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Abstract: Regenerative medicine is a field that aims to influence and improvise the processes of
tissue repair and restoration and to assist the body to heal and recover. In the field of hard tissue
regeneration, bio-inert materials are being predominantly used, and there is a necessity to use
bioactive materials that can help in better tissue–implant interactions and facilitate the healing
and regeneration process. One such bioactive material that is being focused upon and studied
extensively in the past few decades is bioactive glass (BG). The original bioactive glass (45S5) is
composed of silicon dioxide, sodium dioxide, calcium oxide, and phosphorus pentoxide and is mainly
referred to by its commercial name Bioglass. BG is mainly used for bone tissue regeneration due
to its osteoconductivity and osteostimulation properties. The bioactivity of BG, however, is highly
dependent on the compositional ratio of certain glass-forming system content. The manipulation
of content ratio and the element compositional flexibility of BG-forming network developed other
types of bioactive glasses with controllable chemical durability and chemical affinity with bone and
bioactivity. This review article mainly discusses the basic information about silica-based bioactive
glasses, including their composition, processing, and properties, as well as their medical applications
such as in bone regeneration, as bone grafts, and as dental implant coatings.

Keywords: regenerative medicine; hard tissue regeneration; bioactive glasses; osteoconductivity;
osteostimulation; medical applications
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1. Introduction

Regenerative medicine (RM) is a modern non-operative treatment solution that utilizes
the body’s natural healing process to rebuild damaged tissue, heal injuries more effectively,
and eliminate pain. This field aims to greatly influence and improve tissue repair and
restoration and assist the body to heal and recover [1]. Tissue engineering is a field
that utilizes cells, make scaffolds, and supplement with growth factors to aid in tissue
regeneration and restore the healthy tissues from damaged or diseased tissues. Tissue
engineering and regenerative medicine (TERM) is a multidisciplinary science that is based
on establishing three-dimensional (3D), biocompatible, and biodegradable biomaterials
that can function as living tissue and may be used to repair or regenerate injured tissue or
organs. It involves the knowledge of various fields such as cell biology, materials science,
biomechanics, and medical sciences [2].

When grafted within the body, all biomaterials induce tissue responses, whose nature
and extent is dictated by the bioactivity and biocompatibility of the biomaterial [3]. Bioma-
terials are being used for a broad range of applications such as medical implants, artificial
joints, dental implants, and devices that stimulate nerves. Examples of biomaterials include
metals, ceramics, glass, and polymers. Biomaterials may be distinguished from other
materials in that they possess a combination of properties, including chemical, mechanical,
physical, and biological properties that render them suitable for safe, effective, and reliable
use within a biological environment.

There is an increasing trend for biomaterial to shift from traditional bio-inert material
to a new generation of biomaterials, the bioactive materials. A bioactive material can be
defined as a material that prompts a specific biological response between the material and
the tissue that leads to the development of a bond between them and induce a response
within the biological system [4]. Bioactive glasses (BGs) are being used for bone tissue
engineering applications and they form a very good material to produce scaffolds for
bone regeneration. This is because they have reasonable mechanical strength and hence
can withstand stress, they do not undergo corrosion, and they are biocompatible and
biodegradable. These properties can be altered on the basis of the application by varying
their composition [5,6]. Certain BGs are observed to form a mechanically strong and
firm bond with the bone, and some compositions have also been observed to bond well
with soft tissues as well as bone. BGs can be used for efficient bone tissue engineering
applications as they can enhance revascularization, osteoblast adhesion, enzyme activity,
and differentiation of mesenchymal stem cells [5,7,8]. This is possible due to an important
characteristic of BGs of time-dependent, kinetic surface modification that occurs post-
implantation. The surface of the bioactive glasses forms a biologically active hydroxyl
carbonate apatite (HCA) layer, which is chemically and structurally very similar to the
bone’s mineral phase and provides an interface that bonds with the tissues [9].

