
nutrients

Article

Forsythia Fruit Prevents Fulminant Hepatitis in Mice and
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Abstract: Forsythia Fruit (FF), the fruit of Forsythia suspensa, has been used since ancient times as
an herbal medication in East Asia to treat inflammation, gonorrhea, and pharyngitis. However, the
efficacy of FF against liver damage due to inflammation has not been studied. Here, we explored
the protective effects of FF in a mouse hepatitis model induced by lipopolysaccharide (LPS)/D-
galactosamine (GalN) treatment. We measured inflammatory cytokine and aminotransferase levels
in mouse blood and analyzed the effects of FF on inflammatory gene and protein expression levels
in liver tissue. Our results show that FF treatment effectively lowers inflammatory cytokine and
serum aminotransferase levels in mice and inhibits the expression of hepatic cytokine mRNA and
inflammatory proteins. Furthermore, treatment with FF activated the antioxidant pathway HO-
1/Nrf-2 and suppressed severe histological alteration in the livers of LPS/D-GalN-treated mice.
Further investigation of the effects of FF on inflammatory reactions in LPS-stimulated macrophages
showed that pretreatment with FF inhibits inflammatory mediator secretion and activation of in-
flammatory mechanisms both in a mouse macrophage RAW 264.7 cells and in primary peritoneal
macrophages. These results show that FF has potential worth as a candidate for the treatment of
fulminant inflammatory reactions and subsequent liver injury.

Keywords: Forsythia Fruit; liver injury; inflammation; antioxidant; lipopolysaccharide; D-galactosamine

1. Introduction

Fulminant liver injury is characterized by rapid, widespread liver dysfunction and
can result in encephalopathy, jaundice, and severe coagulopathy [1,2]. It is also a clinical
manifestation of sudden and severe hepatic failure, which is difficult to prevent and treat,
resulting in poor prognosis and a high mortality rate [3]. The main causes of acute liver
injury are antigen-induced infections and poisoning by hepatotoxic drugs, but there are also
many unknown causes [2]. At present, the only effective treatment is liver transplantation,
so the development of effective prevention and treatment modalities are necessary [4].

Lipopolysaccharide (LPS) is an endotoxin originated from the gram-negative bacteria
E. coli and was initially confirmed as a Toll-like receptor 4 (TLR4) ligand, which causes a
rapid and powerful inflammatory reaction leading to sepsis or multiple organ failure [5].
In addition, LPS plays a pivotal role at the onset of endotoxic damage and increases inflam-
matory cytokine expression, causing liver damage. D-galactosamine (GalN) decreases the
concentrations of uridine triphosphate, uridine diphosphate, and uridine monophosphate
through metabolic disorders of galactose, leading to the inhibition of RNA synthesis, in-
filtration of inflammatory cells, necrosis of liver cells, and induction of lesions similar to
hepatitis [6,7]. D-GalN also induces changes in colorectal mucosal permeability, increasing
endotoxin absorption, which interferes with the ability of liver cells to repair membranes
and causes hepatic toxicity [8]. Eventually, D-GalN causes necrosis of the liver during acute
exposure and cirrhosis of the liver and cellular tumors during chronic exposure [9,10].

Nutrients 2021, 13, 2901. https://doi.org/10.3390/nu13082901 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-4959-2436
https://orcid.org/0000-0001-9495-3782
https://orcid.org/0000-0002-9889-7770
https://doi.org/10.3390/nu13082901
https://doi.org/10.3390/nu13082901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13082901
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13082901?type=check_update&version=2


Nutrients 2021, 13, 2901 2 of 15

Therefore, D-GalN increases the reactivity of the liver toward endotoxins including
LPS, resulting in acute hepatic toxicity within hours, and models of acute hepatic damage
caused by LPS/D-GalN show hepatocyte necrosis and apoptosis. Thus, LPS/D-GalN is
widely used in studies related to the mechanisms underlying hepatic damage and drug de-
velopment [11]. Reactive oxygen species increased by LPS/D-GalN activate macrophages
in liver tissue, and the activated macrophages produce inflammatory mediators including
tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β cytokine [12]. These inflam-
matory cytokines induce hepatocyte necrosis and reduce antioxidant enzyme activity [13].
Consequently, inhibition of inflammatory cytokines and activation of antioxidant enzymes
are important factors for the treatment and prevention of acute liver damage caused by
LPS/D-GalN.

