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Abstract: Carbon nanotubes (CNTs) have emerged in recent years as a potential option for drug
delivery, due to their high functionalization capacity. Biocompatibility and selectivity using
tissue-specific biomolecules can optimize the specificity, pharmacokinetics and stability of the
drug. In this study, we design, develop and characterize a drug nanovector (oxCNTs-HA-CPT)
conjugating oxidated multi-wall carbon nanotubes (oxCNTs) with hyaluronate (HA) and carboplatin
(CPT) as a treatment in a lung cancer model in vitro. Subsequently, we exposed TC–1 and NIH/3T3
cell lines to the nanovectors and measured cell uptake, cell viability, and oxidative stress induction.
The characterization of oxCNTs-HA-CPT reveals that on their surface, they have HA. On the other
hand, oxCNTs-HA-CPT were endocytosed in greater proportion by tumor cells than by fibroblasts,
and likewise, the cytotoxic effect was significantly higher in tumor cells. These results show the
therapeutic potential that nanovectors possess; however, future studies should be carried out to
determine the death pathways involved, as well as their effect on in vivo models.

Keywords: multi-wall carbon nanotubes; nanomedicine; tumor cells; hyaluronate; carboplatin

1. Introduction

Carbon nanotubes (CNTs) are cylindrical nanostructures first described in 1991 [1]. CNTs are a
carbon allotrope, and their structure can be elucidated as a rolled sheet of graphene, which is formed
for hexagonally bound sp2 carbon atoms [2]. Based on the number of graphene sheets found their
structure can be classified as single-walled carbon nanotubes (SWCNTs) or multiple wall carbon
nanotubes (MWCNTs) [3]. CNTs diameter can range from 0.4 to 2 nm for SWCNTs and 10 to 100 nm
for MWCNTs, while the length could measure a few microns (10 to 50 µm) [4]. CNTs have special
features like hollow structure, electrical conductivity, and high aspect ratio that make them strong
candidates for use in nanomedicine [5], especially for drug delivery, biosensors or tissue scaffolds [6].
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However, previous studies described that cell interaction with CNTs produces acute inflammation,
apoptosis, the formation of reactive oxygen species (ROS) and death induction by autophagy [7,8].

Functionalization in CNTs is a very successful process to increase biocompatibility and
dispersibility in aqueous solutions, this is due to their high aspect ratio, allowing to couple a
greater number of molecules on the surface [9]. Functionalization promotes interaction of CNTs
with biomolecules [7], prevents the formation of toxic aggregates [3] and makes them suitable for
drug delivery or proteins and nucleic acid cleavage on inner or outer sheets [10], e.g., hyaluronic
acid (HA). This compound act as a ligand of the CD44 receptor, which is overexpressed in a large
number of tumors and has been widely used to biodirect MWCNTs for drug delivery [11–13]. In this
sense, MWCNTs are more resistant to functionalization than SWCNTs, since this process involves the
breakage of C = C bonds in graphene, which would leave it exposed to breaks in the latter [14].

Since the discovery of the potential use of CNTs as drug carriers, numerous studies have been
conducted to demonstrate the efficacy and safety of such nanomaterials, using a variety of antineoplastic
molecules like doxorubicin [15], gemcitabine [4], paclitaxel [14], and diverse platinum-based drugs [16].

Carboplatin (CPT) is an FDA approved homologous drug of cisplatin, with differences in its
pharmacokinetics and pharmacodynamics very frequently used as chemotherapy for lung cancer and
various types of cancers [17]. Previous in vitro studies have analyzed the antineoplastic efficacy of CPT
coupled to CNTs, finding that breast, prostate, kidney, and bladder tumor cell lines are more sensitive to
CNTs–CPT nanostructures than CPT alone, probably due to the drug protection and prolonged release
effect conferred by the CNTs [18,19].However, the use of functionalized CNTs to carry platinum-based
drugs to optimize its delivery in a lung cancer model has never been attempted.

Although HA has been widely used to biodirect MWCNTs for drug delivery, in our study,
we constructed a nanovector based on CNTs functionalized with HA to directed delivery of CPT in
a cellular model of murine lung cancer, using mouse TC-1 cells as a tumor line and NIH/3T3 as a
non-tumor cell line. We performed cytotoxic characterization and selectivity tests to evaluate the
efficacy and safety of our nanocomposite.

