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Raft Formation in Lipid Bilayers Coupled to Curvature
Sina Sadeghi,1,* Marcus Müller,1 and Richard L. C. Vink1
1Institute of Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, Germany
ABSTRACT We present computer simulations of a membrane in which the local composition is coupled to the local membrane
curvature. At high temperatures (i.e., above the temperature of macroscopic phase separation), finite-sized transient domains
are observed, reminiscent of lipid rafts. The domain size is in the range of hundred nanometers, and set by the membrane elastic
properties. These findings are in line with the notion of the membrane as a curvature-induced microemulsion. At low tempera-
ture, the membrane phase separates. The transition to the phase-separated regime is continuous and belongs to the two-dimen-
sional Ising universality class when the coupling to curvature is weak, but becomes first-order for strong curvature-composition
coupling.
INTRODUCTION
Ever since the postulation of the lipid raft hypothesis (1), un-
derstanding the lateral structure and heterogeneity of lipid
bilayers has been an extremely active area of research.
One line of thought is that lipid rafts (i.e., tiny domains
rich in saturated lipids and cholesterol floating in an ocean
of unsaturated lipids) are the result of two-phase fluid-fluid
coexistence. The challenge is to explain why raft domains
remain small, as opposed to growing and coalescing to mini-
mize line tension (2,3). One hypothesis is that membranes
are close to (but distinctly above, i.e., in the one-phase region
of the phase diagram) the critical point of the fluid-fluid
coexistence region. Hence, the correlation length is still large
(i.e., significantly exceeding the size of single molecules) but
macroscopic domain formation does not occur. Experiments
performed on model membranes indeed reveal that such sys-
tems support critical behavior (4–6), with indications that the
corresponding universality class is the expected one (7) (i.e.,
the one of the two-dimensional Ising model).

Although the existence of critical behavior in free-
standing membranes has thus been demonstrated quite
convincingly (not only in model membranes, but also in
cell-derived vesicles (6,8)), the relevance of this for real
cell membranes is not entirely obvious, because the latter
are typically not free, but intricately connected to their envi-
ronment (for instance to the cytoskeleton). Relatively recent
simulations have shown that, in the presence of a cytoskel-
eton network, macroscopic domain formation will always
be suppressed (9–12). The idea is that, assuming the cyto-
skeleton network to be spatially random on large scales
and with a preferred affinity to one of the lipid species, a
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new universality class is induced, namely the one of the
two-dimensional random-field Ising model. As is well
known (13), the latter model does not support macroscopic
domain formation at any temperature nor does it support
critical behavior, and so it is not a priori obvious how the
critical behavior observed in freestanding vesicles would
manifest itself in the presence of a cytoskeleton network.
The suppression of macroscopic lipid phase separation
was recently confirmed experimentally in a model mem-
brane coupled to an actin network (14). In yeast cells, the
situation is less clear (15).

In yet another view (16,17), applicable to both free-stand-
ing and nonfree membranes, the working hypothesis is that
the line tension is effectively lowered by hybrid lipids; the
latter collect at the raft interface, thereby lowering the line
tension in much the same way a surfactant molecule would.
In the presence of hybrid lipids, the tendency of the mem-
brane to phase-separate would thus be greatly diminished, of-
fering an alternative explanation for the stability of lipid rafts.

Finally, the last hypothesis that we mention here is that
rafts may be stabilized via a coupling between the local
membrane composition and the local shape (e.g., curvature,
thickness) of the membrane leaflet (18–20). For instance, it
may be that regions of certain curvature sign prefer certain
lipid species (the feasibility of such a coupling has been
demonstrated experimentally (21,22)). This hypothesis dif-
fers from the others discussed above, because it departs
from the view that the membrane is strictly flat and two-
dimensional. Instead, the membrane height deviations into
the third dimension now play a crucial role.

The existence of the various hypotheses (i.e., critical
behavior, cytoskeleton arrested phase-separation, hybrid
lipids, coupling to membrane leaflet shape) precludes a
comprehensive picture of exactly what goes on in membrane
raft formation. Presumably, all proposed mechanisms
contribute to some extent. With this idea in mind, the purpose
http://dx.doi.org/10.1016/j.bpj.2014.07.072
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of this article is to investigate by computer simulation how
membrane fluid-fluid demixing is affected by a coupling to
the membrane leaflet shape. We thus focus on the combined
effect of the first and last discussed hypothesis (leaving aside
therefore the role of hybrid lipids and the cytoskeleton). Our
foremost aim is to test the recent hypothesis of Schick in
which the membrane is envisioned as a curvature-induced
microemulsion (18). This hypothesis is interesting for bio-
logical applications because it accounts for transient domains
of finite size (i.e., rafts) at physiological temperatures,
without requiring the vicinity of a critical point. Our second
aim is to consider the fate of phase-separation transitions in
membranes that are coupled to curvature.