Inflammation is the central defensive mechanism against external stimuli such as
microbial or viral infection, injury, and exposure to endotoxin and is initiated through the
activation of microglia and macrophages [14]. Macrophages play a dispensable role in
controlling inflammation and produce inflammatory mediators in response to external
causes such as LPS [15]. In macrophages with TLR4 activation, inflammatory mechanisms
such as nuclear factor (NF)-κB, activator protein (AP)-1, and mitogen-activated protein
kinase (MAPK) are also induced, and the expression of inflammatory synthetic enzyme in-
ducible nitric oxide synthase (iNOS) and secretion of nitric oxide (NO) are increased [16,17].
However, the inflammatory reaction is also effectively inhibited by the activation of the an-
tioxidant mechanism nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase
(HO)-1. HO-1 inhibits the secretion of NO, TNF-α, IL-6, and IL-1β as an important regula-
tor of the inflammation and is strongly induced by macrophages [18]. HO-1 expression
directly inhibits the production of NO and iNOS and is controlled by the redox-sensitive
transcription factor Nrf-2, which regulates various antioxidant enzymes [19]. When the
inflammatory response is activated, Nrf-2 translocates to the nucleus and combines to the
antioxidant response element to induce HO-1 [19]. Thus, many anti-inflammatory agents
act via enhancing HO-1 production via Nrf-2 activation. In addition, mouse peritoneal
macrophages are retained within the mouse abdominal cavity by thioglycollate medium
and are often used to confirm the efficacy of in vitro inflammation studies [20].

FF is an herbal medicine that has been widely used for a long time in East Asia to treat
inflammation, gonorrhea, and pharyngitis [21]. A previous study demonstrated that FF
had anti-microbial effects on membrane permeability and apoptosis in Salmonella [22]. In
addition, another study reported that FF showed anti-diabetic and anti-hyperlipidemic
effects in a streptozotocin-induced diabetes mouse model [23]. Recently, in addition
to the pharmacological efficacy of FF, studies on its applicability as a functional food
considering nutritional properties have also been reported. FF is rich in vitamin P, and
the effect of inhibiting lipid peroxidation in high-cholesterol diet rats through antioxidant
action has been reported [24]. In addition, FF was studied for its applicability as a feed
additive for effective fattening by reducing the risk of peroxidation in broiler chickens
and increasing nutrient digestibility and growth performance in a stress situation due
to high temperature [25]. However, the effects of FF on liver damage in mice and on
the inflammatory reaction in macrophages and the regulation of FF on its associated
mechanisms have not been studied before. Therefore, we investigated the protective
efficacy of FF against LPS/D-GalN-induced fulminant hepatic failure and explored how FF
impacts related molecular mechanisms. Furthermore, we tested the inhibitory efficacy of
FF against the inflammatory reaction in an LPS-stimulated mouse macrophage RAW 264.7
and primary macrophages.

2. Materials and Methods
2.1. Plant Material

FF was obtained from Yeongcheonhyundai Herbal Market (Yeongcheon, Korea) and
was identified by Prof. KiHwan Bae (Department of Pharmacy, Chungnam National
University, Korea). Dried FF (50.0 g) was extracted by heating at 100 ◦C for 3 h using 1 L
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distilled water (DW) (Daewoong extractor, Daewoong, Seoul, Korea). Extract solution
was filtered using 150 µm sieve, freeze-dried, and stored at −20◦C until use. The yield
was 12.58%.

2.2. Materials and Reagents

055:B5 LPS from E. coli and D-GalN were acquired from Sigma (St. Louis, MO,
USA). Enzyme-linked immunosorbent assay (ELISA) antibody kits were obtained from
Thermo (Rockford, IL, USA). Extraction kits for RNA isolation were acquired from iNtRON
(Sungnam, Korea). Synthesizing kits for DNA and Master Mix for qPCR were acquired from
Bioneer (Daejeon, Korea). Oligonucleotide primers were synthesized by Bioneer. Western
blotting antibodies were obtained from Cell Signaling (Boston, MA, USA). Cell culture
reagents, including antibiotics, fetal bovine serum (FBS), and Roswell Park Memorial
Institute (RPMI) 1640 were obtained from HyClone (Logan, UT, USA). Dexamethasone
(Dex) and bovine serum albumin (BSA) were purchased from Sigma. Cell-counting kits
(CCK) were acquired from Dojindo (Kumamoto, Japan). Standard compounds, forsythoside
A, pinoresinol, and phillygenin were purchased from Chem Faces (Wuhan, china). High-
performance liquid chromatography (HPLC)-grade methanol was purchased from Merck
(Darmstadt, Germany). ACS reagent-grade acetic acid was obtained Sigma. All water
solutions were using a Puris-Evo RO water system (Mirae ST Co., Ltd., Anyang, Korea).
HPLC analysis samples were filtered through 0.2 µm membrane filters before use.