2. Materials and Methods

2.1. Nanovectors Construction

The MWCNTs were purchased from Nanostructured and Amorphous Materials, Inc. (Houston, TX,
USA). The graphitized MWCNTs have a 99.9% purity (stock: #1240YJF) and are slightly functionalized
with carboxyl groups (-COOH) that represent less than 0.26% by weight. MWCNTs diameter range
was 50 to 80 nm with an internal diameter of 5 to 15 nm, while the length is between 10 to 20 µm.

First, the commercial carbon nanotubes (cCNTs) were oxidized with acid treatment to increase
the number of carboxyl groups on the surface. For this, 40 mg of cCNTs were added to a solution
of 8 mL of 3:1 ratio of H2SO4: HNO3, this mixture was ultrasonicated for 15 min and homogenized
under vigorous magnetic stirring for 5 h. Subsequently, the oxidized carbon nanotubes (oxCNTs)
were separated by centrifugation and washed to a neutral pH and finally resuspended in acetone and
dried in an oven at 60 ◦C. oxCNTs functionalized with HA (oxCNTs–HA) were prepared according to
previous reports [20]. Briefly, 20 mg of oxCNTs were dispersed in 8 mL of DMSO by ultrasonication for
30 min and activated with a solution of EDC-HCl (N-(3-Dimethylaminopropyl)-N′-ethyl carbodiimide
hydrochloride) and NHS (N-Hydroxysuccinimide) in DMSO (20 mg and 10 mg respectively in 0.8 mL)
homogenized with magnetic stirring, allowing activation of carboxyl groups for 3 h in magnetic stirring
and the solution of polyethyleneimine (20 mg in 2 mL of DMSO) as coupler is added, allowing to react
for 48 h, then separated by centrifugation and left in the oven at 60 ◦C until dry. Subsequently, HA was
solubilized in DMSO (20 mg in 1.5 mL) and activated with a solution of EDC-HCl in DMSO (20 mg in
0.8 mL) for a period of 3 h. Finally, the activated HA solution was added dropwise to the oxCNTs
solution; then, this reaction was homogenized for 48 h to create oxCNTs–HA nanovectors. Finally,
CPT was incorporated into the inner space of the oxCNTs–HA through the nano-extraction method
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described previously [21]. Briefly, 5 mg of oxCNTs–HA were resuspended in 5 mL of pure ethanol,
and 5 mg of CPT were added. Then, the solution was allowed homogenizing by magnetic stirring for
72 h. Finally, the oxCNTs–HA–CPT were washed with methanol 3 times and dried in an oven at 60 ◦C
for 48 h.

2.2. Characterization of the Constructed CNTs Using Transmission Electron Microscopy (TEM), Infrared
Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Hydrophobicity Index Test

The morphologic characteristics (size and thickness) of the CNTs were analyzed by TEM with a
Carl Zeiss EM-109 microscope at 80 kV, the samples were prepared by dispersing the CNTs in DMSO
(100 µg/mL) in an ultrasound bath for 30 min and 10µLof the solution was deposited on carbon-coated
copper grid and dried at room temperature, observations were made at 20,000×.

To look for experimental evidence of chemical functionalization in CNTs with HA through the
covalent link, Fourier Transform Infrared (FTIR) spectroscopy was used. FTIR spectra were recorded
on a Spectrum One FTIR spectrophotometer (PerkinElmer, Shelton, CT, USA) using the attenuated total
reflectance (ATR) mode at room temperature (RT). cCNTs, oxCNTs, and oxCNTs-HA were deposited
as dry powders onto a zinc selenide (ZnSe) window located in a MIRacle ATR accessory. The powders
were previously dispersed from mechanical exfoliation in agate mortar; no solvent was used through
this process. In addition, the amount of grafted HA onto oxCNTs was determined by thermogravimetric
analysis (TGA) and differential scanning calorimetry (DSC). TGA and DSC curves were acquired by
using an SDT Q600 thermogravimetric analyzer (TA Instruments). Approximately 20 mg of powdered
sample was heated in an open aluminum pan (90µL) under an N2 (99.999%) flow of 100 mL·min−1

with a heating ramp of 10 ◦C·min−1 until 1000 ◦C. The curves recorded showed weight loss (mg).
The hydrophobicity index test is used to know the degree of solubility that a certain compound

presents to polar and non-polar solvents. For this, we used a previously reported method [22], briefly,
solutions of CNTs were made in a range of concentrations from 10 to 100 µg/ml in 3 mL of H2Od
and were sonicated for 15 min, and an aliquot was taken to measure its absorbance at 550 nm (A0).
Subsequently, 3 mL of 1-octanol were added to these solutions, then mixed by vortex for 15 s and left
to stand for 30 min at room temperature, after this time, an aliquot of the aqueous phase was taken and
read at 550 nm (A1), and the hydrophobicity index was calculated according to the following equation:[