The outline of this article is as follows: We first recapitu-
late the essentials of Schick’s hypothesis. Next, we intro-
duce our membrane model, and describe how this model
is simulated using Monte Carlo updates in Fourier space.
Our results, including a careful analysis of finite-size ef-
fects, are presented, and then we give our conclusions.
THEORETICAL BACKGROUND

We consider a lipid bilayer that undergoes lateral phase sep-
aration into a liquid-ordered (lo) and liquid-disordered (ld)
phase. The lo phase is characterized by a high density of satu-
rated lipids and cholesterol, whereas the ld phase has a high
density of unsaturated lipids (6,23). We assume the mem-
brane to be planar, such that the local membrane height h,
and the local composition f, may be expressed as functions
of the lateral coordinates x,y (Monge representation). The
scalar field f h f(x,y) describes the local composition of,
say, the upper leaflet, with the sign encoding whether the
position at (x,y) is predominantly lo or ld. The free energy
cost of the membrane height fluctuations is given by the
Helfrich form (24), which regards themembrane as an elastic
sheet with bending rigidity k, and surface tension s, as

HHelfrich ¼
Z �

k

2

�
V2h
�2 þ s

2
ðVhÞ2

�
dxdy: (1)

The free energy cost of the composition fluctuations is

described by a fourth-order Landau expansion

HComposition ¼
Z �

A

2
f2 þ B

2
ðVfÞ2 þ Cf4

�
dxdy: (2)

The molecular asymmetry between the lo and ld phases
FIGURE 1 Topology of the mean-field phase diagram of Eq. 4. The

horizontal axis is the strength g of the curvature-composition coupling,

the vertical axis is the prefactor A of the quadratic term in Eq. 2. There

are four distinct thermodynamic phases: a disordered fluid phase spanning

the regions f1 and f2; the lo phase and the ld phase; and a modulated phase

(mod). (Solid lines) Genuine phase transitions; (dashed line) Lifshitz line.
gives rise to a curvature-composition coupling term (21,22)

Hx ¼ g

Z
f
�
V2h
�
dxdy; (3)

with coupling strength g. This coupling implies that the
In mean-field theory, all lines meet in the Lifshitz point (LP). The point

Is marks the critical point of the system without curvature-composition

coupling. To see this figure in color, go online.
composition of the lower leaflet will be anticorrelated.
More refined descriptions allowing for a positive correlation
are presented elsewhere (19,20), but here we focus on the
Biophysical Journal 107(7) 1591–1600
most simple case. The full model is the sum of the above
three Hamiltonian terms

HTheory ¼ HHelfrich þHComposition þHx: (4)

Models such as Eq. 4 have been intensely studied (25–30),

and the corresponding mean-field phase diagram, depicted
in Fig. 1, is well known (19,31). A two-dimensional repre-
sentation is used, in which the horizontal axis denotes the
strength g of the curvature-composition coupling, and the
vertical axis denotes the coefficient A of the quadratic
term in the Landau expansion, Eq. 2. There are four distinct
thermodynamic phases: The first one is a fluid phase, in-
dicated by regions f1 and f2, which is a disordered phase
characterized by exponentially decaying correlations. This
phase occurs for A> 0 and small values of g. The difference
between regions f1 and f2 is that the structure factor S(q) as-
sumes its maximum at wave vector q¼ 0 in f1, and at q¼ q*
> 0 in f2. We emphasize that no phase transition is associ-
ated by crossing the Lifshitz line that separates regions f1
and f2. Thermodynamically, the entire region, f1 and f2, is
a single phase. For A< 0 and small g, the membrane macro-
scopically phase separates into two coexisting phases, i.e.,
the lo and ld phases. A may thus be regarded as the temper-
ature difference from the critical temperature of phase sep-
aration. At large g, the fourth phase is observed. This is a
modulated phase characterized by alternating stripes in the
composition, of some characteristic wavelength.

In mean-field theory, all lines meet at the Lifshitz point
(LP), located at A ¼ 0 and g ¼ gLif. In the absence of
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curvature-composition coupling, g ¼ 0, one recovers con-
ventional fluid phase separation (the experimental analysis
of phase separation in vesicles is typically performed this
way (7)). In this case, there is a critical point (Is) below
which the homogeneous fluid membrane macroscopically
phase-separates into coexisting lo and ld phases. In a real
membrane (accounting for fluctuations), this critical point
is expected to belong to the two-dimensional Ising univer-
sality class. In the presence of curvature-composition
coupling, g > 0, the point Is marks the beginning of a line
of critical points, which extends to the Lifshitz point. In
mean-field theory, phase transitions between f1 4 lo/ld
and f2 4 mod are continuous, whereas transitions lo/ld
4 mod are first-order.

