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RAS oncogenic activity predicts response
to chemotherapy and outcome in lung
adenocarcinoma

Philip East 1, Gavin P. Kelly 1, Dhruva Biswas 2, Michela Marani3,
David C. Hancock3, Todd Creasy4, Kris Sachsenmeier5, Charles Swanton 2,
TRACERx consortium*, Julian Downward 3,6 &
Sophie de Carné Trécesson 3

Activating mutations in KRAS occur in 32% of lung adenocarcinomas (LUAD).
Despite leading to aggressive disease and resistance to therapy in preclinical
studies, the KRAS mutation does not predict patient outcome or response to
treatment, presumably due to additional events modulating RAS pathways. To
obtain a broader measure of RAS pathway activation, we developed RAS84, a
transcriptional signature optimised to capture RAS oncogenic activity in LUAD.
We report evidence of RAS pathway oncogenic activation in 84% of LUAD,
including65%KRASwild-type tumours, falling into four groups characterisedby
coincident alteration of STK11/LKB1, TP53 or CDKN2A, suggesting that the
classifications developed when considering only KRAS mutant tumours have
significance in a broader cohort of patients. Critically, high RAS activity patient
groups show adverse clinical outcome and reduced response to chemotherapy.
Patient stratification using oncogenic RAS transcriptional activity instead of
genetic alterations could ultimately assist in clinical decision-making.

The RAS oncogenes are mutated in close to 20% of all human cancers,
acting as drivers of tumour formation and progression. Point muta-
tions occur mainly in codons 12, 13 and 61 of the three isoformsHRAS,
KRAS and NRAS, decreasing the GTPase activity of their encoded pro-
teins and resulting in the accumulation of the GTP-bound, active
conformation.KRAS is themostmutatedRAS isoform,with particularly
high prevalence in pancreatic ductal adenocarcinoma (88%), color-
ectal adenocarcinoma (50%) and lung adenocarcinoma (32%)1. The
extensive literature describing the role of mutant KRAS in prolifera-
tion, survival, metabolism and motility supports its significant role in
tumour aggressiveness, metastasis and resistance to chemotherapy2–5.
However, there is a lack of consensus in published studies regarding
the predictive value of KRAS mutations for patient outcome or

response to treatment with chemotherapy6–8. KRAS mutants can also
modulate the tumour microenvironment by regulating the expression
of numerous cytokines9. Moreover, we have demonstrated that KRAS
mutation promotes the expression of PD-L1, leading to immune eva-
sion inmodels of human andmouse lung adenocarcinoma10. However,
although it is clear that KRASmutation does not preclude response to
PD-1 immune checkpoint blockade11,12, no consistent link between
KRASmutation and resistance to immunotherapy or PD-L1 expression
has been shown in the clinic13–16. Therefore, KRAS mutational status
cannot be used as a predictive factor to select patients for specific
therapy regimens17, with the exception of EGFR-targeted therapy,
where KRAS mutations are negatively linked to response to EGFR
inhibition in colorectal cancer18.
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The stratification of patients uniquely on the mutational status of
KRASmay have complicated the study of RASmutants in large cohorts
of patients. For instance, in The Cancer Genome Atlas (TCGA), 74% of
the lung adenocarcinoma (LUAD) tumours aremutated in one ormore
genes from the broader RAS pathway, taken as running from receptor
tyrosine kinases to ERKMAP kinases and phosphoinositide 3-kinases19.
Here we propose a method of stratification based on RAS-regulated
transcriptional activity which predicts outcome and response to
treatment in lung adenocarcinomaandother solid cancers.Wederived
a gene expression signature, RAS84, and applied machine learning
techniques to build a classifier to stratify patients according to the
expression of RAS84 in their tumour. Using this method, we dis-
covered that RAS transcriptional activity predicted clinical outcome in
lung adenocarcinoma and several other solid cancers, where KRAS
mutation alone did not. When applied to a cohort of chemotherapy-
treated patients, our classifier predicted poor response in subjects
with the highest RAS84 level of expression. We anticipate that the use
of RAS84 to stratify patientsmay validate observations that weremade
in preclinical models of KRAS-mutant cancers, but not confirmed in
clinical studies. Our method will offer the possibility to study the
impact of oncogenic RAS activity in large cohorts of patients and may
help to predict sensitivity to treatment associated with oncogenic RAS
activity, such as chemotherapy.

Results
Other members of the RAS pathway signalling network in addition to
KRAS can be altered and affect RAS pathway activity. To overcome this
issue, we used RAS pathway transcriptional activity as a fingerprint of
RAS oncogenic activity. We started by identifying RAS-target genes
established in different models from published data as well as our
HCT116 recombined for KRAS and sh-KRAS data (Supplementary Data 1,
GSE199871). We focused on the upregulated genes in the context of
activated RAS signalling because most of the signatures only had
upregulated genes. Moreover, we reasoned that because more genes
were induced than inhibited, and when the magnitude was indicated,
themean fold changewas higher in inducedgenes than inhibited genes,
the influence of downregulated genes would beminimal in comparison
with those of upregulated genes. We selected studies performed in
mouse models or human cell lines, where RAS activity was modulated
using differentmethods, such as RNA interference or inhibition or over-
expression of the mutant proteins, and where different isoforms and
mutants were represented (KRAS mutants G12D, G12V, G12C, G12A,
G13D, Q61H, HRASmutant G12D). The datasets also represented several
organs (lung, pancreas, colon, breast, kidney and prostate). Tomitigate
the possibility of confounding signal from tumour infiltrating immune
cells, we removed all genes present in two immune signatures20,21. We
also assessed the overlap between the gene signatures. Although all
were composed of RAS-target genes, we observed little commonality
between the signatures (Supplementary Fig. 1a).

RAS84 construction using lung cell line expression data
Our initial goal was tomeasure RASpathway activity in tumour cells.We
therefore mapped the established signatures to lung cancer cell line
data from the Broad Institute Cancer Cell Line Encyclopedia (CCLE)22 to
determine which ones accurately measured oncogenic RAS activity in
samples exempt of stroma and immune cells and where KRASmutation
is known to be a prevalent cancer driver. We first cleaned up the sig-
natures by removing genes with low expression or variance across the
cell lines (Supplementary Fig. 1b). The 166 remaining cell lines com-
prised 52 cell lines labelled as small-cell carcinoma, 46 adenocarcinoma,
26 squamous-cell carcinoma, 19 NSCLC with no subtype specified and
23 without label or had another histology type. We removed cell lines
with oncogenic RAS pathway mutations other than KRAS (BRAF, EGFR,
ERBB2, FGFR1, FGFR2, FGFR3, HRAS, JAK2, KIT, NRAS and RET) from the
analysis, since these mutations may drive RAS signalling and confound

the analysis. For each signature, we clustered the filtered CCLE lung
cancer cell line signature expression matrix into three groups. We
named the clusters RAS-high and RAS-low according to the mean
expression of the signature genes within the groups and categorised as
“unclassified” the group of samples with intermediate mean expression
(Supplementary Fig. 1c). We used the distribution of KRAS mutations
across the RAS-high and RAS-low clusters to assess the ability of the
signature to capture RAS oncogenic activity (Fig. 1a). We reasoned that
the signatures measuring RAS oncogenic activity in the lung cell line
dataset would show enrichment of KRAS mutations in the high group
given its role in tumour development in the lung. To highlight the
specificity of the signatures tomeasure RAS oncogenic activity, we also
assessed a RAS addiction signature23 and several other oncogenic sig-
nalling pathway signatures24,25. TheRAS addiction signaturewasderived
from KRAS-mutant cell lines dependent on RAS signalling to maintain
cell survival. This signature is therefore expected to capture RAS
dependency but not RAS oncogenic activity. We identified “RAS path-
way”, “KRASG13D134” and “HRAS” as the best-performing signatures to
enrichKRASmutants in theRAS-highgroup (p-value < 1e−5) (Fig. 1a).We
refined these three signatures by selecting the genes driving the clus-
tering of the RAS-high and RAS-low groups. We ran a differential gene
analysis between these groups to identify signature genes upregulated
in the RAS-high group of cells (FDR<0.05) (Supplementary Fig. 1d).
From these genes, we constructed our meta-RAS-activity signature,
RAS84, and tested it against the CCLE lung cancer cell line data (Fig. 1b,
Supplementary Data 2). RAS84 successfully placed 36 out of 42 KRAS
mutant lines into the RAS-high group, with six unclassified and none in
RAS-low (Fig. 1c). We observed a good overlap of sample labelling
between “RAS pathway” and RAS84 classification and some variability
when compared with the other signatures (Supplementary Fig. 1f).
However, when compared with other RAS and oncogenic signatures,
RAS84 gave themost statistically robust separation of the KRASmutant
cell lines from the RAS-low group (Fig. 1d and Supplementary Fig. 1e).
Finally, we ran a differential analysis to identify RAS-high-dependent
transcriptional changes when compared to RAS-low (2182 genes, fdr <
0.05, −1 > LFC> 1). We found ERK1 and ERK2 cascade and MAPK cas-
cade GO terms (GO:0070371, p-value 4e−7; GO:0000165 p-value 9e−6)
enriched in the RAS-high group (Supplementary Data 3).

Using cell line gene expression and KRASmutation data from lung
cancer cell lines, we thus demonstrated the ability of RAS expression
signatures tomeasure oncogenic RAS activity in a lung cancer context.
We constructed ameta-signature from the best-performing signatures
and demonstrated that it performedbetter than previous signatures at
measuringRASoncogenic activity byclassifyingKRASmutant cell lines
as RAS oncogenic signalling activated (RAS-high).