A0 − A1

A0

]
× 100%, (1)

2.3. Cell Culture

In this study, we used two types of cells: The tumor cell line TC-1 (mouse pulmonary epithelium
transformed with HPV-16 E6 and E7 proteins) and the non-tumor cell line NIH/3T3 (rat fibroblast),
both were obtained from the ATCC (Manassas, VA, USA). TC-1 cells were cultured using RPMI 1640
supplemented with 10% inactivated fetal bovine serum (FBS), while DMEM supplemented with 10%
newborn calf serum was used for NIH/3T3 cells. Also, the HeLa cervical cancer cell line was used as a
positive control of the immunohistochemistry (IHC) to detect CD44; and these were cultured with
DMEM medium supplemented with 10% FBS. All cell lines were kept in an incubator at 37 ◦C in an
atmosphere containing 5% CO2. For the cell capture, viability and ROS assays, the cells were treated
with the different types of CNTs, which were resuspended in the corresponding culture media for each
cell line (supplemented with FBS).

2.4. Evaluation of Cell Uptake of the Nanovectors in the Tumor and Non-Tumor Cell Lines by Light Microscopy
and TEM

Since the CNTs enter the cells by means of phagocytosis, forming intracytoplasmic vesicles, it is
necessary to embed the cells with epoxy resins to obtain ultrathin sections to be analyzed by TEM
and semi-thin sections for bright field microscopy. For this, we incubated 1 × 106 cells in 60 mm
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dishes and allowed them to adhere for 24 h. Subsequently, they were treated with cCNTs, oxCNTs,
oxCNTs-HA-CPT and CPT at 10 µg/ml for 24 h in culture medium, were harvested using 0.25% trypsin,
washed twice with 1× sterile PBS (pH: 7.4) and they were fixed with 2.5% glutaraldehyde for 24 h and
post-fixation with 2% OsO4 for 30 min. The samples were dehydrated with an acetone gradient and
embedded in epoxy resin (Resin embed-812, EMS. # Cat: 14120). Finally, semi-thin (150 µm thick,
toluidine blue-stained) and thin (80 µm thick, lead citrate and uranyl acetate contrasted) sections were
obtained by ultramicrotomy.

In semi-thin sections, cells with endoplasmic vesicles containing nanovectors were counted,
considering a total of 300 cells per histological preparation (n = 5) to yield the percentage of positive
cells in each treatment. Moreover, in ultrathin sections, the endoplasmic vesicles were observed
and described.

2.5. MTT Assay

The mitochondrial function of the cell can be evaluated based on the activity of the
reductases found in this organelle. To determine such activity, we decided to use the MTT assay
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], which is reduced to formazan by such
enzymes. 7.5 × 103 cells per well (n=7) were incubated in a 96-well plate and allowed to adhere for
24 h. Subsequently, CNTs and CPT were added to cells for 24 h. After that, MTT was added to each
well and incubated for 3.5 h at 37 ◦C, then MTT was removed, and MTT solvent (4mM HCl, 0.01%
NP40 in isopropanol) was added, the plate was stirred for 15 min before absorbance reading at 590 nm.

2.6. Determination of ROS

Reactive oxygen species (ROS) were determined using the dihydroethidium (DHE) probe, which is
a molecule that oxidizes in the presence of oxidizing radicals such as the superoxide ion (O2

−) or
hydrogen peroxide (H2O2) generates fluorescence. In this study, ROS were measured by flow cytometry,
based on a method previously established by our research group [23]. Briefly, 1 × 106 cells were plated
on 60 mm plates and left 24 h for adhesion. Subsequently, the cells were treated with CNTs and CPT
for 24 h and then exposed to DHE (10 µM) for 15 min, for the negative control (basal oxidative stress),
the cells had only a renewal of fresh medium supplemented when administered treatments. Then,
the cells were harvested, washed with 1×PBS and resuspended to be measured by flow cytometry
(Muse Cell Analyzer, Millipore Sigma).

