
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Pk
′ � P ×

100
A0

(k � 1, 2, . . . , 16). (10)

3.3.ClassificationMethod. Support vectormachine (SVM) is
a learning algorithm for pattern classification and regres-
sion. 2e basic training principle of SVM is to find the
optimal linear hyperplane, which minimizes the expected
classification error of unknown test samples, that is, good
generalization performance. Because SVM has good learn-
ing ability and can solve the problems of small sample,
nonlinearity, and high-dimensional classification, it has
become the preferred classifier to deal with sex estimation.

3.3.1. Support Vector Classifier. Given a labeled set of M

training samples (xi, yi), where xi ∈ RN and yi ∈ RN

yi ∈ − 1, 1{ } are associated. SVM classifier finds a small part
of the data points of the correct maximum separation hy-
perplane and maximizes the distance from any class to the
hyperplane. Vapnik [36] showed that maximizing the
margin is equivalent to minimizing the VC dimension when
constructing the optimal hyperplane. Computing the opti-
mal hyperplane is a constrained optimization problem that
can be solved using quadratic programming techniques. 2e
discriminant hyperplane is defined by the level set as follows:

f(x) � 
M

i�1
yiαi · k x, xi(  + b, (11)

where k(·, ·) is a kernel function, and the sign of f(x)

determines the membership of x. Constructing an optimal
hyperplane is equivalent to finding all nonzero values αi.
Any vector xi corresponding to nonzero αi is the support
vector of the optimal hyperplane.

For linear SVM, the kernel function is only a simple point
product in the input space, while the kernel function in
nonlinear SVM effectively projects the sample to a higher

(possibly infinite) dimension feature space through the
nonlinear mapping function: Φ: RN⟶ FN, M≫N. 2en,
construct a hyperplane in F. 2e motive behind this kind of
mapping is that it is more likely to find linear hyperplane in
high-dimensional feature space. UsingMercer’s theorem [37],
the samples are projected into the high-dimensional feature
space, which can be calculated by the following formula:

k x, xi(  � Φ(x) ·Φ xi( , (12)

whereΦ(x) is the mapping function of projection from low-
dimensional space to high-dimensional space and · is the
inner product operation.

In order to maximize the separation hyperplane interval
2/‖w‖ and minimize the error 

l
i�1ξi between training

samples, the penalty parameter C is introduced [38]. 2e
convex quadratic programming problem can be expressed as
follows:

minc,ω,b

1
2
‖ω‖

2
+ C 

m

i�1
ξi, ξi ≥ 0, i � 1, . . . , m,

y
(i) ωT

x
(i)

+ b ≥ 1 − ξi, i � 1, . . . , m,

(13)

where C is a constant and C> 0. When C is larger, it means
that the punishment for sex judgment error is larger; when C

is smaller, the punishment for sex judgment error is smaller.
In order to obtain the best separating hyperplane in

quadratic programming, a Lagrangian operator is con-
structed to realize the solution, and the following formula is
obtained:

Γ(ω, b, ξ, α, r) �
1
2
ωTω + C 

m

i�1
ξi − 

m

i�1
α y

(i)
x

Tω + b  − 1 + ξi 

− 

m

i�1
riξi,

(14)
where αi and ri are Lagrange multipliers.

Taking formula (14) as a function of variables ω and b,
the partial derivatives of them are obtained, and the ex-
pressions of ω and b are obtained. 2en, substitute it into
formula (14) to find its maximum value. Finally, the fol-
lowing formula is obtained:

maxαW(α) � 
m

i�1
αi −

1
2



m

j�1
y

(i)
y

(j)αiαj <x
(i)

,

x
(j) > 0≤ αi ≤C, i � 1, 2, . . . , m,



m

i�1
αiy

(i)
� 0,

(15)

where α1, α2, . . . , αm needs to satisfy the conditions of
semipositive definite and nonnegative constraints.

3.3.2. Kernel Function and Optimal Parameter Selection.
2e accuracy of sex estimation is directly affected by kernel
function. After comparing and analyzing all kinds of kernel

Wavelet gradient
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Figure 3: Gradient field of the points (voxels) belonging to the
original supraorbital surface.

BioMed Research International 5



functions of SVM, radial basis function (RBF) is selected as
the kernel function of skull feature mapping. RBF can fit the
continuous function on the skull data set as accurately as
possible [39], and its mathematical expression can be
expressed as follows:

k x − xi

����
����  � exp

x − xi

����
���� 

2

δ2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (16)

where xi is the center of kernel function and δ is the width of
kernel function, which controls the radial action range of
kernel function.