2.3. Experimental Animals

Six weeks old male “imprinting control region” (ICR) mice (30 ± 3 g each) were
acquired from Samtako BioKorea (Osan, Korea). All mice were acclimatized for 7 days
and were maintained at a room temperature (RT) under a 12 h:12 h light/dark cycle with
ad libitum. The mice were subjected to overnight fasting before injection of hepatitis
inducers. All experimental procedures in this animal study were carried out depending on
the guidelines of the Korea Institute of Oriental Medicine (KIOM)’s Animal Care and Use
Committee (Reference number #D-17-020).

2.4. Fulminant Hepatitis Mice Model by LPS/D-GalN Injection

Briefly, the mice were sorted randomly into four groups (normal controls, LPS/D-
GalN, FF 100 mg/kg + LPS/D-GalN, and FF 300 mg/kg + LPS/D-GalN; n = 9 each). Treated
mice were orally administered FF once a day for 6 days and intraperitoneally injected
with 50 µg/kg LPS and 1 g/kg D-GalN on the last day. Six hours after LPS/D-GalN
injection, the animals were anesthetized with isoflurane gas and blood was collected via
puncture of the abdominal vena cava. Blood serum was obtained by centrifuging the blood
at 2000× g for 15 min. Livers were collected and gently rinsed with phosphate-buffered
saline (PBS). Serum cytokine levels were measured with ELISA antibodies. The serum
levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline
phosphatase (ALP) were determined by an XL-200 automatic clinical chemistry analyzer
(Erba, Mannheim, Germany).

2.5. RNA Extraction, DNA Synthesis, and Real-Time Reverse Transcription-Polymerase
Chain Reaction

Isolated total RNA (1 µg) from liver tissue were used for synthesis of cDNA. Sequences
of oligonucleotide primer are indicated in Table 1, and real-time reverse transcription-
polymerase chain reaction (RT-qPCR) was conducted in accordance with a previously
described method [20]. Forty PCR cycles were run using the QuantStudio 6 Flex Real-time
PCR System (Thermo), and the samples were compared through the relative CT method.
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Table 1. Primer sequences used for RT-qPCR.

Target Gene Primer Sequence

TNF-α F: 5′-TTCTGTCTACTGAACTTCGGGGTGATCGGTCC-3′

R: 5′-GTATGAGATAGCAAATCGGCTGACGGTGTGGG-3′

IL-6 F: 5′-TCCAGTTGCCTTCTTGGGAC-3′

R: 5′-GTGTAATTAAGCCTCCGACTTG-3′

IL-1β F: 5′-ATGGCAACTGTTCCTGAACTCAACT-3′

R: 5′-CAGGACAGGTATAGATTCTTTCCTTT-3′

β-actin F: 5′-AGAGGGAAATCGTGCGTGAC-3′

R: 5′-CAATAGTGATGACCTGGCCGT-3′

F, forward; R, reverse.

2.6. Histopathological Analysis

Tissue samples from mouse livers were rinsed with PBS and were fixed in a 10%
formaldehyde solution. Liver tissues were then dehydrated in 70–100% ethanol aqueous
solution and embedded in paraffin. Paraffin blocks were cut to a thickness of 5 µm by rotary
microtome (RM 2165, Leica, Wetzlar, Germany) and were stained using hematoxylin and
eosin (H&E). Liver injury in these sections was observed with an Axioskop 40 (Oberkochen,
Germany) and was taken at 400×magnification.

2.7. Preparation of Protein Extracts and Western Blot Analysis

The liver tissue samples and macrophage cells were lysed in radioimmunoprecip-
itation assay buffer (Millipore, Bedford, MA, USA) for total cell protein or in NE-PER
extraction reagent (Thermo) for cytosolic and nuclear proteins. Concentrations of total
protein were measured by Bradford protein assay reagents (Bio-Rad, Hercules, CA, USA).
Equal amount of proteins was separated and then blotted in accordance with a previously
described method [20]. Proteins on the membrane were blocked and then incubated with
various primary antibodies followed by secondary antibodies (Table 2). Immunoreactive
bands of target protein were detected using enhanced chemiluminescence solution (Bio-
Rad). Each detected protein band was normalized by internal control proteins and was
quantified using ImageJ software (version 1.53k).

Table 2. Various antibodies used for Western blot.

