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Depression is the most prevalent mental health problem
in older adults and poses substantial public health and
economic burden. Investigation of the underlying risk fac-
tors of depression may improve the identification of at-
risk individuals and guide future efforts for treatment of
depression. Recent studies have found that lack of social
support, poor health, and mobility are important risk fac-
tors for depression among older adults from the United
Kingdom.1,2 However, it is unclear whether these findings
can be generalised to other populations. Additional risk
factors such as cognitive and functional decline need to be
examined for predicting depression risk in later life. Hand-
ing and colleagues harness the power of Big Data from the
Survey of Health, Ageing, and Retirement in Europe
(SHARE Wave 6; n = 67,603) with machine learning to
identify top predictive risk factors for depression in later
adulthood.3 This work presented the first large, multi-
national study to systematically compare a broad array of
socio-relational, health, cognitive, and functional variables
as risk factors for depression in middle-aged and older
European adults.

The machine learning (ML) approach presented by
Handing and colleagues illustrates an effective data-
driven framework for testing a large set of potential
risk/protective factors for depression. In contrast to a
hypothesis-driven approach, ML models can automati-
cally identify patterns and relationships from data with-
out specifying a priori hypotheses. Compared to more
conventional statistical methods, ML models make no
distributional assumptions and allow researchers to effi-
ciently handle multi-dimensional data and capture the
predictive value of all possible combinations of variables
in a data set.4 The random forest analysis used by Hand-
ing and colleagues is a supervised ML model well suited
to examining interaction and nonlinear effects among a
large set of predictors. Top predictive variables can be
identified based on feature importance measures, which
implicitly capture curvilinear effects and complex
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interactions. Though powerful for handling many pre-
dictors and exploring complex patterns, ML models can
be difficult to interpret and don’t test statistical signifi-
cance of predictors. To improve model interpretation, a
split-sample methodology was utilized by the authors,
which divides data into a subset for training ML models
and selecting top predictive variables and another subset
for estimating additional parametric models to test sta-
tistical significance of the selected predictors.3 This
split-sample strategy is effective in discovering impor-
tant risk factors and their associations with health out-
comes by combining cutting-edge ML models with
established statistical methods. Further research is
needed on the development and application of interpret-
able machine learning5 in predicting depression risk.

Self-reported social isolation and poor health were
identified as the strongest risk factors and accounted for
over 20% of variability in depression risk.3 In addition,
Handing and colleagues reported that problems with
mobility, difficulties in instrumental activities of daily
living (in men), and family burden (in women)
accounted for approximately an additional 2% of vari-
ability in depression risk. These findings point to the
need of screening for depression risk in later adulthood
during routine health care visits. In particular, middle-
aged and older European adults who report being
socially isolated are at approximately twice the elevated
risk for depression. This suggests that detection of at-
risk individuals, a key step in depression prevent and
treatment, may be improved by including perceived
social isolation measures in the screening process.

Gender difference in the prevalence of depression is
well documented.6 However, it is unclear how different
risk/protective factors account for a higher depression
rate in women. Handing and colleagues examined a
broad range of predictors of depression in middle-aged
and older men and women in Europe separately. Despite
similar patterns across a number of predictors between
women and men, it was found that difficulties in instru-
mental activities of daily living and self-rated family bur-
den show differential impact in depression risk across
sexes.3 Exploring sex as a potential moderator for linear,
nonlinear, and interaction effects of risk/protective fac-
tors on depression risk is an interesting topic for future
work. Specifically, iterative random forests,7 a recently
developed ML technique, may help to detect stable high-
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order interactions among risk/protective factors and sex
that are predictive of depression risk.

In summary, Handing and colleagues’ work highlights
the use of machine learning approach in identifying
important risk factors of depression in later adulthood.
Future research can build upon this study to examine tem-
poral patterns of risk factors in predicting diagnosis and
severity of depression using longitudinal data. A longitudi-
nal study design allows for better control of subject-level
heterogeneity, investigation of changes in risk/protective
factors and their impact on depression risk, as well as dis-
covery of casual patterns that go beyond cross-sectional
associations. In addition, several recent studies investigated
machine-learning based brain age estimation from imag-
ing data in depression.8−10 Integrating clinical data with
multimodal neuroimaging data through machine learning
may yield new insights about risk factors for depression
and merits future research.
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