2. Silica-Based Bioactive Glasses (BGs)

Bioactive glasses (BGs) were first introduced by Larry L. Hench and his co-workers
at the University of Florida in the late 1960s [10,11]. The first artificial inorganic material
that had the ability to bond with living bone tissue and form stable and tightly bound
interface was the Bioglass. This was composed of a quaternary oxide system consisting
of SiO2–CaO–Na2O–P2O5 [12]. The application of BGs in humans is not limited to bone
implants but there are certain combinations of BGs that can be utilized in both soft tissue
restoration and delivering pharmaceutical compounds [5,6,13,14]. BGs have gained a great
amount of attention in the field of biomedical science owing to their ability to enhance
angiogenesis and osteogenesis [10,15]. BGs are extensively used in the field of hard tissue
engineering due to their osteoconductivity, osteo-inductivity, and osteo-integrativity, which
are critical for optimal regeneration of bones [16].

The main component in silica-based BGs is silicon dioxide and they are made up of
three other basic components: sodium dioxide, calcium oxide, and phosphorus pentox-
ide [17]. The composition of BGs is crucial in determining their properties and characteris-
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tics. Depending on the composition, some BGs are able to form bonds with soft tissues and
bone, some can bind only to bone, some are not able to form a bond at all, and others get
resorbed completely within a few weeks [5,6]. Over the years, there has been development
of several types of bioactive glasses. These can be broadly classified as silicate glass (Bio
glass or 45S5 bioactive glass), glass ceramics (Bon Alive or S53P4 bioactive glass), and silica-
based glasses such as 13-93 and 13-93B1, among others [17–26]. The composition of these
three types of bioactive glasses is shown in Table 1 below. Bioglasses can also be divided
into the following two categories [22]: (i) Class A bioglasses, which are osteoproductive,
and they bind with both soft tissues and bone; the HCA layer is formed within several
hours, and (ii) Class B bioglasses, which are osteoconductive, and their bonding with soft
tissues is not facilitated; the HCA layer takes a few days to be formed.

Table 1. Composition of different types of silica-based bioactive glasses [17,19–21].

Type Example of Bioactive Glasses
Composition

SiO2
(wt%)

Na2O
(wt%)

CaO
(wt%)

P2O5
(wt%)

K2O
(wt%)

MgO
(wt%)

B2O3
(wt%)

Silicate glass Bioglass or 45S5 bioactive glass 45 24.5 24.5 6 – – –

Glass ceramic BonAlive or S53P4 bioactive glass 53 23 20 4 – – –

Silica-based glass 13-93 bioactive glass 53 6 20 4 12 5

13-93B1 bioactive glass 34.4 5.8 19.5 3.8 11.7 4.9 19.9

BG Properties

On implantation, Bioglass interacts with its biological surrounding and elicits a specific
biological response, for example, the hydroxyapatite layer formation between the tissue
and material [27]. This displays the bioactivity of BGs. Figure 1 depicts the applications
of bioactive glasses in angiogenesis, osteogenesis, anti-inflammatory and anti-bacterial
activities [28].

Figure 1. Applications of bioactive glasses in angiogenesis, osteogenesis, anti-inflammatory and
anti-bacterial activities [28].

The most bioactive glass has a superior surface area with a higher dissolution rate and
thus a faster apatite formation [29]. Hench, in 1980, reproduced the in-vivo formation of
the Hydroxyapatite (HAP) layer in Tris buffer solution at a pH of 7.4. It was also confirmed
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independently by Kokubo and Hench that apatite could be formed on the Bioglass surface
in simulated body fluid (SBF) [30,31].

Goudarziet al. (2020) [32] investigated the bioactivity and proliferation of G292 cells
using strontium-doped BGs. Figure 2 shows the process of hydroxyapatite formation at
different time points of immersion of the S6 (SrO 6 mol%) sample. With increase in time,
the density of HA particles was also observed to increase (Figure 2). It is seen that on the
21st day of soaking, the surface of BG was completely covered with hydroxyapatite [32].

Figure 2. SEM micrographs of S6 BG sample after soaking in the simulated body fluid (SBF) solution for (a) 3 days, (b) 7 days,
(c) 14 days, and (d) 21 days [32].

The ability of BGs to demonstrate antibacterial activity is considered to be one of the
most attractive characteristics needed in regenerative medicine. This antibacterial effect can
be due to the following three principles: (i) the dissolution of surface (alkali) ions that cause
an increase of pH and a higher osmotic pressure [33]; (ii) the ability of doping antibacterial
elements, such as silver, copper, or zinc to BGs [34–41]; or (iii) loading antibiotic into BGs,
which is eluted out during degradation [17].