RAS84 expression predicts drug sensitivity and resistance
in vitro
To determine whether RAS84 expression was associated with antic-
ancer drug response, we analysed drug sensitivity data obtained from
the Genomics of Drug Sensitivity in Cancer project (GDSC) and The
Cancer Therapeutics Response Portal (CTRP) in the context of RAS high
and low CCLE cell lines. We identified drugs with differential drug
responses across the two groups (GDSC fdr < 0.05, −1 > log2(delta
IC50) > 1) (Fig. 2a, Supplementary Fig. 2 and Supplementary Data 4, 5).
We tested for enriched drug target terms within the drugs showing
differential response (hypergeometic fdr < 0.05) (Fig. 2b). We found
RAS-high cell lines were sensitive to drugs targeting ERK MAPK and
EGFR signalling, and also protein stability and degradation, such as
HSP90 inhibitors. We were encouraged to see sensitivity to ERK MAPK
and EGFR signalling inhibition, confirming high dependence on RAS
signalling in these cell lines. In addition, links between RAS mutation
and sensitivity to HSP90 inhibition have been identified previously26.
Conversely, we found RAS-high cell lines to be resistant to drugs tar-
getingDNA replication,mitosis and chromatin histone acetylation. DNA
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replication and mitosis are common chemotherapy targets indicating
that RAS84 activity is associated with chemotherapy resistance in vitro.
We also tested for KRAS mutation (Fig. 2c) and RAS pathway mutation-
dependent drug responses (Fig. 2d). We found both mutant groups
were sensitive to just threedrugs targetingERKMAPK signalling.Wedid
not observe resistance to any drugs in these comparisons. This result
shows RAS84 better captures RAS-driven drug response than the pre-
sence of KRAS mutation alone or wider RAS pathway mutants, high-
lighting the importance of our transcriptional signature approach.

RAS84 expression is associated with KRAS mutation in lung
adenocarcinoma
To further validate RAS84 beyond cell lines, we applied it to clinical
LUAD expression data from TCGA (512 samples)27. Given the increased
heterogeneity in signature expression observed in patient tumour

samples when compared to the cell line data, we explored the clus-
tering of the patients beyond the three groups previously used for cell
line data.We clustered the patients into five groups (Fig. 3a) and found
a low KRAS mutation count (6%) in the cluster with the lowest RAS84
expression (chi-square p-value 1.05e−08). The other clusters all had
high levels of KRAS mutation, between 25 and 45% (Fig. 3b). We
regrouped the patients using the various signatures described above
and found that RAS84 gave optimal segregation of KRAS mutant
tumours across the groups (Fig. 3c). We labelled each RAS Activity
Group (RAG) RAG-0, RAG-1, RAG-2, RAG-3 and RAG-4 ordered low to
high by mean RAS84 gene signature expression. To ensure RAS84
expression was predominantly tumour-driven we looked at RAS84
expression in the stroma of five NSCLC samples28 (Supplementary
Fig. 3) and foundminimal expression. We assigned a RAS84-Index (RI)
value to each patient, defined as the mean expression of the RAS84

Fig. 1 | In vitro RAS signature derivation. a Contingency tables showing the
number of RAS pathway wild-type and KRAS mutant cell lines per RAS-high and
RAS-low groups for each signature. RAS pathway wild-type cell lines are those with
no oncogenic mutation in any RAS pathway member. RAS-high cell counts are
shown in red, RAS-low in blue. The boxplots show the RI distributions for the RAS-
high and low groups where the box shows the median and IQR, the whiskers
indicate ± 1.5 x IQR, outliers lie outside this range. RAS addiction is presented here
as a control signature (RAS pathway n = 115, KRASG13D134 n = 137, HRAS n = 106,
MSigDB n = 124, KrasLA n = 98, RAS addiction n = 124; Chisq test ****P ≤0.0001,
***P ≤0.001, **P ≤0.01, n.s.= P >0.05). b Heatmap showing our RAS84 meta-
signature genes mapped to filtered (see “Method”) CCLE lung cell line data. Cell
lines are shownas rows, genes as columns. Groupings of high,mediumand lowRAS

activity are shown as separate clusters, KRASmutational status is indicated in dark
red on the right and parent signature gene membership is indicated in grey at the
bottomof themap. cContingency tables showing thenumber of RASpathwaywild-
type and KRAS mutant cell lines per RAS-high and RAS-low groups for RAS84. RAS
pathway wild-type cell lines are those with no oncogenic mutation in any RAS
pathway member. RAS-high cell counts are shown in red, RAS-low in blue. The
boxplots show the RI distributions for the RAS-high and low groups where the box
shows themedian and IQR, thewhiskers indicate ± 1.5 x IQR, outliers lie outside this
range. N = 120, Chisq test ****P ≤0.0001, ***P ≤0.001, **P ≤0.01, n.s. = P >0.05.
d Log-likelihood values from a GLM fit (family = binomial) of KRASmutation status
across the three RAS activity groups for each of the signatures. RAS84 is the best-
performing signature at segregating KRASmutants across the RAS activity groups.
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genes. To further characterise these groups, we tested if any other
reported genomic alteration19 exhibited a non-random distribution
across the five clusters. We identified eight alterations enriched in one
or more of the RAGs (chi-square, FDR <0.05) (Fig. 3d and Supple-
mentary Fig. 4a) and used these cluster-associated alterations to
characterise each of the five RAGs (Fig. 3a). STK11, KEAP1, RB1, TP53,
ATM and CDKN2A (p-values: <2e−16, 6e−7, 3e−4, 5e−11, 5e−3 and 8e−4)
are tumour suppressor genes whereas EGFR and CTNNB1 (p-values: 2e
−09and0.01) areproto-oncogenes.Theunder-representationofKRAS
mutants characterised RAG-0, but interestingly this group contained a
high number of tumour suppressor mutants (KEAP1, RB1 and TP53) as
well as CTNNB1 mutants, which could explain how the tumours initi-
ated. Due to the high level of p53 alterations (~70%), we refer to these
as P tumours. In addition to frequent KRAS mutations, many EGFR

mutations also characterised RAG-2 and RAG-3, suggesting the genes
driving these clusters reflected RAS pathway activation through
upstream receptor tyrosine kinase (RTK) activation. EGFR and KRAS
mutations are mutually exclusive29,30. TP53, STK11/LKB1 and CDKN2A
were identified as co-mutational partners of KRAS in NSCLC where the
tumour suppressor gene mutations tend to be mutually exclusive31.
Alongwith highKRASmutation rates andRAS84 expression, RAG-1was
characterised by STK11/LKB1 mutations (KL tumours) and RAG-4 by
CDKN2A mutations (KC tumours). TP53 was frequently altered in sev-
eral of the clusters,with RAG-3 having the highest rate of p53 alteration
(hence KP tumours) after the RAS silent RAG-0. The RAG-2 cluster had
modest levels of p53 (TP53) alteration (~40%) and more beta catenin
(CTNNB1) alterations than the other RAS active clusters, but still only
about 5%. We refer to these as K tumours, as selective co-occurring

Fig. 2 | In vitro anticancer drug screen. a Volcano plots showing differences in
IC50 values between RAS high and low CCLE cell lines. Drugs with enriched target
annotations in the significant sensitive and resistant groups are highlighted
(hypergeometric test) Drugs with an absolute log2 fold change >1 and fdr < 0.05
(linearmodel with Benjamini-Hochberg correction) are shown in dark grey. Results
from both GDSC1 & 2 are shown. b Drug target annotation enrichment in sensitive
and resistant drugs from GDSC1 & 2 (fdr < 0.05) in the RAS high CCLE cell lines,
determined by hypergeometric test with Benjamini–Hochberg correction. Target

terms enriched in the sensitive drugs are shown in blue, the resistant in red. The
number of drugs in each group is indicated by the size of the point. All tested
targets are shown. c, d Volcano plots showing differences in IC50 values between
KRAS mutant and wild-type cell lines and RAS pathway mutated and wild-type cell
lines (linear model with Benjamini–Hochberg correction). Drugs with enriched
target annotations in the significant sensitive and resistant groups are highlighted
(hypergeometric test).
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Fig. 3 | LUAD classification by RAS84. aHeatmap showing clustered RAS84 genes
and TCGA LUAD cohort patients. Patients are shown as rows, genes as columns.
Patients have been clustered into five RAS activity groups (RAGs) by hierarchical
clustering using a ward.D2 agglomeration method. Aggregate RAS84-Index (RI)
scores are shown to the right of the main heatmap. Genome variants with a sig-
nificant non-randomdistributionacross theRAGs are shown in the nine columnson
the right (chi-square fdr < 0.05). These mutations are used to characterise the five
clusters shown by the labels on the right (P, TP53; KL, KRAS/LKB1(STK11); K, KRAS;
KP, KRAS/TP53; KC, KRAS/CDKN2A). KRAS mutants are shown in dark red. Parent
signature membership is shown in grey at the bottom of the heatmap. b The per-
centage of KRASmutations per RAG broken down by specific KRASmutation type.
c Log-likelihood values from a GLM fit (family = binomial) of KRASmutation status

across the five RAGs. d Bar plots showing the percentage of patients per RAG with
EGFR, TP53, STK11 mutations, CDKN2A deletion, KEAP1, RB1, ATM and CTNNB1
mutations found to be significantly associated with any one RAG (fdr <0.05).
e EGFR, KRAS and TP53 mutation percentages found to be significantly associated
with any one RAG from the Seoul cohort. f Boxplots showing The Cancer Protein
Atlas (TCPA) RPPA MEK1 and ERK1/2 phosphorylation level distributions across
RAGs. Significance levels are shown compared to RAG-0 derived by linearmodel fit
(n = 349; RAG-0 n = 57, RAG-1 n = 79, RAG-2 n = 61, RAG-3 n = 91, RAG-4 n = 61;
****P ≤0.0001, ***P ≤0.001, **P ≤0.01, n.s.= P >0.05) The box shows themedian and
IQR, the whiskers indicate ± 1.5 x IQR, outliers lie outside this range. g Heatmap
showing variant mean RAS84 gene expression clusters across the five RAGs.
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mutations are not obvious. The clustering in five groups (fromC0with
the lowest mean expression level of a given signature, to C4 with the
highest) using published signatures only partially overlapped with the
RAS84-RAG classification (Supplementary Fig. 4b), although clear
similarities were evident.