Antibody Corporation Product No. RRID Dilution Rate

iNOS Cell Signaling #13120 AB_2687529 1:1000

COX-2 Cell Signaling #4842 AB_2085144 1:1000
HO-1 Cell Signaling #82206 AB_2799989 1:1000
Nrf-2 Cell Signaling #12721 AB_2715528 1:1000

P-NF-κB p65 Cell Signaling #3033 AB_331284 1:1000
P-IκBα Cell Signaling #2859 AB_561111 1:1000
IκBα Cell Signaling #4814 AB_390781 1:1000

P-ERK Cell Signaling #4377 AB_331775 1:1000
ERK Cell Signaling #9102 AB_330744 1:1000

P-p38 Cell Signaling #9211 AB_331641 1:1000
p38 Cell Signaling #9212 AB_330713 1:1000

P-JNK Cell Signaling #9251 AB_331659 1:1000
JNK Cell Signaling #9252 AB_2250373 1:1000

β-actin Cell Signaling #4970 AB_2223172 1:1000
TBP Cell Signaling #8515 AB_10949159 1:1000

2nd anti-mouse Cell Signaling #7076 AB_330924 1:5000

2nd anti-rabbit Cell Signaling #7074 AB_2099233 1:5000

2.8. Culture of Macophage Cell Line

RAW 264.7 macrophages were acquired from American Type Culture Collection
(Manassas, VA, USA) and were cultured using RPMI 1640 medium containing 10% FBS
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and 1% antibiotics in a CO2 incubator. The cells were stimulated by incubating in fresh
RPMI 1640 media containing 200 ng/mL LPS in the presence or absence of pretreated FF.

2.9. Isolation and Culture of Mouse Peritoneal Macrophages

Following intraperitoneal injections of 3% sodium thioglycollate medium (1 mL), five
male ICR mice were housed per cage in a 12 h:12 h light/dark cycle. Four days after the
injections, the mice were sacrificed and peritoneal macrophage cells (PMC) were collected
by flushing with PBS. Red blood cell lysis buffer was then added to the cell suspensions
in PBS, after which the samples were incubated for 5 min at RT. After centrifugation at
500× g, the supernatants were discarded and PMC were suspended in fresh RPMI 1640
medium and incubated with or without FF under the same conditions as those used for
RAW 264.7 cells. All experimental procedures for isolation of mouse PMC were carried out
depending on the guidelines of the KIOM’s Animal Care and Use Committee (Reference
number #D-17-001-1).

2.10. Cell Viability Assays

Macrophage viability was examined using CCK reagent in accordance with a pre-
viously described method [20]. Briefly, macrophages were pre-treated with FF for 24 h,
and CCK solution was added, after which the samples were incubated for additional 1 h.
The absorbance was then measured at a wavelength of 450 nm using microplate reader
(SpectraMax i3, Molecular Devices, San Jose, CA, USA).

2.11. Measurement of NO and Inflammatory Cytokine Secretion

NO and inflammatory cytokines were measured under the same conditions as in the
previous study [20]. Cultured macrophages were pre-treated with FF, stimulated with LPS
after 1 h, and incubated for an additional 24 h. NO was detected with Griess reagent and
absorbance was measured at 570 nm, and the secretion of inflammatory cytokines in the
culture media was quantified by ELISA.

2.12. HPLC Instrument

HPLC system was set up column oven, an auto sampler, a binary pimp and UV/VIS
detector (Dionex Ultimate 3000 system, Dionex Corp., Sunnyvale, CA, USA). All analysis
data was processing using Chromeleon 7 software (Thermo, Waltham, MA, USA).

2.13. Preperation of Standard and Sample Solutions

The FF was dissolved in water at 5 mg/mL concentration using ultrasonicator (JAC Ul-
trasonic JAC-3010, Hwaseong, Korea) and after extraction, extract was filtered with a 0.2 µm
membrane. 10 µL of extract solution was injected for HPLC analysis. Standard solutions
of forsythoside A, pinoresinol, and phillygenin was prepared at 1.0 mg/mL (1000 ppm)
using methanol and stored at 4 ◦C until use. For HPLC analysis, each compound standard
solution was diluted with methanol at each standard curve concentration.

2.14. HPLC Analysis Method

HPLC analysis was conducted to identify of contents of three compounds (forsythoside
A, pinoresinol, and phillygenin) in FF. HPLC analysis was performed using X bridge C18
column (250 mm × 4.6 mm, 5 µm) connected to a C18 guard cartridge (4.0 mm × 3.0 mm).
The mobile phase was eluted at Flow rate 1 mL/min with gradient of 0.3% acetic acid in
water (eluent A) and methanol (eluent B). Gradient eluted method was applied: 0–8 min,
5–30% B; 8–24 min, 30–57% B; 24–39 min, 57–60% B; 39–50 min, 60–70% B; 50–60 min,
70–100% B. The HPLC condition was follows: chromatogram data was detected at 280 nm,
the injection volume was 10 µL and temperature of column and auto sampler was keep
40◦C and 20◦C, respectively (Table 3). Calibration curves, assessed by standard solution
and the limits of detection (LOD) and quantification (LOQ) under the chromatographic
conditions, were determined by injecting a series of standard solutions. Each samples
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were three injected under same condition and data was processed using Chromeleon 7
software (Thermo).