2.7. Statistic Analysis

Descriptive Statistics: Qualitative variables were summarized by calculating absolute and relative
frequencies in percentage and Confidence Intervals (CI) at 95%. The quantitative variables were
summarized by means of the calculation of measures of mean and/or median central tendency and,
measures of dispersion, standard deviation (SD) and/or distance of the variable. For the calculation of
the CI, the typical error of the mean was obtained.

Inferential Statistics: In the possible groups defined by the modalities of qualitative variables in
the sample, the Chi-Square test (yacht correction) was applied. For 2 × 2 contingency tables, Fisher’s
exact test was applied. The calculations were made with the SPSS v17 program. In all the analyzes,
the criteria of α ≤ 0.05, 1–β = 80% and two-tailed tests were applied.

3. Results

3.1. Morphological and Chemical Characterization of Constructed Nanovectors

The nanovectors obtained commercially, and those produced in this study were first analyzed
through TEM. The oxCNTs – HA – CPT presented better dispersion and have thicker and dense walls
compared to those commercially acquired (Figure 1a).
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which is characteristic of the C=O carboxyl amide I group in HA, confirming the successful 
modification. Furthermore, the peaks of oxCNTs-HA located at 1584 cm–1 and 1489 cm–1 are due to 
stretching and vibration of CH moieties of HA. None of these distinctive features appeared in the 
spectrum of cCNTs, evidencing that the functionalization of HA in CNTs using polyethyleneimine 
has been carried out successfully. 

TGA curves (Figure 1c) showed a slight and uniform weight loss of about 2–3%, due to 
physisorbed water occurred at the temperatures up to 110 °C. The contribution of oxidized moieties 
covalently bound to cCNTs was estimated in a percentage of about 2–3% for oxCNTs, further weight 
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Figure 1. Physical characterization for as prepared nanovectors. In panel (a) is shown the electron
micrographs cCNTs (left) and oxCNT’s-HA-CPT (right). FTIR spectra of cCNTs (dotted line) and
oxCNTs-HA (solid line) showing the most representative bands in the range from 1800 to 1400 cm−1 (b).
Thermogravimetric analysis in conjunction with differential scanning calorimetry curves are showed in
figures (c,d), respectively. Finally, the hydrophobicity index is shown in (e) (Bars indicate the mean ±
SD, n = 5, *p< 0.05).

To elucidate the organic component of functionalized nanovectors, we perform FTIR spectroscopy
and TGA. The ATR-FTIR spectra (baseline uncorrected) of cCNTs and ox–CNTs–HA samples are
shown in Figure 1b. Spectral features in the functionalized CNTs appear at 1400–1800 cm−1. In this
region we can observe the typical peak of oxCNTs-HA at about 1700 cm−1 which is characteristic of the
C=O carboxyl amide I group in HA, confirming the successful modification. Furthermore, the peaks of
oxCNTs-HA located at 1584 cm−1 and 1489 cm−1 are due to stretching and vibration of CH moieties
of HA. None of these distinctive features appeared in the spectrum of cCNTs, evidencing that the
functionalization of HA in CNTs using polyethyleneimine has been carried out successfully.

TGA curves (Figure 1c) showed a slight and uniform weight loss of about 2–3%, due to physisorbed
water occurred at the temperatures up to 110 ◦C. The contribution of oxidized moieties covalently
bound to cCNTs was estimated in a percentage of about 2–3% for oxCNTs, further weight loss after
440 ◦C that can be related to a gradual decomposition of the oxidized walls; the weight loss is about 1%
indicating that the percentage of oxidation is no longer than 3%. In the case of oxCNTs–HA samples,
TGA indicates a weight loss of about 10% related to the decomposition for both organic moieties from
HA and CNTs. However, the total decomposition of grafted HA can be observed at 366 ◦C in which the
abrupt weight loss is about 2.5%. Finally, a further stepwise for oxCNTs–HA occurs in the range from
375–570 ◦C, which can be related to the CNTs entity per se, due to a gradual thermal decomposition of
the structure.
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From DSC curves (Figure 1d), there is observed that the calorimetric events occurred in different
ways for the three samples analyzed. These curves indicate all the exothermic processes evidencing
the decomposition of all structures. A broad band in all the DSC curves in the temperature range from
200–400 ◦C indicates a large exothermic event related to the heat output. A broad peak appears at
about 425 ◦C for oxCNTs, indicates a decomposition unlike the observed for cCNTs and supporting
the fact that two samples are different in nature. More important, a broader peak at 600 ◦C is observed
for oxCNT-HA indicating a unique exothermic event not observed in the other samples, and which
demands a substantial amount of energy to decompose the sample. Therefore, the decomposition
processes for the cCNTs, oxCNTs, and oxCNTs-HA samples proceeded in a noticeably different way
that can be characterized by strong exothermic events occurring in the corresponding sample analyzed.