We validated the patterns of KRAS, EGFR and TP53 mutations
across our RAGs in an independent lung adenocarcinoma cohort of 87
patients (Seoul cohort, GSE40419) (chisq test p-values, EGFR 0.0002,
KRAS 0.0014, TP53 0.1) (Fig. 3e). Given the small size of the Seoul
cohort it was not possible to cluster thepatients in a robustwaywith all
the signatures. We instead analysed the RI distributions for KRAS
mutant and wild-type patients (Supplementary Fig. 4c, d). RAS84 has
highly significant effect size between the two groups. Interestingly, we
did not observe any significant association between specific KRAS
amino acid mutational changes and RAG, suggesting that specific
mutations do not drive RAS activity heterogeneity in distinct ways in
the context of lung adenocarcinoma (Fig. 3b).

To determine if RAS84 expression reflected RAS-MAPK signalling
activity we looked at ERK1/2 (T202, Y204) and MEK1 (S217, S221)
phosphorylation levels within each RAG. We used The Cancer Pro-
teome Atlas (TCPA) reverse-phase protein arrays (RPPA) data32 for 349
of the TCGA LUAD patients and found an increase in phosphorylation
of one or both proteins in all RAGs when compared to RAG-0 (Fig. 3f).
At the expression level we found an enrichment of genes associated
with the GO term ‘ERK1 and ERK2 cascade’ when comparing RAG-4 to
RAG-0 (GO:0070371, p-value 0.0003) (Supplementary Data 6).

To understand what drove MAPK activity in the KRAS wt samples
of RAG-3 and -4 (which are not enriched in EGFR mutants), we looked
at the expression of RTK ligands and found EREG (present in RAS84),
AREG, NRG1 and TGFA were all enriched in RAG-4 (Supplementary
Fig. 5a). AREGwas also enriched in RAG-3 and TGFA in RAG-2, -3 and -4.
Interestingly, KRAS mutant and wild-type tumours expressed similar
levels of the ligands within each RAG (Supplementary Fig. 5b), sug-
gesting an autocrine signalling loop also exists in KRAS mutant
tumours in these groups as previously shown33,34.We also looked at the
proliferation score distributions across the five groups and did not
observe a correlation with RAS84 expression (Supplementary Fig. 6a).

We were also interested in identifying which RAS84 genes were
driving the RAGs. We focused on genes that were most variant across
the clusters and, via correlation analysis (Supplementary Fig. 6b),
found seven small gene clusters (1–7 genes in each) capable of dis-
criminating the five RAGs (Fig. 3g). RAG-4 was characterised by higher
expression of genes in cluster 2 when compared to the other RAGs,
RAG-3 by the expression of genes in cluster 5 but not 2, RAG-2 by the
up-regulation of genes in clusters 6 but not 5 and to an extent the over-
expression of cluster 1. RAG-1 patients could be identified by high
expression of cluster 3 and low expression of cluster 6, RAG-0 by low
expression of cluster 3. We found two clusters whose expression pat-
tern across the five RAGs mirrored that seen in the enriched
alterations.

Hence, we have demonstrated that RAS84performed optimally in
classifying KRAS mutant lung adenocarcinoma tumours as active for
RAS-driven transcription. We identified five RAGs characterised by
distinct associated mutational profiles and we showed RAS84 expres-
sion to be reflected by changes at the protein level.

RAS84 expression is mostly clonal
The prognostic value of RAS84, explored below, could make it an
attractive potential biomarker. A reliable biomarker should ideally not
be affected by the region of sampling and therefore not be perturbed
by the intra-tumour heterogeneity observed in most cancers. Recent
analyses of signatures derived for prognostication in lung cancer
indicate that up to 70% of NSCLC tumours35 and 40% of LUAD
tumours36 may be subject to sampling bias. To assess the intra-tumour
heterogeneity of RAS activity in lung adenocarcinoma, we classified

samples from the multi-region TRACERx cohort into our five RAS
Activity Groups (102 samples from 41 patients)37. To classify the sam-
ples, we trained a support-vector machine (SVM) classifier using the
TCGA LUAD classification results (see methods) and used it to assign
RAG labels to the TRACERx samples (Fig. 4a). SVM has been used as a
classification model with transcriptome data. This classifier will allow
the stratification of new patient samples outside of cohort datasets
enabling the clinical application of RAS84.

Of the 41 patients, 28 (68%) had multi-region RNA-seq gene
expression data available. Of these 28, 16 (57%) patients had all regions
fallingwithin the sameRAG (Fig. 4a). Twelve (43%) patients had regions
that spanned RAGs suggesting a degree of RAS activity heterogeneity
in some patients. Of these twelve, nine patients’ tumours had regions
falling only within neighbouring RAGs (RAG-4/3: four; RAG-3/2: one;
RAG-2/1: one; RAG-1/0: three). The remain three of these patients
(CRUK0017, CRUK0024 and CRUK0060) span more than two neigh-
bouring RAGs indicating a degree of relatedness in RAS activity across
the tumour. CRUK0017 spanned three clusters, RAG-3/2/0. This
patient is reported as sub-clonal for KRAS mutation by TRACERx
(PhyloCCF R1:0; R2:0.84; R4:0.65). Interestingly, the KRAS non-
mutated region fell into RAG-0. Patients CRUK0024 and CRUK0060
both had regions in two non-adjacent clusters, RAG-3/1. However, we
observed that the intra-tumour distances for RAS84 within these
group-spanning tumours were still small when compared to the inter-
tumour distance distribution (Fig. 4b).

We assessed the intra- and inter-tumour expression variance of
RAS84genes by comparing them togene sets previously annotated for
expression heterogeneity in the TRACERx lung adenocarcinoma
cohort. Biswas and colleagues classified all expressed genes into four
groups depending on their intra- and inter-tumour expression
variance36. We found a significant 3.2 fold enrichment of RAS84 genes
in the low intra-tumour, high inter-tumour expression variance group
(Fisher’s exact p-value 9.06e−6) (Fig. 4c, Supplementary Data 7). This
shows RAS84 is enriched for genes robust to sampling bias.

Altogether, these data suggest that RAS transcriptional activity is
comprised of predominantly clonally expressed genes in lung adeno-
carcinoma tumours, likely reflecting the oncogenic driving capability
of the RAS pathway. These data indicate that the RAS84 signaturemay
be relatively robust in the face of sampling bias.

RAS84 predicts survival and response to chemotherapy in lung
adenocarcinoma patients
Mutated KRAS oncogene promotes tumour progression and metas-
tasis in many preclinical models, but the mutational status of KRAS is
not reliably associated with outcome in clinical datasets6,7,38 (Fig. 5a).
To determine whether RAS84 had prognostic value in lung adeno-
carcinoma, we ran a univariate Cox proportional hazards analysis
comparing overall survival, and also progression-free survival, across
the TCGA LUAD RAGs (n = 493, 265 stage I, 117 stage II, 79 stage III and
25 stage IV). We found RAG-4 to be significantly associated with
negative outcome in both overall and progression-free survival when
compared to RAG-0 (Fig. 5b, c, Supplementary Fig. 7a–f).We alsofitted
a univariate Cox proportional hazards regression model to the RAS84
RAS Index (RI) values. We found a significant positive association with
outcome, showing increased RAS84 expression was a predictor of
poor overall survival (coxph HR 2, p-value 0.00042). To visualise the
ability of RI to predict outcome, we used the model to predict survival
time given a two-fold increase or decrease in RI values (Fig. 5d). Since
we observed a slight over-representation of stage III tumours and an
under-representation of stage I tumours in RAG-4 (Supplementary
Fig. 7g, h), we confirmed these findings in a multivariate Cox propor-
tional hazards analysis in an independent lung adenocarcinoma cohort
of 103 patients (60 stage I, 19 stage II and 24 stage III) (Uppsala cohort,
GSE81089). We first clustered the patients into five groups as pre-
viously described and ran the multivariate analysis across the RAGs
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and RI values including TNM stage, World Health Organization (WHO)
performance status, smoking history, sex and age in the model. We
found RAG to be a significant predictor of outcome (ANOVA LRT p-
value 0.032) and specifically RAG-4, RAG-3, and RI to be significantly
associated with poor outcome (Fig. 5e–h, Supplementary Fig. 8a–c).

Interestingly, when we combined the KRAS mutational status
with RI, the patients with RAS-high/KRAS wt tumours had the same
outcome as those with RAS-high/KRAS mut (Supplementary
Fig. 8d), confirming that the tumour progression driven by onco-
genic RAS activity is independent of KRAS mutational status. We
repeated these univariate and multivariate analyses with patient
clusters derived using the published signatures. Although we found
that three other RAS signatures predicted the highest RAS activity
group, C4, to have the worst prognosis, only RAS84 significantly
predicted outcome in a multivariate analysis correcting for other
predictors of outcome (Fig. 5i, Supplementary Fig. 8e, Supple-
mentary Data 8). This shows RAS84 had prognostic qualities in
early-stage lung adenocarcinoma beyond known clinical predictors
and suggests RAS pathway activity promotes tumour progression in
human lung adenocarcinoma.