In the training stage of sex estimation, parameters C and
δ have the greatest influence on the effect of sex estimation.
2e change of parameter C can significantly separate the
samples with correct classification from those with wrong
classification.When C is larger, the classification error rate is
smaller, but the interval is smaller; when C is smaller, the
interval is larger, but the classification error rate is larger.
2e change of parameter δ directly affects the calculation
ability of kernel function, thus further affecting the effect of
sex estimation. When the δ is larger, there may be mis-
judgment, that is, the training samples or test samples are
divided into the same category; when the δ is smaller, it is
easy to have over fitting phenomenon, that is, it can correctly
classify the sex of the training skull samples, but the clas-
sification accuracy of the test skull samples is not high, and
the generalization ability is poor. 2erefore, it is very im-
portant to select the appropriate parameters C and δ for sex
estimation.

2e common methods to optimize the parameters C and
δ are grid search, genetic algorithm, and chaos optimization
algorithm. In this paper, the algorithm in [40] is used to
determine the appropriate parameters C and δ. Set the range
of the parameters C and δ, 2− 5 ≤C≤ 215, 2− 15 ≤ δ ≤ 25, and
the step size is set to 0.5 to obtain C values and δ values. 2e
SVM model is used to classify the skull samples and obtain
the sex estimation accuracy rate. 2e optimal parameters C

and δ are determined according to the sex estimation ac-
curacy rate.

Firstly, the quantified supraorbital margin features,
frontal bone morphological features, are fused to form the
optimal feature set. 2en, the SVM classification model is
trained according to the optimal feature set and tested.
Finally, sex estimation of the unknown skull is realized.

4. Experiment and Results

4.1. Fitting Results of Frontal BoneMorphology. We used the
method described in Section 3.2 to fit the frontal bone curve,
and then projected the frontal bone curve of male and female
to the XY plane. 2e frontal bone line after projection was
obtained as shown in Figure 4.

Using the cftool curve fitting toolbox of MATLAB, the
frontal bone lines of male and female were fitted. 2e fitted
curve equations of men and women were as follows:

y1 � − 8.6663 − 1.4380 · x − 2.3911 · x2 − 3.9862 · x3 +

1.0611 · x4 − 4.0991 · x5 − 3.2628 · x6 and y2 � − 16.3129 −

5.0763 · x − 7.2886 · x2 + 0.1792 · x3 − 0.0003 · x4 + 2.0856 ·

x5 − 4.6519 · x6 2e Fourier transform method is used to
quantify the shape of frontal bone lines of male and female.
2e axes of two-dimensional curves are divided into 32
parts, and the corresponding values on the curves are cal-
culated. Finally, the synthetic amplitude is calculated as the
measurement index of sex estimation. Fourier transforms
were used for frontal sagittal arc morphology, and a total of
16 sex estimation measurements were obtained.

4.2. Quantitative Results of Supraorbital Margin. We ran-
domly selected 23 skull samples from 133 skulls for testing.
Among them, there are 13 males and 10 females. 2e results
are based on measurements of the supraorbital margin
valley. 2e experimental environment is as follows: imple-
mented using Matlab R2015a, all the experimental programs
are executed on personal computers with 3.40GHz CPU and
8G RAM. Four different values are used for the threshold th,
varying from 1 to 4 voxels, which are selected based on
observations of the entropy surface. For the threshold te, we
used four empirically chosen values: 0.5, 0.6, 0.7, and 0.8.2e
features were obtained for five different scales of the 2D
wavelet.

Figure 5 presents the two-dimensional feature space
defined by the area and thickness of the valley region with
respect to the two classes of individuals: male and female. In
all parameter combinations, when th� 2, te� 0.8, and the
scale of the wavelet is 0.00005, this combination has the
highest discriminating power. Under the optimal parame-
ters, these features are most effective in distinguishing be-
tween male and female skulls.

4.3. Classification Results. In the sex estimation experiment,
we divided the experimental data into two parts, 70% as
training set and 30% as test set. 2e SVM method has two
important parameters, the penalty parameter C and the

y
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Figure 4: Frontal line diagram.
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parameter A related to the computing power of the kernel
function, which have the greatest impact on the results of sex
estimation. In this paper, the grid search algorithm is used to
solve these two parameters. 2e range of parameters C and δ
was set to 2− 5 ≤C≤ 215, 2− 15 ≤ δ ≤ 25, and the step size was
set to 0.5. 2e optimal parameters C � 1.5824 and δ � 0.5 for
93 training samples (51 males and 40 females) can be ob-
tained by multiple calculations. After the establishment of
the sex estimationmodel, we tested 40 test samples (22males
and 18 females) and compared them with the records in the
database.2e results were as follows: among 22male skulls, 2
were misjudged, 20 were correctly judged, and the correct
rate was 90.9%; among 18 female skulls, 1 was misjudged, 17
were correctly classified, and the correct rate was 94.4%. 2e
prediction results of the classification model for the test
sample are shown in Figure 6.