Table 3. HPLC conditions for analysis of compounds and FF.

HPLC Conditions

Detector 280 nm
Column X bridge C18 Column (250 mm × 4.6 mm, 5 µm)

Column temperature 40◦C
Injection volume 10 µL

Flow rate 1.0 mL/min
Mobile phase Time (min) A B

A: 0.3% acetic acid in
water

B: MeOH

0.0 95 5
8.0 70 30

24.0 43 57
39.0 40 60
50.0 30 70
60.0 0 100

2.15. Statistical Analysis

All experimental results are expressed as means ± standard error of the mean. Statis-
tical significance was determined by one-way analysis of variance followed by Dunnett’s
test after comparing each treatment group. Statistical significance was defined as p < 0.05.

3. Results
3.1. Content of Major Compounds of FF

We conduct HPLC analysis to confirm that contents of three compounds forsythoside
A, pinoresinol, and phillygenin in FF that show bioactivity. Each component was selec-
tively detected and identified under HPLC-UV analysis method we established, consistent
with a previous study [26]. The calibration curves the three compounds (forsythoside
A, pinoresinol, and phillygenin) were y = 0.2516x − 3.8826, y = 0.1132x + 0.1922 and
y = 0.1927x + 0.0909 with coefficients of determination of 0.9958, 0.9990, and 0.9994 at
injected concentration ranges (Table 4). These result showed that calibration curve of three
marker compounds has good linearity at the tested concentration range. To confirm the
three compound were showed in FF, we compared the retention time and the UV spectrum
of FF extract and each standard solution (Figure S1). As a result, the three compounds
exhibited the same retention time 15.70, 20.82, and 26.40 min in FF (Figure 1). The area
mean value of FF was calculated for each compounds calibration curve equation. The
content of forsythoside A, pinoresinol, and phillygenin and were 4.54, 1.17, and 0.84%
respectively. Forsythoside A was most abundant constituent in FF and we suggest that it
was marker compound in FF.

Table 4. Calibration curves of compounds.

Compound Range (µg/mL) Regression Equation r2 LOD (µg/mL) LOQ (µg/mL)

1 200.0~500.0 y = 0.2516x − 3.8826 0.9958 0.0527 0.1598
2 20.0~200.0 y = 0.1132x + 0.1922 0.9990 0.0879 0.2664
3 2.5~25.0 y = 0.1927x + 0.0909 0.9994 0.0517 0.1565

Forsythoside A (1); Pinoresinol (2); Phillygenin (3). LOD = 3.3 × σ/S. LOQ = 10 × σ/S. σ is the standard deviation of the intercept from the
regression equation and S is the slope of the calibration curve.

3.2. Regulatory Effects of FF on Serum Cytokine and Aminotransferase Levels in
LPS/D-GalN-Induced Hepatitis in Mice

Inflammatory cytokine levels are important measures of the severeness of inflam-
mation. In addition, ALT, AST, and ALP are markers of hepatic damage. Therefore, we
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analyzed these parameters to investigate the extent of fulminant liver injury and the regu-
latory effects of FF. Serum cytokine, ALT, AST, and ALP levels were significantly elevated
6 h after LPS/D-GalN treatment. However, as shown in Figure 2A,B, in the groups admin-
istered with two doses of FF, inflammatory cytokine, ALT, AST, and ALP concentrations
in the mice serum were sharply reduced. IL-6 and IL-1β levels in the serum decreased in
a dose-dependently, and the other factors were strongly suppressed at both doses. The
normal control group did not show any abnormal changes in these measures.
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Figure 1. High-performance liquid chromatography chromatograms of standard solution (A) and FF (B) at 280 nm.