Sinceweobserved ahigh concordancebetweenpatients classified
as the highest RAS signature group, RAG-4 by RAS84 and C4 RAS
pathway signature, we took a closer look at the C4+/RAG-4+ and C4+/
RAG-4− patients. Stratified by stage, we found stage III C4+/RAG-4−

patients to have better OS than C4+/RAG-4+ patients (Supplementary

Fig. 8f), showing that RAS84 performs well at identifying patients
where high RAS activity correlates with poor outcome.

Given that we observed a chemotherapy drug resistance pheno-
type in vitro, we ran a PFS multivariate Cox proportional hazards
analysis using the TEMPUS cohort of adenocarcinoma patients (n = 94,
5 Stage I, 17 Stage II, 31 Stage III and 41 Stage IV). We selected patients
who had received first-line chemotherapy treatment and constructed
PFS intervals using patient records (see “Methods”). We classified the
patient tumours using associated RNA-Seq data and our SVM classifier.
Wemodelled PFS with RAG labels along with stage, the administration
of radiotherapy, age and sex covariates. We found RAG to be a sig-
nificant predictor of PFS after chemotherapy (ANOVA LRT p-value
0.043). Specifically, patients in RAG-3 and RAG-4 had a poor response
when compared with RAG-2 (p-value 0.006, 0.027; HR 3.04, 2.84)
(Fig. 5j and Supplementary Fig. 9a). We also ran the samemultivariate
analysis testing KRAS mutation as a predictor of PFS. As previously
shown7,8, KRAS mutation did not predict response to chemotherapy
(Supplementary Fig. 9b).

To test a possible additive effect of RAG classification and KRAS
mutation, we split the RAGs into KRAS mutant and wild-type sub-
groups and ran the samemultivariate analysis as above. Although this
subclassification into 10 groups limits the statistical power, we
observed that theKRASwtpatients in RAG-4were the ones responding
the worse to chemotherapy (Supplementary Fig. 9c), demonstrating
further the independence between KRAS mutational status and

Fig. 4 | Intra-tumour RAS84 heterogeneity. a Heatmap showing RAS84 gene
expression across the TRACERx multi-region cohort. The samples have been clas-
sified into the fiveRAGs using an SVMclassifier. Contiguous samples from the same
patient are indicated by the grey shades just at the top of the heatmap. Gene
mutation status is indicated at the top, KRAS in red, EGFR and TP53 in grey. Per-
patient regions are indicated by the rows at the bottom of the heatmap. KRAS
mutants are shown in red, wild-type in green. Patients with regions spanning
multiple RAGs are indicated with an asterisk. Identifiers are given on the left in the

three cases where regions did not fall into adjacent RAGs. b Intra- (orange) and
inter-tumour (grey) sample Euclidian distant distributions. The maximum intra-
patient distance for patients with samples spanning different RAGs are indicated
with an asterisk. c Plot showing the enrichment of RAS84 genes in genes previously
classified as low for intra-tumour expression variance and high for inter-tumour
expression variance in the TRACERx lung adenocarcinoma cohort. This group is
represented by quadrant 4 on the plot showing a 3.2x fold enrichment of RAS84
genes relative to all expressed genes (Fisher’s exact enrichment p-value 9.06e−6).
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Fig. 5 | RAS84predicts survival in lungadenocarcinoma.a–dKaplan–Meierplots
showing overall survival data from the TCGA LUAD cohort for patients stratified by
KRAS mutation (coxph p-value 0.23) (a) or from RAG-4 and RAG-0 (coxph p-value
0.0001) (b), progression-free survival data from the TCGA LUAD cohort for
patients from RAG-4 and RAG-0 (coxph p-value 0.0017) (c) and a Cox proportional
hazards regression fit of TCGA LUAD survival data to RI values. The grey survival
curve shows the observed data. The blue survival curve is the predicted survival if
the RI values decreased 2-fold. The red curve is the predicted survival values if the
RI were to increase 2-fold (coxph p-value 0.0004) (d), Patient number is indicated
between brackets. e Forest plot showing results from a multivariate Cox propor-
tional hazards analysis of the Uppsala lung adenocarcinoma cohort (n = 103
patients). Hazard ratios and 5 and 95% confidence intervals are shown on a natural
log scale. f–h Kaplan–Meier plots showing overall survival data from the Uppsala
cohort for patients from RAG-4 and RAG-0 (multivariate coxph p-value 0.0088) (f),

RAG-3 and RAG-0 (multivariate coxph p-value 0.024) (g) and a Cox proportional
hazards regression fit of Uppsala survival data to RI values. The grey survival curve
shows the observed data. The blue survival curve is the predicted survival if the RI
values decreased 2-fold. The red curve is the predicted survival values if the RIwere
to increase 2-fold (coxph p-value 0.036) (h). i Multivariate p-values and hazard
ratiosplotted forUppsalaRAGs clustersderived from thepublished signatures. The
p-values are plotted on a −log10 scale (coxph p-value RAS84 RAG-4 0.0088, RAS84
RAG-3 0.024). j Forest plot showing results from a multivariate Cox proportional
hazards analysis of PFS after chemotherapy in the TEMPUS lung adenocarcinoma
cohort (n = 100 patients) (coxph p-value RAG-high p-value 0.0018). Hazard ratios
and 5 and 95% confidence intervals are shown on a natural log scale. kMultivariate
p-values and hazard ratios plotted for TEMPUS RAGs and clusters derived from the
published signatures. The p-values are plotted on a −log10 scale.
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phenotypes previously associatedwith oncogenic RAS activity. We did
not observe differences in responses between KRAS mutant and wild-
type samples in RAG-3. Altogether, these results show the potential of
RAS transcriptional activity to predict response to chemotherapy
where KRAS mutation status alone does not.

Finally, we benchmarked RAS84 against published RAS signatures
to predict response to chemotherapy. Among the other signatures,
only “HRAS” predicted chemoresistance in its highest-signature-
expression cluster (C4), however failed to show resistance in C3.
“KrasLA” and “RAS pathway” failed to identify C4 as having the worse
response to chemotherapy and “MSigDB” also identified C0 as non-
responders, therefore failing to show a correlation between RAS
activity and resistance to treatment (Fig. 5k). Of note, “MSigDB” failed
to identify many patients in C4 (Supplementary Fig. 4c). As shown in
the TCGA and Seoul cohorts, the classification varied across the sig-
natures, and RAS84 was still superior to previous RAS signatures at
classifying KRAS mutants, although only marginally so with respect to
“Ras pathway” (Supplementary Fig. 9d, e).

Because of the clinical potential of RAS84, we sought to identify
the genes driving patient stratification to reduce the number of genes
in the signature. We started by ensuring there were no highly corre-
lated genes within the signature (Supplementary Fig. 10a, b). We
applied Random Forest to our RAG labels and the TCGA RAS84
expression matrix. We used this model to rank the 84 genes by their
importance in classifying the patients into the 5 RAGs (Supplementary
Data 9). We constructed expression matrices using gene sets itera-
tively across the gene rank. We built new SVM classifiers using these
matrices along with our original RAG labels identified from the RAS84
clustering. We tested these new classifiers against our test data to
determine performance (Supplementary Fig. 11a). We achieved max-
imum accuracy using 55 genes. We determined the sensitivity and
specificity to correctly identify each RAG (Supplementary Fig. 11b). We
found 43 genes gave a >0.8 sensitivity in all RAG classes and 11 genes
gave >0.9 specificity. We were able to identify a significant association
between RAG-4 OS in the TCGA cohort using these 55 genes (HR 2.305,
p-value 3.29e−04) (Supplementary Fig. 11c).

We also ran Lasso regression on a TCGA OS Cox Proportional
Hazards model including all RAS84 genes as predicators to determine
the RAS84 genes specifically associatedwith outcome.We identified 11
genes to be important (ARNTL2, CXCL1, EHD1, ITGA2, KCNK1, KLF6,
MCL1, RESF1, SDC1, SEMA4B, SERPINB1). We used this small 11-gene
signature mentioned above (hereinafter referred to as “RAS11”) in a
multivariate Cox Proportional Hazards analysis on the Uppsala cohort
and found its mean expression to be significantly associated with
outcome (Supplementary Fig. 11d). Importantly, we found that RAS11
expression increased across RAGs defined by RAS84 from RAG-0 to -4
in this cohort, validating that RAS11 is still a good surrogate for
oncogenic RAS activity and not only associated with outcome (Sup-
plementary Fig. 11e).

We thus demonstrate the prognostic value of RAG classification
and RI quantification in 500+ lung adenocarcinoma patients from two
independent cohorts, benchmarked against the failure of KRAS
mutational status or previous RAS signatures to predict patient out-
comes. We show that 11 of RAS84 genes are sufficient to capture
prognosis in an independent cohort of lung adenocarcinoma patients.
We also show RAG classification as a predictor of response to che-
motherapy, thus demonstrating that RAS84 adds value to current
clinical risk factors and response biomarkers.