To account for lipid rafts, i.e., composition fluctuations on
a length scale that is large compared to single particles yet
not macroscopic, Fig. 1 offers two possible candidates.
The first is to tune the membrane close to the critical point
of phase separation, i.e., just above the line ‘‘Is-LP’’. Pro-
vided A > 0, the membrane remains mixed, but with large
composition fluctuations characteristic of a critical point
(4,5). The second possibility, proposed by Schick (18), is
the fluid region f2. Because the latter is above the Lifshitz
line, composition fluctuations on a nontrivial scale corre-
sponding to wave vector q* are expected. To quantify this
scale, one can ignore the quartic term in the Landau expan-
sion (C ¼ 0), because in region f2 the coefficient A > 0. In
terms of the Fourier components of the composition field
~fð~qÞ, and after integrating out the height fluctuations, the
free energy becomes (18)

F ¼ 1

2

Z ��~fðqÞ��2
SðqÞ d~q; q ¼ ��~q��; (5)

with the integration over all two-dimensional wave vectors,

~q. Here S(q) denotes the static structure factor of composi-
tion fluctuations

1

SðqÞ ¼ Aþ Bq2 � g2

kþ s=q2
: (6)

For g / 0, S(q) approaches the Ornstein-Zernike form,

which reaches its maximum at wave vector q¼ 0, indicating
macroscopic composition fluctuations. For g>gLif ¼

ffiffiffiffiffiffi
sB

p
,

the structure factor, S(q), assumes its maximum at a finite
wave vector

q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=kÞ�g=gLif � 1

�q
; (7)

and so gLif marks the Lifshitz line (vertical dashed line in

Fig. 1). The corresponding (inverse) value of the structure
factor reads as

1

Sðq�Þ ¼ A

 
1�

�
g� gLif

�2
Ak

!
; (8)
which becomes zero at gm ¼ gLif þ
ffiffiffiffiffiffi
Ak

p
(the phase bound-

ary f2 4 mod is thus parabolic).
ForgLif<g<gm (region f2), i.e., between the Lifshitz line

and themodulated phase, the system resembles amicroemul-
sion. That is, the membrane is overall disordered, but with
composition fluctuations on a nontrivial length scale set by
thewave vector q*. As noted in Schick (18), this is promising
in view of rafts, which are postulated to be transient domains
of finite size. To obtain the actual length, one Fourier-
transforms S(q), which in two dimensions corresponds to a
Hankel transform. The result from Schick (18) is a character-
istic size of the composition fluctuations ~(k/s)1/2. For
typical values of the bending rigidity and tension, this size
is ~100 nm, which is compatible with the raft scale.
SIMULATION MODEL

Our simulation model is a discretized version of Eq. 4. It is
defined on a L�L periodic square lattice, each lattice site
having a spatial coordinate (i,j). To describe the membrane
composition, we assign a spin variable si,j ¼ 51 to each
cell, where the sign indicates whether the cell (i,j)
is predominantly lo or ld. To incorporate the membrane
height fluctuations, we also assign to each cell a real
number hi,j˛ R describing the membrane height at cell
(i,j) measured with respect to a flat reference plane. Without
loss of generality, the reference height is placed at zero in
what follows. The total free energy of our simulation model
is given analogously to Eq. 4 as

HSim ¼ HSim
Helfrich þHSim

Composition þHSim
x : (9)

The first term describes the elastic energy of the membrane
height fluctuations, for which we again use the Helfrich

expansion (24)

HSim
Helfrich ¼

X
ði;jÞ

a2

2

h
k
�
V2hi;j

�2 þ s
��Vhi;j��2i; (10)

where a is the lattice spacing, and with the sum over all lat-
tice sites:
 X

ði;jÞ
h
XL�1

i¼ 0

XL�1

j¼ 0
:

The first term in Eq. 10 is the bending energy, and its
strength is set by the bending modulus, k. The latter term

describes the free energy of membrane area deformations,
and its scale is dictated by the membrane tension, s. Note
that Eq. 10 is given in discrete form, as is appropriate for
a lattice model. To compute the gradient and Laplacian
terms, we use the finite-difference expressions

Vhi;jh
1

2a

�
hiþ1;j � hi�1;j

hi;jþ1 � hi;j�1

	
;

V2hi;jh
1

a2
�
hiþ1;j þ hi�1;j þ hi;jþ1 þ hi;j�1 � 4hi;j

�
;