3.3. FF Protects Mice from Liver Injury and Regulates the Expression of Hepatic Cytokine mRNAs
upon LPS/D-GalN Stimulation

Six hours after LPS/D-GalN was administered, the mice were killed and livers were
collected. To determine the severity of liver injury of each group, liver images were taken.
Livers in the LPS/D-GalN group mice suffered severe damage; in contrast, livers in the
FF-administered group appeared to have a significantly improved pathology in a dose-
dependent manner (Figure 3A). Furthermore, we extracted total RNA from these liver
samples and analyzed the expression of inflammatory cytokines to determine how they
are regulated by FF administration in liver tissue. Results showed that all cytokine mRNA
within the liver tissue were strongly increased by LPS/D-GalN treatment, and they were
dose-dependently significantly inhibited by FF administration (Figure 3B).
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Figure 2. Effects of Forsythia Fruit (FF) on serum cytokine and aminotransferase levels in a lipopolysaccharide (LPS)/D-
galactosamine (GalN)-induced hepatitis mouse model. Mice were pretreated with FF (100 and 300 mg/kg) or vehicle
once per day for 6 days and 1 h before an LPS/D-GalN injection. After 6 h, blood was collected by abdominal vena cava
puncture and serum was prepared by centrifugation. (A) Serum cytokine levels were determined using enzyme-linked
immunosorbent assay antibodies. (B) Serum aminotransferase was analyzed using an automated clinical chemistry analyzer.
Data are expressed as mean ± standard error of the mean (n = 9). TNF, tumor necrosis factor; IL, interleukin; L/D, LPS/D-
GalN; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase. Statistical significance
was defined as # p < 0.05 (vs. normal controls), ** p < 0.01, and † p < 0.001 (vs. LPS/D-GalN treatment).

3.4. Hepatoprotective Effects of FF on Histopathological Changes and Regulatory Effects on the
Inflammatioy Proteins Expression

The histopathological findings showed that LPS/D-GalN injection induced atrophy,
hepatocyte necrosis, and infiltration of inflammatory cells. The fulminant changes observed
in the LPS/D-GalN-injected mice significantly improved in those treated with 100 mg/kg
FF, and the 300 mg/kg FF-administered group had no differences from the normal group
(Figure 4A). Next, we analyzed the expression of inflammation-related proteins in the liver
tissue. Cyclooxygenase (COX)-2 and iNOS, which are synthase proteins of prostaglandin
(PG)E2 and NO, respectively, up-regulated in the LPS/D-GalN-administered group and
significantly decreased in the FF-treated group, while the antioxidant mechanism protein
HO-1/Nrf-2 showed opposite patterns (Figure 4B). P-NF-κB p65 and P-inhibitor of NF-κB
alpha proteins were also strongly expressed in the liver tissue of the LPS/D-GalN-treated
mice and were effectively suppressed in the FF-treated group (Figure 4B). Similarly, we
observed that the phosphorylation of extracellular signal-regulated kinase, p38, and c-Jun
NH2-terminal kinase proteins were effectively inhibited in the FF-treated group (Figure 4B).
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Figure 3. Effects of Forsythia Fruit (FF) on liver injury and expression of hepatic cytokines in lipopolysaccharide (LPS)/D-
galactosamine (GalN)-induced hepatitis. Mice were pretreated with FF (100 and 300 mg/kg) or vehicle once per day for
6 days and 1 h before an LPS/D-GalN injection. After 6 h, mice were sacrificed, and livers were collected. (A) Images
of hepatitis lesions in the mice. (B) mRNA levels of hepatic cytokines were analyzed by real-time reverse transcription-
polymerase chain reaction. Data are expressed as mean ± standard error of the mean. L/D, LPS/D-GalN; TNF, tumor
necrosis factor; IL, interleukin. Statistical significance was defined as # p < 0.05 (vs. normal controls) and † p < 0.001
(vs. LPS/D-GalN treatment).

3.5. Regulatory Effects of FF on the Secretion of Inflammatory Mediators and Activation of
Inflammatory/Antioxidant Pathways in LPS-Stimulated RAW 264.7 Macrophages