RAS84 predicts RAS-MAPKpathway activity across cancer types
The degree to which RAS activity is important in tumourigenesis and
cancer progression varies across different tissues19, with some cancers
known to be driven largely by RAS mutations (e.g., pancreatic, color-
ectal and lung cancers39,40) and others not (e.g., uveal melanoma41,
glioblastoma42, kidney cancer43). To determine how RAS84-

determined RAS activity varied across cancer types, we quantified it
against all 32 TCGA solid cancers in a pan-cancer analysis. To compare
samples across cancers, we calculated an RI value for each sample
(Fig. 6a). We identified two distinct cancer populations from the dis-
tribution of mean RI values per-cancer (Fig. 6b, Supplementary
Fig. 12a). We found four of the top five RASmutated cancers known to
be RAS-driven (RAS mutation frequency: pancreatic adenocarcinoma
(PAAD) 71%, colon adenocarcinoma (COAD) 50%, rectum adenocarci-
noma (READ) 49% and lung adenocarcinoma (LUAD) 31%) in the highly
RAS active group (Supplementary Fig. 12b). We also found KRAS
mutation to be over-represented within this group (hypergeometric p-
value < 2e−16). The other cancers found in the high RI group were
stomach adenocarcinoma (STAD) (8.9% RAS mutated), bladder uro-
thelial carcinoma (BLCA) (8.3%), head and neck squamous-cell carci-
noma (HNSC) (5.8%), cervical squamous-cell carcinoma and
endocervical adenocarcinoma (CESC) (5.2%), lung squamous-cell car-
cinoma (LUSC) (3.5%) andoesophageal carcinoma (ESCA) (1.2%). RAS is
not significantly mutated in these cohorts when compared to those
with a lower RAS mutation ratio (Supplementary Fig. 12b). In order to
explain the presence of these cancers in the highly RAS active group,
we looked at the correlation between RAS pathway alteration status
and mean RI across the cohorts. We defined RAS pathway alteration
status as the number of patients with at least one alteration in a RAS
pathway gene (as defined in TCGAdriver pathway analysis19) leading to
pathway activation. We identified a pan-cancer correlation (spearman
coefficient 0.432, p-value 0.0135) (Fig. 6c). Stomach (STAD), bladder
(BLCA), headandneck squamous cell (HNSC), oesophageal (ESCA) and
lung squamous-cell (LUSC) cancers all had RAS pathway alteration
rates above 50% and fell within the 99% confidence interval suggesting
RAS pathway alterations other than RAS are driving activity in these
cancers. The high RI values in cervical carcinoma (CESC) remain
unexplained since the high frequency of PIK3CA mutation (28.5%) in
this cancer is not significantly associated with RI (Supplementary
Fig. 12c).

Skin cutaneousmelanoma (SKCM) and thyroid carcinoma (THCA)
mean RIs were lower than predicted by their RAS pathway alteration
ratio (Fig. 6c, indicated in orange). Interestingly, NRAS is the main
mutated isoform of RAS in these two cancers. However, RAS mutation
does not correlate with RI in SKCM (Supplementary Fig. 12d) and
shows a significant inverse correlation in THCA (Fig. 6d) suggesting
thatmutant RAS is not themain driver of RAS pathway activity in these
cancers. Interestingly THCA and SKCM have the highest proportion of
BRAFmutation (57% and 50%) compared with the next most common,
colon (10%). We found BRAF mutation to be significantly associated
with highRI values (Wilcoxp-valueTHCA< 2e−16, SKCM2e−3) (Fig. 6e)
suggesting BRAF to be a key driver of oncogenic RAS pathway activity
in these two cancers. Given the lower-than-expected mean RI values it
is possible that BRAF activation does not capture the full complexity of
RAS pathway activation, possibly due to the use of multiple effector
enzyme families by RAS proteins.

Wemeasured amoderate RI inmesothelioma (MESO), kidney renal
clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), kidney
renal papillary cell carcinoma (KIRP), kidney chromophobe (KICH) and
liver hepatocellular carcinoma (LIHC) (Fig. 6c, indicated in blue). All fall
below the lower 99%CI indicating they have higher than expectedmean
RI values given their RAS pathway alteration ratio. The absence of RAS
pathway alterations suggests that these cancers activate RAS via other
mechanisms than the RAS pathway alterations considered here.

To further validate that RAS84 expression could predict high RAS
activity in RAS mutants in individual cancers, we looked at pan-RAS
mutation (KRAS,NRAS,HRAS) distributions across RI values per cohort
(Supplementary Fig. 12d). We identified a significant positive associa-
tion between RAS mutations and RI in pancreatic (PAAD), LUAD, head
and neck squamous (HNSC), thymoma (THYM), breast invasive carci-
noma (BRCA), uterine carcinosarcoma (UCS), and uterine corpus
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Fig. 6 | RAS Activity Pan-cancer. a RI plotted per patient across the TCGA pan-
cancer cohort. RNA-Seq gene counts were VST and z-score normalised per cohort.
RAS mutants are highlighted (KRAS in red, HRAS in blue and NRAS in orange).
Relative RAS isoformmutation frequencies per cohort are shown in the barchart to
the right using the same colours. Frequencies of patients with a RAS gene ampli-
fication but nomutation are shown in grey. b A violin plot showing the distribution
of mean RI across each TCGA cohort. The dotted orange line indicates the dis-
tribution minima separating the two cancer populations. c The ratio of patients
with one or more RAS pathway mutations plotted against the mean RI for each
cohort. A linear regression fit is shown in bluewith a 99% confidence interval shown
by the grey ribbon (spearman coefficient 0.432, p-value 0.014). Highly RAS active
tumours are shown in red, BRAF-driven tumours in orange and tumours with a RI
value belowthe lower 99%CI are shown inblue.dBoxplots showingdistributionsof

RI values for pan-RASmutant and wild-type patients. Significant cohorts are shown
(linear model, for n see Supplementary Data 10; ****P ≤0.0001, ***P ≤0.001,
**P ≤0.01, n.s.= P >0.05). The box shows themedian and IQR, the whiskers indicate
± 1.5 x IQR, outliers lie outside this range. e Boxplots showing distributions of RI
values for THCA and SKCM split by BRAF mutation status (linear model fit THCA
281 mut, 192 wt; SKCM n = 180 mut, 180 wt; ****P ≤0.0001, ***P ≤0.001, **P ≤0.01,
n.s.= P >0.05). Thebox shows themedian and IQR, thewhiskers indicate ± 1.5 x IQR,
outliers lie outside this range. f, g Kaplan–Meier plot showing a Cox proportional
hazards regression fit of TCGA PAAD (f) or CESC (g) cohort survival data to cor-
responding RI values. The grey survival curve shows the observed data. The blue
survival cure is the predicted survival if the RI values decreased 2-fold. The red
curve are the predicted survival values if the RI were to increase 2-fold (coxph p-
value 0.021 and 0.018, respectively).
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endometrial carcinoma (UCEC) (Wilcoxon fdr < 0.05) (Fig. 6d, Sup-
plementary Data 10), reinforcing the idea that RAS84 can predict RAS
activity within these cancers. For two cancers, thyroid (THCA) and
testicular germ cell tumours (TGCT), we observed a negative associa-
tion of RASmutation with RI. Asmentioned previously, THCA has high
BRAFmutation levels with some NRAS but few KRASmutations. TGCT
is characterised by low levels of both KRAS (8%) and NRAS (3%)
mutations. The higher RI activity in the RAS wild-type group suggests
that theremay be a strong activator of RAS signalling in these samples,
such as autocrine growth factor production, or a negative feedback
loop in the mutants that is not apparent from the mutational data.

To determine if RAS84 had prognostic qualities in cancers other
than LUAD, we ran Cox proportional hazards regression analyses of
overall survival against RI values on cohorts within our highly RAS
active cancer group. We were able to identify a prognostic association
with RAS84 expression for CESC and PAAD (p-value < 0.05). Overall
survival data with predicted outcome given a two-fold increase and
decease in RI are shown in the survival plots (Fig. 6f, g). This result
shows RAS activity as defined by RAS84 to be a possible prognostic
indicator in other RAS-driven cancers, such as pancreatic (PAAD) and
RAS pathway active cancers, such as cervical (CESC).

Discussion
The importance of mutations in RAS oncogenes in tumourigenesis,
cancer progression and resistance to treatment has been demon-
strated in numerous model systems in vitro and in vivo. However, the
mutational status of KRAS has neither prognostic nor predictive value
in human lung cancer, limiting the possibilities to anticipate patient
survival and to adapt treatments. From this, one might be tempted to
conclude that lung adenocarcinomas lacking a KRAS mutation have
acquired functionally similar patterns of signalling network activation
to those with KRAS mutations. However, the development here of a
transcriptional measure of oncogenic RAS activity has allowed us to
distinguish significant differences in outcome and response to che-
motherapy between lung adenocarcinoma patients.We also show that
a high proportion of KRAS wild-type tumours do exhibit the char-
acteristics of RAS pathway activation. This analysis will facilitate the
study of the effect of RAS pathway activity on survival, cancer pro-
gression and resistance to treatment in patients and could ultimately
inform clinical decisions.

Several groups previously developed “RAS-addiction” or “MEK-
sensitivity” signatures using RNA interference against RAS, MEK
inhibitor or the RAS processing inhibitor salirasib to investigate
resistance to RAS pathway targeted therapy23,44–46. Others have also
reported approaches to assess RAS activity in tumours from
expression data. Bild and colleagues mapped several transformation
signatures to expression data from lung tumours and identified a
population of patients with deregulation in RAS, Src, β-catenin and
Myc activity and poor survival24. Sweet-Cordero and colleagues
assessed the enrichment of a KrasV12 tumour signature derived from a
mouse cancer model in human tumours, observing an enrichment of
the signature in human lung adenocarcinoma, but not specifically in
KRAS mutants47. Nagy and colleagues reported a prognostic value in
NSCLC using the mean expression of the top 5 deregulated genes
in KRAS mutants versus non-mutants to segregate patients48. Way
and colleagues used a machine learning approach and trained their
classifier to detectKRAS, HRAS andNRASmutations and copy number
variation across cancers using the TCGA pan-cancer dataset 49. Of the
four published RAS signatures we tested, three predicted outcome in
univariate survival analysis24,43, but only RAS84 conserved its prog-
nostic value when corrected for tumour stage in the multivariate
analysis. This finding suggests wewere able to extract the RAS-target-
genes which capture RAS activity and not only tumour aggressive-
ness. Precedent RAS signatures likely contained genes associated
with tumour progression, but ourmethod based on the classification

of KRAS wt as RAS-low samples worked at extracting RAS-specific
genes from these signatures.