In addition, the hydrophobicity index test was significantly lower in the oxCNTs-HA (Figure 1e).
As a result, the constructed nanovectors have a better dispersion and stability in aqueous media,
compared to those acquired commercially.

3.2. Analysis of Constructed Nanovectors Uptake by TC-1 and NIH/3T3 Cell Lines

After the administration of the treatments with CNTs for 24 h to TC-1 and NIH/3T3 cells, we found
different levels of uptake of nanovectors. The uptake of cCNTs (Figure 2a) in TC-1 cells was low, and as
expected, oxCNTs-HA-CPT were taken up in a higher amount because of the high expression of the
receptor for HA (Figure 2b). To validate these observations, we realize TEM analysis and we could
find single vesicles in the cytoplasm of TC-1 cells treated with cCNTs, (Figure 2c) moreover, with the
treatment of oxCNTs-HA-CPT (Figure 2d) multiple vesicles were observed and nanovector uptake was
higher (Figure 2e).
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Figure 2. Nanovectors cell uptake. (a) Control TC–1 Cells (cCNTs). (b) Treated TC–1 Cells with
oxCNTs-HA-CPT. (c) Electron micrograph of a TC–1 cell with endoplasmic vesicle with cCNTs.
(d) Electron micrograph of a TC–1 cell with multiple endoplasmic vesicles with oxCNTs-HA-CPT.
(e) Quantization of cells with CNTs endocytic vesicles (Bars indicate the mean ± SD, n = 5, *p< 0.05).

3.3. Therapeutic Efficacy of Constructed Nanovectors in Tumor and Non-Tumor Cells

The cytotoxic efficacy of antineoplastic compounds is by far the most important characteristic
because it depends on their kinetics, stability, and activity. To determine this property, we use the MTT
assay, which evaluates the activity of mitochondrial enzymes. After 24 h of treatment with the cCNTs,
the fibroblasts showed a decrease in the mitochondrial activity of 25% of normal levels regardless of the
type of nanotube, and this effect was not dose-dependent; only in the CPT treatment, the activity was
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significantly lower in the highest concentration (Figure 3a). Moreover, tumor cells showed a decrease
in metabolic activity in a dose-dependent manner when exposed to cCNTs and CPT; nevertheless,
this effect was much more pronounced in the oxCNTs–HA–CPT, evidencing the optimization of the
antitumor effect of this drug when it is introduced into functionalized CNTs and shows high selectivity
towards tumor cells (Figure 3b).

Nanomaterials2019, 9, x FOR PEER REVIEW 7 of 11 

 

MTT assay, which evaluates the activity of mitochondrial enzymes. After 24 h of treatment with the 
cCNTs, the fibroblasts showed a decrease in the mitochondrial activity of 25% of normal levels 
regardless of the type of nanotube, and this effect was not dose-dependent; only in the CPT 
treatment, the activity was significantly lower in the highest concentration (Figure 3a). Moreover, 
tumor cells showed a decrease in metabolic activity in a dose-dependent manner when exposed to 
cCNTs and CPT; nevertheless, this effect was much more pronounced in the oxCNTs–HA–CPT, 
evidencing the optimization of the antitumor effect of this drug when it is introduced into 
functionalized CNTs and shows high selectivity towards tumor cells (Figure 3b). 

 
Figure 3.Cytotoxicity and oxidative stress induced by nanovectors. (a) 24 h MTT cytotoxicity assay of 
NIH/3T3 cells. (b) 24 h MTT cytotoxicity assay of TC-1 cells. (c) 24 h DHE ROS determination assay. 
(Bars indicate the mean ± SD, n = 7, *p< 0.05). 

3.4. Oxidative Stress Induction by Constructed Nanovectors in TC-1 and NIH/3T3 Cells 

Reactive oxygen species (ROS) generate oxidative damage to various cellular targets such as 
DNA, proteins, and lipids, which alters cell metabolism and induces death pathways [24]. DHE is a 
molecule frequently used to quantify the oxidative state in cells and is specific for O2− or H2O2 
radicals. In general, TC-1 cells showed higher ROS levels than NIH/3T3 (Figure 3c). Interestingly, 
when cCNTs were administered, a significant decrease in oxidative status was observed in both the 
TC-1 and NIH/3T3 cells compared to the basal levels of each cell type. However, with 
oxCNTs–HA–CPT, only a slight increase in ROS was observed in the TC-1 cells. 