(11)
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as is commonly done in simulations (32). In the limit a/ 0,
these finite-difference expressions exactly converge to their
continuous counterparts; for finite a, however, some lattice
artifacts may be present (e.g., square anisotropy). The sec-
ond term models the lipid interactions, which we assume
to be pairwise-additive, and are given by a simple Ising term

HSim
Composition ¼ �J

X
ði;jÞ

si;j
�
siþ1;j þ si;jþ1

�
; (12)

where J > 0 is the Ising interaction constant. This is
following the approach of Veatch et al. (7), which also

uses the Ising model to describe phase-separating vesicles,
but without curvature coupling. The last term in the free
energy describes the coupling of the local composition to
the local membrane curvature, given in discrete form as

HSim
x ¼ g

X
ði;jÞ

a2si;j
�
V2hi;j

�
; (13)

where g is the strength of curvature-composition coupling.
SIMULATION METHOD

Monte Carlo moves

To study the statistical mechanics of the model defined by Eq. 9, we use

Monte Carlo simulation. To update the spin variables si,j, we employ sin-

gle-spin-flip dynamics, whereby one of the lattice sites (i,j) is randomly

chosen, and its spin variable inverted as si,j / �si,j. The proposed flip is

accepted with the Metropolis probability,

Pacc;flip ¼ min


1; e�DH=kBT

�
;

where DH is the free-energy difference computed according to Eq. 9, kB is

the Boltzmann constant, and T is the temperature. To update the height vari-
ables, hi,j, we use a Monte Carlo move formulated in Fourier space (33,34).

A change in the height variables only affects the Helfrich part and the

coupling term of Eq. 9. This part of the free energy is conveniently ex-

pressed in Fourier space as

HSim
HelfrichþHSim

x ¼ 1

L2

X
ðu;vÞ

��
kc21
2a2

þ sc2
2

	
~h
�
u;v
~hu;v�gc1~s

�
u;v
~hu;v

�
;

(14)

where (*) denotes complex conjugation, and the coefficients are given by
c1ðu; vÞ h 2½2� cosð2pu=LÞ � cosð2pv=LÞ�;
c2ðu; vÞ h 1=2½2� cosð4pu=LÞ � cosð4pv=LÞ�: (15)

We emphasize that Eq. 14 is the exact result obtained by Fourier transform-

ing the corresponding real-space terms using the finite-difference expres-
sion of Eq. 11, i.e., the energy computed in real space is identical to that

in reciprocal space. The Fourier amplitudes, ~X, of the spin and height vari-

ables are obtained by the two-dimensional Fourier transforms

~Xu;v ¼ P
ði;jÞ

Xi;j e
�2pıðuiþvjÞ=L;

Xi;j ¼ 1

L2

X
ðu;vÞ

~Xu;v e
2pıðuiþvjÞ=L;

(16)
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where ı ¼ ffiffiffiffiffiffiffi�1
p

, and X˛{h,s}. Note that the amplitudes are not all indepen-

dent, but related via complex conjugation, ~h
�
u;v ¼ ~hL�u;L�v, because Eq. 14

must be real.

In general, the mode amplitudes are complex numbers,

~hu;v ¼ ðhRÞu;v þ ıðhIÞu;v;
where hR and hI denote the real and imaginary parts, respectively (to

improve readability, we omit the dependence on u,v in the subsequent
notation). The key point to note is that Eq. 14 is quadratic in hR and hI.

Hence, in thermal equilibrium, these variables are Gaussian-distributed

according to

PðxÞfexp

� ðx � mxÞ2

�
G2

x

�
;

where X˛{hR,hI}. The average is given by the minimum of Eq. 14 as
mhR ¼ gc1Re½~su;v�=
�
kc21=a

2 þ sc2
�
;

mhI ¼ gc1Im½~su;v�=
�
kc21=a

2 þ sc2
�
;

(17)

while the variance follows from equipartition
G2
hR ¼ G2

hI ¼ 1

2
kBTL

2=
�
kc21=a

2 þ sc2
�
; (18)

The exception is for purely real modes, for which hI¼ 0. In this case, P(hR)

remains Gaussian with average mhR but increased variance, G
2
hR / 2G2

hR.
To update the height variables, a fast Fourier routine is used to compute

the spin amplitudes, ~su;v. We then generate a new set of height amplitudes,
~hu;v, each one drawn from its corresponding Gaussian distribution, and

back-transform to obtain the real-space height variables, hi,j. In this proce-

dure, there is no accept/reject decision. The advantage of this MC move is

that it yields a completely decorrelated set of height variables, at the expense

of two (fast) Fourier transforms. In our simulations, spin flips and Fourier

height moves are typically attempted in a ratio (10L2:1), respectively.
Order parameter distribution