Since the pathology of the acute hepatitis mouse model induced by LPS/D-GalN
closely mirrored a fulminant inflammatory response, we investigated the influence of FF on
the LPS-induced mouse macrophage-mediated inflammatory reaction. First, FF had little
effect on RAW 264.7 macrophage viability (Figure 5A), effectively inhibiting the secretion
of inflammatory mediators including LPS-induced NO and cytokines (Figure 5B,C). FF
pretreatment also suppressed the expression of iNOS by LPS in macrophage cells, while
high concentrations of FF treatment (over 50 µg/mL) induced antioxidant protein HO-1
expression (Figure 5D). Treatment with FF induced translocation into the nucleus from the
cytoplasm of Nrf-2, which affected the activation of the antioxidant mechanism (Figure 5E).
In addition, an investigation of the effects of FF on the activation of HO-1/Nrf-2 under LPS
treatment showed that HO-1/Nrf-2 were activated at high concentrations of pretreatment
with FF (Figure 5F).
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Figure 4. Effects of Forsythia Fruit (FF) on histopathological changes in the liver and activation of intracellular signaling
molecules in lipopolysaccharide (LPS)/D-galactosamine (GalN)-induced hepatitis. Mice were pretreated with FF (100 and
300 mg/kg) or vehicle once per day for 6 days and 1 h before an LPS/D-GalN injection. After 6 h, mice were sacrificed,
and livers were collected. (A) Hematoxylin and eosin staining of mouse liver. Scale bars = 50 µm. (B) Expression of
inflammatory synthetic enzymes, inflammatory pathways, and antioxidant molecules were determined by Western blot
analysis. The histograms show protein expression levels relative to those of a housekeeping protein. Data are expressed
as mean ± standard error of the mean. L/D, LPS/D-GalN. Statistical significance was defined as # p < 0.05 (vs. normal
control), * p < 0.05, ** p < 0.01, and † p < 0.001 (vs. LPS/D-GalN treatment).
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Figure 5. Effects of Forsythia Fruit (FF) on the secretion of inflammatory mediators and expression
of intracellular pathway proteins in RAW 264.7 macrophages. Influence of FF on (A) cell viability,
(B) nitric oxide secretion, and (C) cytokine production. (D) Expression of inducible nitric oxide
synthase (iNOS), cyclooxygenase (COX)-2, and heme oxygenase (HO)-1, (E) nuclear translocation of
nuclear factor erythroid 2-related factor 2 (Nrf-2), and (F) HO-1 activation and nuclear translocation
of Nrf-2 under lipopolysaccharide (LPS) stimulation. Control cells were incubated with the vehicle
alone. Data represent the mean ± standard error of the mean of the results from three independent
experiments. Con, control; Dex, dexamethasone; TNF, tumor necrosis factor; IL, interleukin. # p < 0.05
(vs. controls), * p < 0.05, and † p < 0.001 (vs. LPS treatment).

3.6. Inhibitory Effects of FF on LPS-Induced Inflammatory Mediator Levels in
Primary Macrophages

To confirm the inhibitory activity of FF on inflammatory response, we explored its ef-
fects on LPS-induced secretion of NO and inflammatory cytokine in primary macrophages.
Treatment with FF did not exhibit cytotoxicity up to 100 µg/mL (Figure 6A), and it down-
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regulated the levels of NO and IL-6, IL-1β, and interferon-γ cytokines in a concentration-
dependently (Figure 6B,C).
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Figure 6. Effects of Forsythia Fruit (FF) on the production of inflammatory mediators in mouse peritoneal macrophage cells
(PMC). Influence of FF on (A) cell viability, (B) nitric oxide secretion, and (C) inflammatory cytokine production. Primary
macrophages obtained from five ICR mice were seeded on a 96- or 24-well culture plate and preincubated for 18 h. Then,
the cells were pretreated with FF for 1 h and stimulated with lipopolysaccharide (LPS) for another 24 h. Control cells were
incubated with the vehicle alone. Data represent the mean ± standard error of the mean of determinations from three
independent experiments. Con, control; Dex, dexamethasone; TNF, tumor necrosis factor; IL, interleukin; IFN, interferon.
# p < 0.05 (vs. controls), ** p < 0.01, and † p < 0.001 (vs. LPS treatment).

4. Discussion

Several previous studies have shown that fulminant hepatic injury is characterized
by rapid and widespread liver dysfunction and is caused by antigen-induced infections,
exposure to endotoxins, and poisoning [2]. Simultaneous injection of LPS and D-GalN
dramatically increases the activity of endotoxin and its influence on liver tissue, so we
used a mouse model to examine the efficacy of FF on protection of the liver in this study.
LPS plays a critical role in the early stage of endotoxic damage, increases inflammatory
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cytokine levels, and damages liver tissue, so we explored the inhibitory activities of FF on
inflammatory cytokine levels in mouse serum. High concentrations of aminotransferase
are present in the liver and heart, and when liver parenchymal cells are damaged, ALT,
AST, and ALP in the cytoplasm are released into the blood [27], so activity of these enzymes
is an important indicator of liver injury. Thus, the concentrations of ALT, AST, and ALP in
the mouse serum of each group were measured. We found that LPS/D-GalN treatment
strongly induced the inflammatory cytokine and aminotransferase levels in the serum, and
these were then efficiently reduced by FF administration (Figure 2).

Liver damaged by endotoxin or toxic substances has more surface bleeding due to
severe hemorrhage [28], so morphological observation is used to determine the extent of
liver damage. As shown in Figure 3A, we found that the severe hemorrhage caused by
LPS/D-GalN injection significantly improved after FF administration. In addition, we con-
firmed that the expression of hepatic cytokine mRNA in liver tissue was also significantly
and dose-dependently inhibited by FF treatment (Figure 3B). The histopathological changes
examined with H&E staining also showed that FF treatment dramatically improved hep-
atic hemorrhage, hepatocytes necrosis, and inflammatory cell infiltration by LPS/D-GalN
(Figure 4A).