4. Discussion 

The aim of this study was to evaluate the uptake, cytotoxicity, and induction of oxidative stress 
of a nanocarrier made of hyaluronate—functionalized CNTs loaded with CPT in murine tumor and 
non-tumor cells. To date, there are few studies that have attempted to efficiently deliver CPT on in 
vitro cancer models and in those that exist, the advantage of functionalization in CNTs has not been 
used to direct these compounds [18,19,25]. 

Currently, many nanocomposites have been designed and developed to optimize diagnosis or 
drug delivery, as each one has different capacities and properties, it becomes essential to 
characterize these compounds morphologically and physicochemically. In our study, the nanotubes 
were treated with acids to oxidize them, thus, increasing their hydrophilicity, dispersibility, 
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NIH/3T3 cells. (b) 24 h MTT cytotoxicity assay of TC-1 cells. (c) 24 h DHE ROS determination assay.
(Bars indicate the mean ± SD, n = 7, *p< 0.05).

3.4. Oxidative Stress Induction by Constructed Nanovectors in TC-1 and NIH/3T3 Cells

Reactive oxygen species (ROS) generate oxidative damage to various cellular targets such as
DNA, proteins, and lipids, which alters cell metabolism and induces death pathways [24]. DHE is
a molecule frequently used to quantify the oxidative state in cells and is specific for O2

− or H2O2

radicals. In general, TC-1 cells showed higher ROS levels than NIH/3T3 (Figure 3c). Interestingly, when
cCNTs were administered, a significant decrease in oxidative status was observed in both the TC-1 and
NIH/3T3 cells compared to the basal levels of each cell type. However, with oxCNTs–HA–CPT, only a
slight increase in ROS was observed in the TC-1 cells.

4. Discussion

The aim of this study was to evaluate the uptake, cytotoxicity, and induction of oxidative stress
of a nanocarrier made of hyaluronate—functionalized CNTs loaded with CPT in murine tumor and
non-tumor cells. To date, there are few studies that have attempted to efficiently deliver CPT on in vitro
cancer models and in those that exist, the advantage of functionalization in CNTs has not been used to
direct these compounds [18,19,25].

Currently, many nanocomposites have been designed and developed to optimize diagnosis or drug
delivery, as each one has different capacities and properties, it becomes essential to characterize these
compounds morphologically and physicochemically. In our study, the nanotubes were treated with
acids to oxidize them, thus, increasing their hydrophilicity, dispersibility, reducing their cytotoxicity and
increasing the binding capacity to HA, which will provide specificity to be internalized preferentially
by cancer cells [20,26,27].
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In TEM analysis, we could observe that in the oxCNTs-HA, the thickness of the walls and the
dispersion increase as in other previously published works [11]. However, due to the limitations of the
microscope used, we were not able to identify the CPT signals within the nanotubes, which have been
reported to be observed as electrodense dots in the inner walls [25]. In the FTIR, the HA-functionalized
nanotubes showed distinctive bands at 1400–1800, especially the peak at 1702 cm−1, representative of
the amidation of the carbonyl group at the position I of the HA [11].

To ensure and quantify the presence of organic compounds (HA) bound to the CNTs, TGA was
used. This analysis showed that the oxCNTs-HA contained at least 2.5% w/w of HA that decomposes
completely at 366 ◦C and this weight loss is not observed in the oxCNTs nor in cCNTs.

The amount of HA in the oxCNTs–HA was slightly lower compared to other reports, this may be
due to differences in the functionalization process, other studies report the use of 2′2 (ethylenedioxy)
bis (ethylene amine) [27] or add an acylation step before amination to obtain higher reaction yields [13].
Finally, we confirm the increase in dispersibility and stability in aqueous solutions of oxCNTs-HA,
since they had a significantly lower hydrophobicity index [22].