Table 2 summarizes the main mechanical properties of some of the commercially
available BGs and glass ceramics, human bones, and hydroxyapatite [42]. Doping BGs
with certain metallic ions such as Ag, Sr, Fe, Mg, Zn, and Mn have been observed to
enhance their mechanical properties [43]. Mechanical properties of BGs can be increased
by addition of fluorine and nitrogen. Fluorine induces considerable reductions in glass
melting temperatures (Tm) and glass transition temperatures (Tg), while incorporation of
nitrogen increases elastic modulus and hardness [44].
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Table 2. Mechanical properties of bioglass, ceramics, and human bones [42].

Material Comprehensive
Modulus (GPa)

Comprehensive
Strength (MPa)

Fracture
Toughness
(MPa m1/2)

Bending
Strength (MPa)

Vickers
Hardness (MPa) Structure

HA 35–120 100–150 0.8–1.2 60–120 90–140 Ceramic

Bioglass 45S5 60 - 0.6 40 - Glass

Bioglass 52S4.6 60 - - 40 - Glass

Trabecular bone 0.05–0.6 1.5–7.5 0.1–0.8 10–20 40–60 -

Cortical bone 7–30 100–135 2–12 50–150 60–75 -

Sr-doped BGs promote osteoblast proliferation and also decrease the osteoclast activity
in the cell culture [45]. The rate of release of ions from a biomaterial at the defect site is
decreased in the presence of Sr, as indicated from a study by Kargozar et al., which has
therapeutic benefits [46]. Erol-Taygun et al. demonstrated that patients suffering from os-
teoporosis can be greatly benefited with the use of Sr-doped BGs [47]. Zinc ion can improve
bone-bonding of glass; inhibit bone resorption; control cell growth, differentiation, and
development; and stimulate synthesis of protein [48]. Lithium plays a constructive role in
angiogenesis and osteogenesis. Khoramiet al. reported the controlled and localized release
of Li ions from BGs represents a promising alternative therapy for bone regeneration [49].
Specific properties of BGs can also be enhanced and controlled when synthesized at a
nanoscale, including their biocompatibility and bioactivity. Interestingly, BGs in nanoscale
demonstrate a better osteo conductivity as compared to normal bulky BGs [50].

3. Medical Applications of BGs

Bioglass is most commonly used for bone grafts. BGs help in the repair of hard
tissues and are being synthesized in various compositions for preparation of scaffolds,
coating materials for implants, and other applications [51,52]. BGs have also been used for
dental air polishing, yielding better results in terms of stain removal and patient comfort
when compared to traditional sodium bicarbonate powder. BG can also be utilized for
cutting cavities in teeth by air abrasion [53]. A few decades ago, these glasses modified
the functions and capabilities of biomaterials from bio-inert to bioactive by stimulating a
strong response after implanting in the human body [54]. Some of the common uses of BGs
are discussed here.

3.1. Bone Regeneration

Bone regeneration is a complex process that can be seen during the healing of a
normal bone fracture. Continuous remodeling of the bone takes place throughout adult
life. However, there are complex clinical conditions in which bone regeneration must
be achieved in great amounts, such as for skeletal reconstruction of large bone defects
created by trauma, tumor resection, infection, and skeletal abnormalities [55]. Different
bone substitutes are being used that can be derived either from biological products such as
platelet-rich plasma, demineralized bone matrix, hydroxyapatite, etc., or synthetics such
as bioactive glasses, calcium sulphate, tri-calcium phosphate ceramics, or polymer-based
substitutes. These substitutes must be chosen on the basis of their intended use [56].

As BGs are non-crystalline ceramics that can bond to living tissues and also stimulate
the growth of new tissue while degrading over time, they are considered valuable candi-
dates for tissue engineering applications [57]. Initially designed to fill bone defects, BGs
such as Bioglass, which can bind to both soft and hard tissues, are now being used for a
wide range of clinical purposes. However, due to their high tendency to crystallize during
thermal treatments, poor mechanical strength, and high brittleness, their widespread appli-
cations have been limited [58]. To overcome these limitations, researchers have mixed a
variety of polymers with powders or granules of BGs with the aim of producing hybrid
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composites with the desired biological and mechanical properties specific for a clinical
application [57]. Natural polymers, such as collagen, have been used. Due to its superior
biocompatibility, biodegradability, wound-healing properties, and low immunogenicity,
collagen is the protein of choice. There have been several reports of collagen-based BG
composites, with a focus on bone regeneration [57,59].