We chose to derive ourmeta-signature in lung cancer because lung
adenocarcinoma is known to be RAS-driven with about a 30% KRAS
mutation rate, but also has 26% of patients that are RAS pathway wild
type (no genetic alterations on any of the broader RAS pathway mem-
bers), thus presenting a potentially wide RAS-activity dynamic range.
Our method offers an alternative approach to previously published
methods in that it does not rely on the initial segregation of RASmutant
and wild-type patients. We started from genes expressed in RAS active
conditions, and we identified those that were good markers of KRAS
mutants compared with non-activated RAS pathway tumours. This
approach makes our method also sensitive to RAS active tumours dri-
ven by non-KRAS mutations. This nuance could explain the greater
performanceof our approachover others to capture the aggressiveness
induced by oncogenic RAS activity. Moreover, using cell line data in the
initial derivation of the signature provided a pure tumour cohort, free
from the complexities of the tumour microenvironment, which could
have introduced noise in identifying the driver genes, thus demon-
strated by the low expression of RAS84 in stromal and immune cells.

Our analysis shows that 84% of lung adenocarcinomas exhibit
clear evidence of RAS pathway activation independent of KRAS
mutation status. We show that RAS-pathway-mutation burden is
associated with RAS84 activity in our pan-cancer analysis, demon-
strating the influence of other RAS-pathway-member mutations.
However, there are undoubtedly other indirect mechanisms driving
RAS oncogenic activity in KRAS wt tumours, such as epigenetic reg-
ulation, inter-exonic variants, influence of the tumour microenviron-
ment and growth factor expression, negative feedback loop
regulation, metabolic regulation or others. Using a transcriptional
approach presents the advantage of being agnostic to all upstream
regulation and negates the need for complete characterisation of all
drivers affecting RAS signalling. We identified four groups with dif-
ferent degrees of RAS84 activity. The coincident mutations we
observed in RAG-1 to −4 have previously been associated with specific
phenotypes by Skoulidis et al. in a cohort of KRAS mutant lung
cancer31. Our classification includes KRAS wt patients (representing
70% of all LUAD), thus broadening the clinical benefits of stratification
to all patients.

Many studies over the years described the role of mutant KRAS in
cancer progression, which might be expected to affect patient
survival5. Oncogenic RAS promotes cell proliferation50–55, suppresses
apoptosis56, shifts the metabolic program of cancer cells to sustain
hyperproliferation57,58, promotes angiogenesis59, increases
inflammation60,61 and remodels the extracellular matrix62,63. Moreover,
RAS promotes immune evasion by impairing antigen presentation64,
recruiting immunosuppressive cells65,66 and inducing immune check-
point ligand expression10. Despite extensive literature describing how
oncogenicRAS increases tumour aggressiveness, these findings do not
reflect patients’ survival or response to treatment. An analysis of 227
patients with surgically resected NSCLC showed no association
between RAS mutation and relapse67 and a meta-analysis of 29 studies
showed no relation between RAS mutation and survival in lung
cancer68. The discrepancy between preclinical laboratory experiments
and observationsmade in the clinic could be explained by the fact that
someKRASwt tumours can still activate theRASpathwaydue to events
other than RAS oncogene mutations, such as BRAF or EGFR mutation.
Multiple factors can affect RAS activity from one tumour to another in
human cancer, unlike in the controlled isogenic systems typically used
in laboratory studies where the only perturbation is the RASmutation.
Based on transcriptional activity, our approach is thus at least partially
agnostic to a precise position in the signalling network of genomic
alterations, explaining its superiority to predict outcome. Additionally,
RAS84 expression appears broadly clonal, showing that RAS activity is
generally an early driver event in lung adenocarcinoma. This
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observation is an essential consideration for developing clinical bio-
markers when assessing tumour RAS activity from a single biopsy.

Adjuvant therapy is currently the first-line treatment for patients
with early-stage lung cancers69. Although KRAS mutant promotes
resistance to chemotherapy in isogenic experiments in vitro and
in vivo2–5, it has no predictive value in patients with lung cancer6,7.
Using an independent cohort of lung adenocarcinoma (TEMPUS), we
show thatRAG-3 and -4 patients have aworse progression-free survival
in response to first-line chemotherapy. This result is supported by the
resistance to 23 chemotherapy drugs we observed in RAS-high lung
cell lines in vitro. In both analyses, the classification based solely on the
mutational status of KRAS did not reveal increased resistance to che-
motherapy in KRAS-mutant cell lines or tumours. We also compared
the response to drugs in cell lines mutated on any RAS pathway
members versus all RAS pathway wild-type. Interestingly, this classifi-
cation was not sufficient to predict resistance to chemotherapy, sug-
gesting that other events –perhaps non-genetic– also affect the RAS
oncogenic activity that we capture in our approach. Surprisingly, RAG-
2 showed the best response to chemotherapy. The absence of coin-
cident mutations on tumour suppressor genes may explain the better
response observed in this group compared to other RAGs.

We also evaluated the RAS activity signature across different
cancer types. In a pan-cancer analysis across all cancer types, we
demonstrated high signature expression in tumours known to be RAS-
driven, and we showed RAS84 expression to be predictive of RAS
pathway mutation burden across cancer types. We predicted nine
cancer types to be highly RAS pathway active, almost all of which had a
high representation of mutations in RAS pathway genes. Five cancer
types (liver hepatocellular carcinoma, kidney renal clear cell and
papillary carcinomas, prostate adenocarcinoma and mesothelioma)
with low RAS pathway mutation burden classified as moderate RAS
pathway activity, indicating that events other than genomic alterations
activate RAS signalling in these cancers. In addition, the relationship
between RAS84 expression and RAS pathway gene mutations is dif-
ferent in cancers with very high BRAFmutation levels, such as thyroid
carcinoma and melanoma, which score as only moderate for RAS
pathway activity. This suggests that the oncogenic RAS pathway’s
output varies depending on themutated gene, with the BRAFmutation
not being equivalent to KRASmutations. This might be expected from
our knowledge of the bifurcating nature of the RAS pathway with
multiple effector enzyme families directly targeted by RAS proteins.
Our results show a great variability of RAS activity amplitude across
cancers, highlighting the importance of assessing RAS activity per
cancer cohort. Interestingly, the correlation between RAS84 expres-
sion and overall survival in pancreatic cancer, where 95% of tumours
are mutated on KRAS, shows the direct link between RAS pathway-
induced transcriptional activity and tumour aggressiveness.

We validated our observations in small cohorts of patients, which
represents a limitationofour study, particularly sinceour classification
stratifies the patients into five groups, limiting the number of patients
in each group. Our finding that RAS84 correlates with resistance to
chemotherapy needs tobe validated in a larger cohortwithmore early-
stage patients. Predicting response to chemotherapy in these patients
is crucial to inform clinical decisions regarding the benefit of adjuvant
therapies. It will be interesting to evaluate whether RAS84 predicts
response to other treatments such as targeted therapy and immu-
notherapy. Defining the predictive ability of RAS84 for immunother-
apywould beparticularly relevant sincewe andothershave shown that
mutant KRAS protein can modulate the expression of immunosup-
pressive proteins9,10. Skoulidis and colleagues showed that KRAS and
STK11/LKB1 co-occurringmutations are associated with poor response
to PD-1 blockade in NSCLC patients70. In our classification, RAG-1 is
enriched in STK11/LKB1 mutants, suggesting that this tumour group
could be refractory to immune checkpoint blockade (ICB). In the same
study, the authors showed that KRAS mutant; TP53 mutant tumours

responded better to anti-PD-L1. RAG-3, and to a lesser extend RAG-4,
are enriched in TP53 mutants, suggesting that these tumours could
respond to ICB. About 20%of patients withNSCLC respond to ICB. The
predictive value of RAS84 classification in response to ICB should be
investigated in a follow-up study.

The 84 identified genes capture the complexity of RAS pathway-
induced gene expression. However, the large number of genes could
be a limitation to translating our classifier to a clinical assay. We
therefore applied a random forest to our classifier to find the most
important genes in driving the stratification in RAGs and found that a
reduced number of 55 genes performed well at reproducing the clas-
sification observed with RAS84, and predicted RAG-4 to have the
worse prognostic in this cohort, but not in amultivariate analysis in an
independent cohort. We also took another approach (ran a multi-
variate Cox MIC analysis) to identify the RAS-target genes associated
with outcome. We obtained a 11-gene signature which conserved its
prognostic value in a multivariate analysis in an independent cohort
and correlated with RAS activity. However, none of these two smaller
signatures showed association with chemoresistance. It could be
explained by the fact that different RAS-target genes capture different
phenotypes of oncogenic RAS activity.Moreover, the number of genes
required to stratify patients would increase with the number of output
groups. However, it would be possible to focus on one or two specific
groups and define the genes required to identify the patients belong-
ing to these groups over the others. We showed RAG-3 and -4 tumours
are refractory to chemotherapy. Identifying the driver genes in RAG-3
and -4 patient classification will be valuable in the future if the resis-
tance to chemotherapy can be validated in a prospective cohort.

RAS84 captures RAS oncogenic activity in tumour samples better
than the mutational status of KRAS when applied to cohorts of lung
adenocarcinoma patients and other cancer types. We believe that the
stratification of patients based on RAS84 expression will facilitate the
study of the effect of RAS on survival, cancer progression and resis-
tance to treatment in patients and could ultimately help clinical deci-
sion making.