5. Discussion

In forensic medicine and anthropology, researchers use
human bones to identify human remains at every stage [41].
2e sex of the remains is one of the most important parts of
the identification process. Many new methods and tech-
nologies have been used in this research, and traditional
methods have been constantly improved and optimized.2e
pelvis and skull are the most commonly used bones in the
study of estimating sex by observing and measuring bones
[42]. In this study, the measurement of the supraorbital
margin of the skull and the morphology of the frontal was
used as an indicator of sex. Different from the traditional
measurement method, we quantify the indicator by estab-
lishing a mathematical model to obtain the measurement

result, which overcomes the error of the measurement
process.

In the sex estimation problem, when the characteristics
of the supraorbital margin and frontal sagittal arcs are used
for the study of cranial dimorphism, the measurement re-
sults obtained bymathematical modeling are more objective.
Since the mathematical model fits the shape, iteratively
optimizes and adjusts the parameters to make them closer to
the true shape. In the quantification of the sagittal arc feature
of the frontal bone, in order to make the Fourier series more
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completely show the shape of the frontal sagittal arc, the
subdivision is divided as much as possible, so that the curve
formed by the inverse transformation is closer to the original
shape. Of course, the finer the division, the more complicated
the calculation process. In this study, the frontal sagittal arc
was divided into 32 equal parts, and the original curve was
reproduced better by inverse transformation, which proved
that the degree of division is appropriate. When quantifying
the features of the supraorbital margin, the combination of
quantifying the supraorbital margin into area and thickness
has obvious difference between the two sexes.2e results show
that the values of female are relatively consistent, and the
differences between male are relatively large. 2is is a com-
mon characteristic of sexual dimorphism in the human cranial
trait [43]. Bogin’s research [44] shows that there is a phe-
nomenon of “prolonged maturation” in the growth of male
skeleton. 2e time and extent of growth are highly variable.
2erefore, the range of male supraorbital margins varies
widely, and the range of female changes is relatively small.

After quantifying the characteristics of the supraorbital
margin and the sagittal arc of the frontal bone, the SVM
method was used to establish a sex estimation model, and 40
skulls were tested and achieved good results. In order to verify
the superiority of the method, we compare it with the mor-
phological method [8] and the measurement method [21],
respectively.2e correctness rate of this method is the highest,
and the accuracy of the first two methods is less than 90%.2e
correct rate is over 90%. 2is is because this study avoids the
influence of subjective factors and measurement errors in
feature quantification, and the features are more accurate.
2erefore, the correct rate is also higher. Liu et al. [45] took the
frontal bone as the experimental object and used the forward
stepwise regressionmethod based on the maximum likelihood
estimation to establish the frontal bone sex discrimination
model. 2e accuracy rate of male discrimination was 89.4%,
female discrimination was 85.0%, and the average accuracy
rate of discrimination was 87.2%. Yang et al. [46] used Fisher’s
method and logistic regression method to establish sex dis-
criminant equation for skull with frontal bone only, and the
discriminant accuracy was 67.9% and 68.7%, respectively.
[45, 46] and this paper use the same anatomical region, but the
accuracy of this method is significantly higher than them.

Although the method in this paper has achieved good
accuracy in sex estimation, in practical application, the
higher the accuracy of sex estimation method, the better the
reliability of estimation results. 2ere are still some gaps
between the accuracy and ideal value of this paper, which is
also the power and direction of future research. In addition,
the characteristic areas used for sex estimation in this paper
are mainly concentrated in the upper half of the skull. Some
researchers have proposed that other areas on the skull can
also be used for sex estimation, such as the mandible area
[17, 47, 48] and the occipital area [16, 49]. 2erefore, it is the
next research direction to quantify other regions with
mathematical methods or machine learning methods and
realize skull sex estimation. Although the accuracy rate
varies from different researchers, different races, different
sample sizes, and different methods, it is of reference value in
the application.

6. Conclusions

In this study, we took the skulls of Han adults in northern
China as the research object, and realized the sex estimation
based on skulls. We use the supraorbital margin and frontal
sagittal arc of skull as characteristic indicators and use SVM
to establish a sex estimation model to achieve sex identifi-
cation. Firstly, the feature indexes are quantified, the feature
of the supraorbital margin is quantified by two-dimensional
wavelet transform, and the feature of frontal sagittal arc is
quantified by Fourier transform. 2en, the quantized fea-
tures are fused, and the classification model is trained by the
SVM method according to the optimal feature set. Finally,
the model is tested to verify its performance.

2e advantages of this research work are as follows:
firstly, it needs no professional qualification; secondly, when
quantified, it can fully approximate the true shape of the
skull; and finally, it can get a high recognition rate. Although
we use CTscanning to construct the 3D point cloudmodel of
skull, this method can also be used to construct the 3D
model in any other way, such as laser scanning and 3D
camera. Next, we should collect a larger sample bank to build
a model of sex estimation, which will be used in forensic and
anthropological fields for the practical application of un-
known skeletal sex estimation.
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