In the analysis to be presented, a key role is played by the order-parameter

distribution, P(m), defined as the probability to observe the membrane with

composition,

m ¼ L�2
X
ði;jÞ

si;j:

During the simulations, as spins are flipped, m fluctuates; P(m) is the histo-

gram of observed m values. The distribution depends on all the model pa-
rameters, including the system size L. For a system of size L, there are L2

possible values of the composition. To accurately obtain P(m), it is required

that the simulation visits all of them. We used successive umbrella sampling

for this purpose (35), where the range, L2m ¼ �L2, �L2 þ 2,.,L2, is

sampled on successive steps. As the number of steps growsf L2, this anal-

ysis is restricted to relatively small systems, L z 40. In cases where only a

single snapshot is required, for instance to measure the structure factor,

much larger lattices L ¼ 200 can be used. To enhance efficiency, we used

histogram reweighting (36) to extrapolate data obtained for given model

parameters (here: J and g) to different (nearby) values.
Model parameters and units

In what follows, we use reduced coupling constants J, k, s, and g, which

have a factor 1/kBT absorbed into them. All lengths are measured in units

of the lattice spacing, a. We set k ¼ 20 and s ¼ 1. With this choice, we

expect gLif ¼
ffiffiffiffiffiffi
sB

p
to be of order unity. The characteristic length of the
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composition fluctuations is then l ~ (k/s)1/2 z 4.5. Because this physically

relevant length scale is significantly larger than our spatial discretization, l

>> ah 1, our choice mitigates lattice artifacts of the discretized curvature

Hamiltonian. Yet, l is small enough such that we can investigate systems

that comprise many domains, L>> l. If we take typical values for the mem-

brane tension s ~ 10�5–10�6 N/m (18), ambient temperature T ¼ 300 K,

and bending rigidity k ¼ 20 kBT, then (k/s)1/2 z 90–300 nm.
FIGURE 2 Membrane structure in the disordered fluid phase, i.e., regions

f1 and f2 of the phase diagram (data for J ¼ 0.4, L ¼ 200, with the lattice

constant a as the unit of length). (a) Static structure factor, S(q), for curva-

ture-composition coupling, g ¼ 0, 1, 2, 3, 4, 5 (from top to bottom). When

g¼ 0, S(q) assumes its maximum at q¼ 0, characteristic of region f1. When

g> gLif, the maximum occurs at a finite value, q*> 0 (region f2), and shifts

to larger q as g increases. In region f2, the membrane resembles a raft phase,

with composition fluctuations of typical size l*. (b) Comparison between

the simulated S(q) (data) and the mean-field form Eq. 6 for g ¼ 3 (fit).

(c) l*, as computed via Eq. 20, as a function of g, for several values of J.

As g increases, the curves approach the theoretical estimate ~(k/s)1/2

(18) (indicated by the horizontal line). To see this figure in color, go online.
RESULTS

No curvature coupling: g ¼ 0

For g ¼ 0, the model defined by Eq. 9 reduces to the two-
dimensional Ising model (37). In situations where the
composition m can fluctuate freely, the corresponding phase
behavior is as follows: For J>Jcrit ¼ lnð1þ ffiffiffi

2
p Þ=2z0:44,

the Ising model phase separates into two coexisting
phases—one where the majority of spins are positive
(composition m > 0), and one where they are negative
(composition m<0). These phases are identified as the lo
phase and the ld phase. When J < Jcrit, the Ising model is
in the disordered fluid phase, characterized by m ¼ 0. The
transition, at J ¼ Jcrit, is continuous, and belongs to the
two-dimensional Ising universality class. This corresponds
to the point Is in Fig. 1. In cases where the composition is
fixed, which is typical for experiments, the same scenario
applies provided that m ¼ 0. For ms0, the transition occurs
at a larger value of J and is first-order.
Fluid phase with curvature coupling

We now consider the fluid phase in the presence of curva-
ture-composition coupling g > 0, corresponding to regions
f1 and f2 in Fig. 1. Because this is the one-phase region, the
Ising interaction constant J is below its critical value Jcrit.
Here, we choose J ¼ 0.4. In Fig. 2 a, we show the static
structure factor, S(q), for several g, where