In the model used in this study, the direct cause of liver damage was a fulminant
inflammatory reaction by endotoxin, so we investigated inflammatory protein expres-
sion in liver tissue using immunoblotting. LPS activates MAPK/NF-κB mechanisms via
TLR4 [16,29], which affects the expression of inflammatory mediators such as COX-2 and
iNOS [29,30]. The activation of HO-1/Nrf-2 antioxidant pathways directly impacts the
regulation of an inflammatory reaction, so we tested the effects of FF treatment on the
expression of inflammatory proteins. As the results show in Figure 4B, the expression of
inflammatory proteins activated by LPS/D-GalN injection was strongly repressed by FF
treatment, whereas the antioxidant pathway was effectively activated by FF treatment.
Therefore, 6 days of FF administration was sufficient to suppress severe liver damage in
these mice induced by LPS/D-GalN injection and effectively regulated cytokine production
and aminotransferase secretion.

Next, we investigated how FF affects the inflammatory reaction in endotoxin-stimulated
macrophages. FF pretreatment at a non-toxic concentration strongly inhibited the secre-
tion of NO, IL-6, and IL-1β in RAW 264.7 cells upon LPS stimulation (Figure 5A–C) and
suppressed the expression of the inflammatory enzyme iNOS (Figure 5D). Furthermore,
the production of HO-1 was induced both when the FF was administered alone and in
combination with LPS treatment (Figure 5D,F). In addition, Nrf-2 was activated by FF
treatment and translocated to the nucleus (Figure 5E). In addition, Nrf-2 activation by
FF was also observed under LPS stimulation (Figure 5F). The anti-inflammatory effects
of FF in the macrophage cell line were replicated in primary mouse macrophages, and
pretreatment with FF inhibited the secretion of various inflammatory mediators in PMC in
a pattern similar to those observed in RAW 264.7 macrophages (Figure 6). Taken together,
FF effectively alleviated fulminant liver injury in these mice, and its efficacy is believed to
be associated with a powerful anti-inflammatory activity.

Subsequently, to investigate the relationship between the physiological activities
of FF and its constituents, we performed phytochemical analyses using HPLC. Under
HPLC-DAD analysis conditions, we separated and identified the three main components
including forsythiaside A, pinoresinol, and phillygenin (Figure 1). Previous studies indi-
cated that forsythiaside A exerts protective effect against LPS/D-GalN-induced liver injury
in mice via inhibiting NF-κB activation and up-regulating Nrf-2/HO-1 [31]. Similarly,
forsythiaside A shows hepatoprotective effect against acetaminophen-induced liver injury
in zebrafish through regulation of TNF, matrix metallopeptidase (MMP)9, MMP2, and
phosphatidylinositol 3-kinase [32]. In addition, forsythiaside A exhibits anti-inflammatory
and antioxidant efficacy in BV2 microglia cells through activation of Nrf-2 and HO-1 signal-
ing pathway [33]. Another previous study has shown that pinoresinol has hepatoprotective
effect against carbon tetrachloride (CCl4)-induced hepatic damage in mice [34]. In addition,
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phillygenin inhibits fibrosis by LPS in human hepatic stellate cell LX2 [35] and shows
hepatoprotective effect on CCl4-induced liver injury in mice by its antioxidant activity
and inhibition on cytochrome P450 2E1 [36]. As can be seen from the results of previous
studies mentioned above, several bioactive components of FF exhibit hepatoprotective,
anti-inflammatory, and antioxidant effects. Based on our HPLC analysis and the results
of previous studies on these constituents, the hepatoprotective, anti-inflammatory, and
antioxidant effects of FF can likely reflect the presence of forsythiaside A, pinoresinol,
and phillygenin.

5. Conclusions

In summary, this work demonstrated that FF mitigates LPS/D-GalN-induced ful-
minant liver injury in mice. FF strongly lowered the levels of inflammatory cytokines
and aminotransferase in mouse serum and inhibited the expression of hepatic cytokine
mRNAs. Furthermore, FF effectively ameliorates a strong inflammatory reaction and
activates antioxidant mechanisms, thereby inhibiting hemorrhage and necrosis in liver
tissue, significantly alleviating liver damage. The anti-inflammatory activities of FF have
also been proved in experimental inflammatory models using a murine macrophage cell
line and primary cells. Based on these results, FF is potentially valuable as a candidate to
prevent or treat intense inflammation and resulting liver damage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13082901/s1, Figure S1: UV chromatogram of each standard compounds and FF.
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