Methods
Selection of the founder gene sets
We selected gene sets from several published data: the RAS addiction
signature contained 380 genes upregulated in 5 KRAS-dependent cell
lines (4 lung cell lines and 1 pancreatic cell line) comparedwith 5 KRAS-
independent cell lines (4 lung cell lines and 1 pancreatic cell line)23; the
KrasLA signature contained 89 upregulated genes in mouse lung
tumours induced by the spontaneous recombination of KrasLA2 allele
compared with normal lung and expressed in human lung tumours47;
the HRAS transformation signature contained 245 genes correlating
with the classification of HMEC samples into oncogene-activated/
deregulated versus control24; theRASpathway signature contained 105
genes previously curated from 3 studies including HRAS transforma-
tion, KrasLA and a signature of Salirasinib-treated human cancer cell
lines45,46; the MSigDB signature is the HALLMARK_KRAS_SIGNA-
LING_UP meta-signature from MSigDB, which contained a list of 200
genes identified from overlaps between KRAS-related gene sets in
other MSigDB collections25. We also generated a gene set from in-
house data. The data was previously generated using the colon cancer
cell line HCT116, which carries a KRASG13D mutation, and its isogenic
cell lines Hke3 and Hkh2 where the KRASG13D allele was deleted by
homologous recombination71. An Affymetrix analysis was performed
on parental and recombined cell lines, and on sh-KRAS and sh-control
in the HCT116 cell line. KRASG13D134 was derived by selecting the genes
upregulated (L2FC > 1.5) when KRASG13D was expressed in all three
experiments: HCT116 sh-KRAS versus control (6 days), Hke3 versus
HCT116 and Hkh2 versus HCT116.We also identified a number of other
oncogenic expression signatures to use as controls throughout the
analysis (Supplementary Data 11).
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Affymetrix analysis of HCT116 sh-KRAS
HCT116 cells stably expressing inducible sh-RAS vectors72 were treated
with 25 ng/mldoxycycline or vehicle control for 3 days or 6 days.Hke3,
Hkh-2 and parental HCT116 were cultured in basal condition. All con-
ditions were done in triplicate. RNA samples were extracted with
Qiagen RNeasy kit (Qiagen). RNA samples were then quantified, and
260/280 ratios were measured using NanoDrop spectrophotometers
(Thermoscientific) and tested for integrity using a Bioanalyzer system
(Agilent). RNA samples were labelled using Affymetrix One Cycle
Target labelling Kit (Affymetrix) following the manufacturer’s
instruction and sequenced using a GeneChip Human Genome U133
Plus 2.0 Assay (Affymetrix).

CCLE
The CCLE microarray expression and mutation data were obtained
from the CCLE legacy repository hosted at The Broad (https://data.
broadinstitute.org/ccle_legacy_data). We selected lung-derived cell
line data. We labelled the cell lines as either KRASmutation positive,
RAS pathway mutation positive or RAS pathway mutation negative.
Cell lines were labelled as RAS pathwaymutation negative if they had
nomutation in a RAS pathway genemember defined in Sanchez-Vega
and colleagues19. We removed cell lines with mutations in RAS
pathway members other than KRAS from further analysis selecting
166 cell lines (52 small-cell carcinoma, 46 adenocarcinoma, 26
squamous-cell carcinoma, 19 NSCLC with no subtype specified, and
23 without label or had another histology type). We filtered the RAS
signatures for genes relevant in the context of lung cancer. We
modelled the log COV of expression against the mean log2 expres-
sion across all genes using loess regression. Signature genes with
positive residuals with respect to the fit and a log2 mean expression
value >6 were selected.

Wemapped each of the signatures to the cell line expression data
and clustered the cell lines usinghierarchical clusteringwith aWard.D2
agglomerationmethod. We split the resultant dendrograms into three
clusters, labelling each high, low and unclassified for signature
expression. The labels were assigned based on ranked mean cluster
expression. To assess the performance of each of the signatures we
calculated the significance of association of high and low clusters with
KRAS mutation using a chisq test. To further refine each of the top 3
performing signatures, we ran a differential analysis between the high
and low clusters using the Limma package from Bioconductor. We
selected signature genes with an fdr <0.05 as those driving the clus-
tering. We merged the differential genes for each signature tested to
form our meta-signature, RAS84. We identified RAS-high dependent
transcriptional changes between RAS-high and RAS-low groups by
limma (3.40.2) analysis on CCLE RMA normalised intensity estimates.
Genes with a RAS group mean intensity estimate <6 in both groups
were removed from the analysis. Differential genes were selected by
FDR <0.05 and absolute LFC > 1. We ran the GO analysis using the
clusterProfiler (3.12.0) package from Bioconductor testing all Biologi-
cal Process terms from org.Hs.eg.db_(3.8.2) (FDR <0.001).

CCLE drug sensitivity screen
We obtained drug sensitivity data from GDSC (IC50) (v1 367, v2 198
compounds)73 and CTRP (AUC) (v1 185, v2 481 compounds)74 for the
CCLEcell lines.We clustered theVSTnormalisedRAS84CCLERNA-Seq
data into two clusters, RAS high and RAS low. We tested for significant
differences in drug response values across the twoRASactivity clusters
by linear model correcting for any KRAS mutation status effect
(<0.05 fdr).We analysed eachof the two release versions separately for
each of the two data repositories. We identified enriched compound
target pathways in the GDSC results by hypergeometric test using the
TARGET_CATEGORY annotation provided (< 0.05 fdr). We also tested
for oncogenic KRAS mutant dependent and oncogenic KRAS pathway
dependent drug responses in the GDSC data. We used genotype data

from the CCLE. We called the RAS pathway as mutated if any of the
pathway genes contained a mutation19.

Patient datasets
TCGA pancancer data. All TCGA RNA-Seq gene-level read-counts
were downloaded using the TCGAbiolinks (TCGAbiolinks_2.8.4) pack-
age from Bioconductor75 (legacy = TRUE). Raw counts were VST nor-
malised using the varianceStabilizingTransformation function within
DESeq2 (DESeq2_1.20.0) from Bioconductor76. Normal samples were
removed prior to analysis. To compare across the cancer cohorts, we
z-score normalised samples and genes. Mutation data were obtained
from Sanchez-Vega and colleagues19 and specific KRAS mutation data
was downloaded from TCGAbiolinks and integrated with the expres-
sion data. Survival andproliferationdatawereobtained fromThorsson
and colleagues77. RAS84 gene annotations were mapped to the RNA-
Seq feature ids (Supplementary Data 2).

Seoul lung adenocarcinoma cohort, GSE40419. RNA-Seq RPKM
values for 87 adenocarcinoma patients were downloaded from GEO
using the getGEO function from theGEOQuery Bioconductor package.
RPKM values were log2 transformed prior to cluster analysis.Mutation
data were obtained from Seo and colleagues78. Where multiple fea-
tures existed per-gene the one with the maximum mean expression
value across the cohort was selected.

Uppsala II RNA-Seq. RNA-Seq gene-level read-counts and clinical data
were downloaded from the Gene Expression Omnibus (GEO
GSE81089). The raw counts were VST normalised using the var-
ianceStabilizingTransformation function within DESeq2 (DESeq2_
1.20.0) fromBioconductor76. Ensembl gene annotations were obtained
using the biomaRt package from Bioconductor. The 103 stage I, II, & III
adenocarcinoma samples were selected prior to further analysis (col-
umn histology:ch1 == 2, stage.tnm.ch1!= 7). RAS84 gene annotations
were mapped to the RNA-Seq feature ids (Supplement data 2). In the
case of IER3, which maps to multiple features in this dataset, the fea-
ture with the largest mean VST value across all samples was selected
(ENSG00000137331).

TRACERx. RNA-Seq gene-level read-counts were obtained for the
TRACERx 100 patient cohort. The counts were VST normalised using
the varianceStabilizingTransformation function within DESeq2
(DESeq2_1.20.0) from Bioconductor76. The 102 adenocarcinoma sam-
ples were selected (Histology == “Invasive adenocarcinoma”). The
counts were further z-score normalised prior to SVM classification.
RAS84 gene annotations were mapped to the RNA-Seq feature ids
(Supplement data 2).

Lambrechts scRNA-Seq. Log2 CPM normalised scRNASeq data for B,
T, fibroblasts, alveolar, EC andmyeloid cells from five lung carcinomas
were obtained from ArrayExpress (E-MTAB-6149).

TEMPUS CLINIC-GENOMICS. TEMPUS clinic-genomics is a retro-
spective lung cancer cohort database containing 1,711 patients. Clinical
datawereextracted from theTEMPUS real-world oncologydatabaseof
longitudinal structured and unstructured data from geographically
diverse oncology practices, including integrated delivery networks,
academic institutions, and community practices. All data were de-
identified in accordance with the Health Insurance Portability and
Accountability Act (HIPAA). Thedatabase extractwas retrieved andde-
identified in 2018 and contained cohorts with patients’ records span-
ning from 1990–2018. We identified 108 adenocarcinoma patients
from the TEMPUS database with first-line chemotherapy treatment
and matched RNA-seq molecular data. We calculated a progression-
free survival interval from the associated patient clinical histories. We
took the start time of treatment as time zero. We used a recorded
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recurrence event, a reported progressive disease outcome, a pro-
gression in reported tumour stage, death or the administration of an
alternative therapy as an endpoint to progression-free interval. In the
cases of repeated chemotherapy treatment, we took a gap between
treatments of >6 months as a PFS endpoint. In the absence of any
endpoint events, we censored on the last follow-up time if no neo-
plasmwas recorded or the last reported outcome if itwas one of stable
disease, progression-free or partial response.We also integrated stage,
the administration of radiotherapy, age and sex data. We applied VST
and z-score normalisation to the RNA-Seq gene-level counts across all
633 adenocarcinoma patients in the cohort. We classified patients into
RAG groups using our SVM classifier.