Sð~qÞ ¼
*

1

L2

�����
X
ði;jÞ

si;jexpðı~q ,~rÞ
�����
2+

; (19)

with~r ¼ ði; jÞ, wave vectors~q ¼ 2pðu; vÞ=L, and h,i denot-

ing the thermal average. Note that Fig. 2 shows the angular
averaged S(q), where q ¼ j~qj. For g ¼ 0, S(q) reaches its
maximum at q ¼ 0. When g exceeds a threshold value
gLif, S(q) reaches its maximum at a finite wave vector,
q* ¼ 0. In Fig. 2 b, we compare the simulated structure fac-
tor to the mean-field prediction of Eq. 6 using g ¼ 3. We
observe that the simulated S(q) can be well fitted with the
mean-field form (in fitting to Eq. 6, the ratio s/k was set
to the value used in the simulation; A, B, and g were the
fit parameters). The threshold value of g where q* first be-
comes nonzero marks the crossing of the Lifshitz line,
where the membrane goes from region f1 / f2. The biolog-
ical significance is that, once this line has been crossed, the
membrane is characterized by composition fluctuations of a
characteristic size l* ¼ 2p/q*. In simulations, it is conve-
nient to measure l* numerically using the formula (38)

l� ¼ 2p

R
SðqÞdqR
qSðqÞdq: (20)

Fig. 2 c shows l* versus g for various values of J. As g in-

creases, the curves approach to a common value. Schick
(18) predicts this length to be of ~(k/s)1/2, marked with
the horizontal line. The presence of a characteristic length
scale l* may also be inferred from simulation snapshots
that are presented in Fig. 3. Shown are typical membrane
configurations, for two values of g, and several values of J.

Next, we ask whether the raft domains are functional, i.e.,
be able to serve as platforms for biologically relevant tasks.
To this end, there should be a composition contrast between
the raft domains, and the surrounding host phase. To show
the contrast, we performed a grid analysis at J ¼ 0.43 and
g¼ 1. For g¼ 1, macroscopic lo/ld phase separation occurs
when J T 0.51 (evidence is presented in the next section).
Hence, J¼ 0.43 is deep inside the fluid region f2 of the phase
diagram, well away from the lo/ld coexistence region (J ¼
0.43 is even below Jcrit of the two-dimensional Ising model).
In the grid analysis, a w�w cell is selected randomly from
the snapshot, and the (normalized) composition

m ¼ �
1=w2

�X
i˛cell

si

in that cell is recorded. One then repeats this procedure

for different random locations in a snapshot and different
snapshots along the simulation trajectory, and constructs a
Biophysical Journal 107(7) 1591–1600



FIGURE 3 Typical membrane configurations, for several values of J, and for two values of the curvature-composition coupling, namely g ¼ 5 (top row)

and g¼ 3 (lower row). The lattice size is L¼ 200. (Blue) Lo domains; (yellow) ld domains. The snapshots left of the vertical line (J% 0.7) correspond to the

raft region f2 of the phase diagram of Fig. 1. In this case, the membrane is characterized by composition fluctuations of typical size ~(k/s)1/2 (18), but there is

no long-range order. The snapshots at J ¼ 0.9 show modulated phases (region mod of Fig. 1), where the domains have crystallized into lamellae (in two

dimensions, we do not expect the orientational order to be long-ranged, but rather to decay algebraically with system size (37)). To see this figure in color,

go online.
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histogram HðmÞ of the observed composition values on the
length scale, w. In Fig. 4, we show howHðmÞ depends on the
grid size, w. For small w, the histograms are distinctly
bimodal, whereas for large w a single peak is observed.
For w corresponding to the raft size, which for our parame-
ters is ~4.5, HðmÞ is still bimodal, showing that raft domains
ðm � þ1Þ are clearly resolved from the surrounding phase
ðm � �1Þ. The results of Figs. 2 and 4 provide a numerical
confirmation of Schick’s hypothesis (18). If composition is
coupled to curvature, there indeed exists a fluid phase, f2,
-1  0  1

w = 2
0

–m)

–m -1  0  1

w = 3

–m -1

w = 5
0

1
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with composition fluctuations compatible with the raft scale.
This fluid phase persists well away from the lo/ld coexis-
tence region, i.e., it does not require the membrane to be
tuned close to a critical point.
Phase transitions

As stated above, for g¼ 1 and JT 0.51, the membrane is in
the lo/ld coexistence region. This conclusion is based on the
order-parameter distribution, P(m), introduced in Order
 0

w = 4

–m

w = 7

FIGURE 4 Results of a grid analysis at J ¼ 0.43

and g ¼ 1 showing the histogram HðmÞ of the

normalized compositionmmeasured inw� w cells.