It has been reported that the capture and internalization of CNTs in non-phagocytic cells occurs
through transport mediated by clatrine, caveolins, and micropinocytosis [6], Now, it is known that
tumor cells overexpress folate or HA receptors [20], thus, these molecules have been successfully used
as targeting systems in CNTs to attack these cells to a greater extent than healthy tissue [20,27–30],
However, to date, there is not any study using HA with CPT, a drug widely used and approved by the
FDA for therapies against many types of cancer [17], We observed that the capture of our nanovector
by tumor cells was significantly higher than in non-tumor cells, proving that it has a good selectivity
towards neoplastic cells.

Once we show that the nanovectors were well constructed and that they are preferably internalized
in tumor cells, we evaluated the cytotoxic activity they possess. Although the A549 cell line (human
pulmonary adenocarcinoma) is widely used to test the cytotoxicity and safety of nanomaterials targeting
the lung, we decided to apply our nanovectors first in an animal tumor model because we intend
to perfect the ideal composition of the nanovector to scale it in an animal in vivo in the near future.
For this purpose, we use the TC-1 tumor cell line, these cells are mouse pulmonary epithelial cells
transformed with HPV-16 E6 and E7 proteins, and form metastasic tumors specifically in lungs when
inoculated intravenously [31] In previous studies, it has been observed that MWCNTs administered
intravenously, are retained and reside in lung tissue during the first 48 h, reaching a peak of maximum
concentration at 24 h [32]. In addition, CPT is a drug widely used in chemotherapy for lung cancer [33];
therefore, we consider that this cell line has good characteristics to test our nanovector in the context of
a tumor model. In the cytotoxicity tests, the maximum concentration we tested was 50 µg/ml for cCNTs,
ox-CNTs-HA-CPT, and CPT because until that concentration, the cells showed good tolerance to empty
cCNTs. The cytotoxic effect of the constructed nanovector showed to be at least twice compared to the
CPT alone. Other research groups have also observed an improvement in the cytotoxicity of platinum
drugs [19,21,25,34], doxorubicin [20,27] and paclitaxel [35] when they internalize or bind to CNTs.

It is well known that ROS are strongly related to DNA mutations and tumorigenesis [36], and that
tumor cells are deficient in antioxidant enzymes [37], so it is predictable that TC-1 cells have higher
baseline levels of oxidative stress than fibroblasts. Studies show that MWCNTs induce oxidative stress
in vitro [38], however, this effect is nullified when CNTs are purified to remove traces of heavy metals
used in their synthesis such as iron, zinc or cobalt [5]. In our study, we use highly purified CNTs with
very low amounts of Fe (65 ppm) or Al (10 ppm), so when incubated with the cells they do not cause
an increase in ROS, and only a slight increase in the case of ox- CNTs-HA-CPT in TC-1 cells and this
effect can be attributed to the drug [39]. On the other hand, we observe that the ROS levels of the
fibroblasts were reduced when treated with the CNTs, this may be possible because the CNTs have a
great electronic affinity on their molecular orbitals of the carbon atoms of their graphene walls, acting
as a free radical scavenger [40,41], in addition, we observe that this effect is enhanced by the addition
of hyaluronic acid, since it has antioxidant activity as well [42]. The preliminary results of present
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study show that ox-CNTs-HA-CPT have a good and specific antitumor effect in vitro; however, further
studies should be carried out to determine the cell death pathways involved, the amount of CPT in the
nanovector, as well as its application in an in vivo tumor model, in order to know the effects of the
nanovector in a broader sense.

5. Conclusions

In this research, we have demonstrated the therapeutic potential of a nanovector based on
MWCNTs in vitro. The physicochemical properties such as the functionalization capacity presented by
cCNTs represent a very useful tool to biodirect them towards tumors, reducing cell death in adjacent
healthy tissue. For this purpose, our nanovector was coupled with HA, and although there are many
studies that apply this molecule to biodirect nanoparticles, there are no reports in the present literature
of the use of cCNTs with HA to carry platinum drugs. In addition, CPT, being an FDA-approved drug
and widely used in chemotherapy for lung cancer, becomes a viable option to optimize its delivery.
The results of our work indicate that the nanovector is easy to obtain, has adequate functionalization,
good hydrophilicity, disperses well in culture medium and preferably attacks tumor cells and that
they are internalized in a greater proportion in these, compared to normal cells. Although our results
are promising so far, studies are needed to complete toxicity and safety profiles such as determining
the amount of CPT loaded in nanotubes, long-term toxicity tests and the in vivo tumor model. These
studies will help us to optimize the formulation and functionalization and increase the specific toxicity,
the load of the drug and its cellular uptake.
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