RAG Classification
The RAS84 TCGA LUAD VST expression matrix was clustered using
hierarchical clustering with a Euclidian distance measure and a
ward.D2 agglomeration method (hclust function, R). We split the
dendrogram intofive clusters and labelled themRAG-0 toRAG-4based
on their mean RAS84 expression value across all samples, lowest to
highest. We also calculated an RI value for each sample, defined as the
mean VST value across the RAS84 genes. We repeated this analysis for
each of the original published signatures. We assessed the perfor-
mance of each of the signatures by testing for statistically significant
differences in the observed KRASmutation frequencies across the five
groups using a chi-squared test (chisq.test function, R). We tested all
somatic variants reported inSanchez-Vega and colleagues19 (N > 10) for
significant frequency differences across the RAS84 clusters using a chi-
square test (fdr < 0.05). Mosaic plots were generated using the vcd
package from R (vcd_1.4-4). Specific KRAS mutation genotypes were
tested individually against a background of all remaining samples
using a chi-squared test. The Seoul cohort (GSE40419)was clustered in
the same way as the TCGA samples using RAS84KRAS, EGFR and TP53
mutations were tested for significant differences in observed fre-
quencies across the five RAGs using a chi-squared test. To determine
KRAS mutation segregation across RAS84 and the published sig-
natures we tested KRAS mutation status against signature mean
expression distributions using a linear model. To identify RAG driver
genes, we identified genes with the largest deviation in expression
from the mean across all samples. We first calculated RAG mean
expression values per gene. We then scaled these values to the
mean across all samples to calculate a RAG deviation value. Genes with
an absolute deviation of >1 were selected. These genes were clustered
across RAG mean values by hierarchical clustering using Pearson’s
correlation and ward.D2 agglomeration (cor and hclust function, R).
We identified RAG dependent transcriptional changes by comparing
RAGs 1–4 to RAG-0 correcting for tumour purity in themodel since we
were interested in tumour-specific effects. Tumour purity CPE values
were obtained from79. Differential genes were identified using DESeq2
(1.24.0) (fdr < 0.05) and shrunken LFC values were generated using the
lfcShrink function with type = “ashr”80. The genes were further filtered
using the shrunken LFC values prior to GO analysis (absolute shrun-
kenLFC > 1). Go analysis was carried out using goseq (1.36.0) from
Bioconductor, accounting for the length bias inherent in RNA-Seq
results. Only terms associated with ‘Biological Process’ were con-
sidered, and enriched p-values were corrected using Benjamini-
Hochberg correction (FDR <0.05).

RPPA
We obtained level 4 normalised TCPA LUAD RPPA data from
https://tcpaportal.org/tcpa/download.html.We identified 349 samples
in common between the TCPA LUAD RPPA cohort and our classified
TCGA LUAD cohort. We found 216 assayed proteins with values across
all samples. We fitted a linear model across the RAGs against RAG-0 as
the control for eachprotein assay. A Benjamini-HochbergFDRmultiple

testing correction was applied across all tests (lm and p.adjust func-
tions from R).

Lung adenocarcinoma OS and PFS analysis
We fitted a univariate Cox proportional-hazard model to RAG labels
and TCGA LUAD overall survival data to test RAG as a predictor for
outcome using RAS84 and the published signatures. We also fitted a
univariate Cox proportional-hazard regression model using RI as a
continuous predictor of outcome. We ran OS univariate and multi-
variate Cox proportional-hazard analysis against RAG and RI in the
Uppsala cohort. Overall survival timewascalculatedby subtracting the
surgery date from the vital date (columns vital.date.ch1 - surger-
y.date.ch1). We compared a reduced coxph model including TNM
stage,WorldHealthOrganization (WHO)performance status, smoking
history, sex and age covariates (columns stage.tnm.ch1, ps.who.ch1,
smoking.ch1, gender.ch1 and age.ch1) to a full model including either
RAG labels or RI values, using LRT with ANOVA. We accounted for
possible non-linear age effects by applying a restricted cubic spline to
age using the rcs function from the rms R package (rcs(age, 3)). We
carried out this analysis using RAS84 and published signature RAG
classifications. We determined RAG classification using the clustering
method used in the TCGA cohort classification. We performed a PFS
multivariate coxph analysis using the TEMPUS patients. We con-
structed a reduced model using stage, radiotherapy, gender and age
covariates applying a restricted cubic spline as above. We compared
this model to a full model including RAG labels using LRT with anova.
We assigned RAS84 RAG labels using our SVM classifier. We assigned
public signature RAG labels using the clustering approach applied in
the TCGA cohort analysis. In our pancancer analysis we fitted uni-
variate Cox proportional-hazard regression models to RI and overall
survival data from each TCGA cancer cohort from our high RAS
activity cancer group. We identified cancers where RI was a significant
predictor of outcome (p-value < 0.05). Kaplan–Meier curves were
produced as above. These analyses were carried out using the coxph
function from the survival R package (survival_3.1–11). Kaplan–Meier
curves were produced using the ggsurvplot function from the surv-
miner R package (survminer_0.4.4). In the case of the RI analysis the
Kaplan–Meier curves were generated using predicted survival data
from the coxphmodel given a 2-fold increase or decrease in RI. We ran
a multivariate Cox MIC analysis81 on TCGA OS with all RAS84 VST
expression vectors as covariates. We used the coxMIC function
(method = “BIC”) from the coxphMICR package (coxphMIC_0.1.0).We
identified 11 genes with a non-zero beta.MIC value.

Pan cancer RAS84 analysis
To compare RAS84 expression pan-cancer we z-score normalised the
previously VST normalised RNA-Seq TCGA data (see section: TCGA
Pancancer Data) and merged across the 32 cohorts. To assess RAS
activity per sample we calculated an RI value for each sample, defined
as the mean expression across the RAS84 genes. To identify high and
low RAS active tumours we plotted the distributions of the mean RI
values per cohort. From theobservedbimodaldistributionof cancerRI
mean values, we calculated kernel density estimates (density function,
R) and split the tumours at the minima between the two population
maxima (mean RI value 0.53) (Supplementary Fig. 5a). We identified
variants enriched in the high RAS activity tumours by hypergeometic
test (fdr < 0.05). To obtain a RAS pathwaymutation viewwe calculated
a RAS pathway mutation burden percentage for each sample. We
labelled samples as being RAS pathwaymutated if they had amutation
in any gene defined in the RAS pathway by Sanchez-Vega et al. We
tested for a significant correlation between RAS pathway mutation
burden and mean RI using a Pearson’s correlation test.

To test for an association between RI values and RAS mutation
status, per cancer, we ran Wilcoxon tests across the RAS mutated and
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non-mutated groups. We merged the oncogenic mutation calls for
KRAS, HRAS and NRAS prior to testing. Cancers with a total RAS
mutation count <5 were excluded from the analysis. False discovery
rates were calculated to account for multiple testing. We identified
significant cancers by FDR <0.05.

SVM classifier
To facilitate the RAS classification of lung adenocarcinoma RNA-Seq
samples we constructed an SVM classifier. We used the RAG labels
derived from the LUAD TCGA cluster analysis as class labels and the
TCGA LUAD RAS84 expression matrix as training data. The raw gene-
level counts were first VST and z-score normalised. We constructed a
Radial Sigma SVM using the caret R package76. The train function was
used to optimise the classifier using a cv resampling strategy with 10
iterations. The classifier was validated against a pre-selected test sub-
set of patients (80% training, 20% test).Wedetermined the importance
of each of the RAS84 genes in classifying the TCGApatients by fitting a
RandomForest model to the data described above. We used the genes
ranked by importance to build iterative gene sets which we used to
construct new SVM classifiers as described above. We tested these
SMVs against our test data to determine model performance, sensi-
tivity and specificity across the importance gene rank.

TRACERx classification
We classified the samples using the z-score VST RAS84 expression
matrix and our SVM classifier constructed from the TCGA analysis
results and detailed in the classifier methods section above. We called
the presence SNVs in each of the groups (PhyloCCF score > 0.05). We
calculated a sample distance matrix from the VST expression matrix
using Euclidian distance. We plotted the density of distance measures
for intra- and inter-tumour distances. We determined the degree of
enrichment of RAS84 genes with stable intra-tumour expression, but
high inter-tumour variancewas assessed relative to the distributions of
all expressed genes, in-line with the methods presented in Biswas and
colleagues36.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The Investigators were not blinded
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TRACERx tumour region gene-level RNA sequencing count
data of 84 genes used during this study are available through the
Cancer Research UK & University College London Cancer Trials
Centre (ctc.tracerx@ucl.ac.uk) for non-commercial research pur-
poses, and access will be granted upon review of a project pro-
posal that will be evaluated by a TRACERx data access committee
and entering into an appropriate data access agreement subject to
any applicable ethical approvals. The TEMPUS data is commer-
cially available from TEMPUS Lab (https://www.tempus.com/life-
sciences/data-collaborations/#contact). Affymetrix data that was
used to generate the KRASG13D134 signature have been deposited in
GEO with the accession code GSE199871. The Uppsala cohort data
used in this study are available in the GEO database under acces-
sion code GSE81089. The Seoul cohort data used in this study are
available in the GEO database under accession code GSE40419.
The Lambrechts data used in this study are available in the
ArrayExpress database under accession code E-MTAB-6149. All
other data associated with this study are present in the paper or
supplementary materials, or as cited.

Code availability
All code used in this manuscript is available at https://github.com/
FrancisCrickInstitute/RAS84.
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