Forw in the range of the raft size ~(k/s)1/2¼ 4.5, the

histograms remain distinctly bimodal, implying a

clear contrast between raft domains ðm � þ1Þ and
the surrounding host phase ðm � �1Þ. To see this

figure in color, go online.
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FIGURE 6 Finite-size scaling analysis of the phase transition between

the lo/ld coexistence region and the fluid phase. (a) The composition fluc-

tuation c versus J for various system sizes L and g ¼ 1. The pronounced

peak, at J ¼ JL, and the increase of the peak height cL with L, indicates

that a phase transition occurs. (b) The scaling of the maximum composition

fluctuation lncL with lnL for g ¼ 1. The linear increase indicates a power-

law cL f Lr, with r ~ 2.0 obtained by fitting. This shows that the transition

for g ¼ 1 is first-order. (c) The exponent r versus g. For large g, the tran-

sition is first-order (r ¼ 2), whereas lower values of g reveal a continuous

transition approaching r ¼ 7/4 of the two-dimensional Ising model. (d) JL
versus L�2 for g ¼ 1. (Dashed line) Linear fit, whose intercept yields J of
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Parameter Distribution. In Fig. 5 (main panel), we show
lnP(m) for g ¼ 1 and J ¼ 0.53. We observe a pronounced
bimodal distribution, featuring two sharp peaks symmetri-
cally distributed around ~m ¼ 0. This bimodal shape is
the hallmark of two-phase coexistence (39), each peak rep-
resenting one phase—in this case, the lo and ld phases. To
ensure that the observed bimodal shape is not a finite-size
artifact, Fig. 5 (inset) shows how the free-energy barrier
DF (double arrow) scales with the lattice size. As L in-
creases, DF linearly increases, providing further confirma-
tion of genuine lo/ld coexistence (40). The slope, DF/2L
> 0, quantifies the line tension between the two laterally co-
existing phases (41).

In mean-field theory, the transition between the fluid and
the lo/ld coexistence region is continuous. Our simulations,
in contrast, reveal that the latter transition becomes first-or-
der, provided g is large enough. To quantify this, we study
the composition fluctuation

c ¼ L2
�
m2
�� hjmji2�

(42), with averages defined as

N

the thermodynamic limit. To see this figure in color, go online.
hf ðmÞi ¼ R
f ðmÞPðmÞdm:

In Fig. 6 a, we plot c versus J for various lattice sizes L at

g ¼ 1. For each curve, there is a value J ¼ JL, where c rea-
ches its maximum cL. The observation of a maximum in the
composition fluctuation is the hallmark of a phase transition.
However, phase transitions are defined only in the thermo-
dynamic limit L / N, and so we must carefully check
how our data scale with L. Finite-size scaling theory
(38,39,43,44) predicts that cL f Lr, with r ¼ 7/4 if the tran-
sition is critical and of the two-dimensional Ising universal-
ity class, and r ¼ D ¼ 2 if the transition is first-order with D
being the spatial dimension. In Fig. 6 b, we plot cL versus L
on double logarithmic scales. The expected power-law
scaling is strikingly confirmed, with an exponent, r z 2.0,
FIGURE 5 Simulation evidence showing that, for J¼ 0.53 and g¼ 1, the

membrane is in the two-phase lo/ld coexistence region. (Main panel) Prob-

ability distribution, lnP(m), for several system sizes, L. The distributions are

distinctly bimodal. (Vertical double-arrow) For L ¼ 20, defining the barrier

DF. (Inset) DF versus L; a linear increase is observed, consistent with the

expected scaling for coexistence in D ¼ 2 dimensions (40). To see this

figure in color, go online.
obtained by fitting. Hence, our scaling analysis indicates
that for g ¼ 1 the transition is first-order. In Fig. 6 c, we
plot r versus g. For small g, the exponent, r, approaches
the two-dimensional Ising value. This is to be expected
because, for g ¼ 0, Eq. 9 is the Ising model.

From this simulation evidence, we propose the following
scenario for the transition between the fluid phase and the
lo/ld coexistence region: In the absence of curvature-
composition coupling, g ¼ 0, the transition is continuous
and of the two-dimensional Ising class. For large g, the tran-
sition is first-order. Hence, there is a special intermediate
value, g ¼ gtri, where the type of the transition changes
from continuous to first-order—in the language of phase
transitions, this is called a tricritical point (45). In the ther-
modynamic limit, we thus expect that r ¼ 7/4 for g < gtri,
and r ¼ 2 for g > gtri. The smooth variation of r depicted
in Fig. 6 c indicates that the systems considered by us are
too small to see the asymptotic scaling behavior. In these sit-
uations, one observes crossover scaling (46), which is char-
acterized by effective exponents in-between the Ising and
first-order values. Hence, a precise determination of gtri is
not possible, but we estimate gtri z 0.6–1.0 because the
slope of r versus g changes most rapidly in this interval.
The reason that prevents us from locating the tricritical point
more precisely is the requirement that L must be large
compared to the physical length scale (k/s)1/2 ~ 4.5 of the
noncritical composition fluctuations. In terms of the latter
length, our simulated systems are clearly very small, and
so we cannot reach the accuracy that is typical for studies
of tricritical behavior using simpler models (47).
Biophysical Journal 107(7) 1591–1600
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Finally, we present the simulated phase diagram, in the
regime of small g. For each g, the inverse transition temper-
ature, JN, in the thermodynamic limit was obtained using
the finite-size scaling formula JN � JL f 1/Ls. For the
two-dimensional Ising model, s ¼ 1, whereas for a first-or-
der transition, s ¼ D ¼ 2. In Fig. 6 d, we show the result of
the corresponding linear fit for g ¼ 1 using s ¼ 2; the inter-
cept yields JN. Because gtri is not precisely known, it is not
clear which value of s to use in the extrapolation. However,
the resulting estimates do not sensitively depend on s. We
therefore performed the fit for both values, and report for
JN the average value. The resulting phase diagram is pre-
sented in Fig. 7, which shows 1/ JN versus g. This curve
separates the fluid phase from the lo/ld coexistence region,
and it is the simulation analog of the mean-field phase dia-
gram of Fig. 1 for small values of g. Note that Fig. 7 does
not show the transitions toward the modulated phase, which
one expects for large J and large g (see the snapshots for J¼
0.9 in Fig. 3 or, alternatively, the experiments in Toulmay
and Prinz (48)). The analysis of the f2 4 mod transition
is very demanding numerically and not attempted here
(due to the large value of J, the accept rate of the spin-flips
will be low). We merely remark that, if fluctuations are
taken into account, the transition f2 4 mod will shift to
larger values of J and g, i.e., the region f2 is expected to
be larger than the mean-field estimate of Fig. 1 because ther-
mal fluctuations extend the stability of the disordered phase
at the expense of the spatially modulated phase.
CONCLUSIONS

In this article, we have presented computer simulations of a
phase-separating membrane, in which the local composition
was coupled to the local membrane curvature. There are two
central conclusions to be drawn from this work, as follows.

The first conclusion is the numerical confirmation of the
theoretical hypothesis (18) that curvature-composition
coupling can induce a disordered fluid phase with a structure
FIGURE 7 The simulated phase diagram of Eq. 9 in the regime of small

g. Plotted is 1/JN versus g, which separates the fluid phase from the lo/ld

coexistence region (squares indicate the results of our finite-size scaling

analysis, the dot marks the exact location of the two-dimensional Ising

critical point). For g < gtri (g > gtri), the transition between the fluid

and the lo/ld region is two-dimensional Ising-critical (first-order). Based

on the scaling analysis of Fig. 6 c, we estimate the tricritical point to be

~ gtri ~ 0.6–1.0. To see this figure in color, go online.
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factor, whose maximum occurs at a finite wave vector q* >
0. The associated length scale is set by the elastic properties
of the membrane, in this case, the bending rigidity k and the
surface tension s. For typical values of k and s, the charac-
teristic scale (k/s)1/2 z 100 nm, which is compatible with
the size of lipid rafts. For biological applications, it is inter-
esting that these curvature-stabilized rafts survive at high
temperature, i.e., well above the temperature of lo/ld phase
separation. Hence, it is not necessary for the membrane to
be tuned close to any phase transition. Admittedly, the
100-nm raft scale of this model is on the high end (49).
However, alternative models are easily formulated, for
instance by coupling the composition to the bilayer thick-
ness (20). This leads to a mathematically similar model,
sharing the same generic phase diagram (31), but with a
numerically smaller raft size. The purpose of this article,
however, was not to precisely reproduce the raft size, but
rather to demonstrate how the generics of membrane phase
separation are affected by a coupling to membrane shape.

Our second main result concerns the nature of the transi-
tion from the fluid phase to the lo/ld coexistence region.
Provided the curvature-composition coupling, g, is large
enough, this transition becomes first-order, whereas for
small g, the transition is two-dimensional Ising-critical.
The observation of a first-order transition at large g is
consistent with results obtained for microemulsions (50),
as well as recent simulations of a Landau-type model
(51). This result is important because membrane phase sep-
aration is typically assumed to be a continuous transition
belonging to the universality class of the two-dimensional
Ising model. As our data show, this assumption may not
be justified in situations where membrane composition
and curvature are coupled.

Finally, we wish to emphasize the importance of finite-
size scaling in the analysis of phase transitions. The system-
atic investigation of how results depend on system size is not
yet standard in biophysics. This can have several conse-
quences, an extreme example being the false identification
of phase transitions, as has occurred for the Pink membrane
model (52,53). Furthermore, in biophysical applications, it
could even be that experiments are affected by finite sizes.
For instance, a typical fluorescence image spans ~1 mm,
which is not that much larger than the 100-nm raft scale
of this model.
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