In a study by Belluci et al. [57], granules of an innovative bioglass, BGMS10 (Composed
of (mol%): 2.3 Na2O, 2.3 K2O, 25.6 CaO, 10.0 MgO, 10.0 SrO, 2.6 P2O5, 47.2 SiO2), were
blended with collagen. Polyethylene glycol (PEG) was added as a binder to obtain a
BGMS/C composite putty suitable for oral and dental applications. The applications
also include mucosal injury, bone defects, and periodontal pockets [57,60]. BGMS10,
containing magnesium and strontium, was observed to be very promising due to its
ultrahigh crystallization temperature and enhanced bioactivity [57]. A comparative study
of 45S5/collagen putty (45S5/C) and BGMS/C, prepared with the same proportions of
glass, collagen, and PEG, was also performed [57]. Figure 3 reports the morphological
evaluation of the Bioglass and BGMS10 granules, along with their composition (by EDS
analysis), when tested using murine fibroblasts. It was observed that the BGMS10/C
showed more promising results with enhanced cell proliferation [57]. It should be stressed
that although in recent years many collagen/bioglass composites have been developed,
most of them are porous scaffolds for bone tissue engineering. On the contrary, there is a
lack of moldable putties or injectable composites for dental applications.

Figure 3. Morphological evaluation of the Bioglass (a) and BGMS10 (c) granules; (b,d) EDS results; inset: a BGMS/C putty
syringe [57]. The red box, explain the selected area from the smaple for the EDX analyses
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3.2. Bone Grafts

Bone grafting is a surgical procedure that replaces a missing bone with a material that
is derived either from patient′s own body, or an artificial or natural substitute [55]. Bone
tissue has the ability to regenerate completely, given the space into which it has to grow, and
this makes grafting of bone possible [61]. Bone grafts are employed as scaffolds and fillers
to promote wound healing and facilitate bone reformation. The graft material is generally
replaced by the natural bone as it grows, which results in a fully integrated region of the
new bone [57]. A bone graft material is required to be osteoconductive. Bioactive materials
with controlled release of biochemical stimuli help in repairing diseased or damaged
tissue with a more biologically based approach [62]. BG bone grafts are based upon the
concept of in situ regeneration of bone with structure, architecture, and mechanical strength
equivalent to normal cortical and cancellous bone.

BGs have been used as a bone graft for several years now [63]. BGs have superior
osteoconductive properties and they also stimulate the growth of new bone over their sur-
face [64]. Oonshi et al. [65] conducted a study to compare the properties of hydroxyapatite
(HA) and BG when they are used as a bone graft in an animal model. They concluded
that BGs are not only easy to manipulate, but that they were also able to restore the bone
within 2 weeks, whereas HA took 12 weeks to produce an equivalent response. It was
also concluded that the use of BG as a bone graft demonstrates excellent bone healing
properties [65–67]. Bioglass has been clinically used as a synthetic bone graft material
for over 10 years. It has been used under two different product names: Nova bone for
orthopedics and Perio-glass for maxillofacial surgery [65,68,69]. In 2005, the Food and Drug
Administration (FDA) approved the osteostimulatory effect of Bioglass [70]. Traditional
osteoconductive bioceramics do not have osteostimulatory effects, while Bioglass has both
osteoconductive and osteostimulatory effects [68,71,72]. Thus, it is highly favorable for
the structure and the composition of bone substitutes to allow vascularization, with an
interconnected porosity and a favorable biochemical support. This accelerates the bone
remodeling by facilitating colonization and retention of osteogenic cells and nutrients
through an enhanced capillarity [73]. The establishment of a vascular network will aid in
supplying nutrients, soluble factors, and minerals such calcium and phosphate, which are
crucial for the bone healing process [74,75].

3.3. BG Implant Coatings

Dental implants (DI) are screw-shaped devices that are inserted in the alveolar bone
in order to support prosthodontic constructions to improve function and appearance [76].
Direct contact of the implant surface with the bone tissue is required for achieving adequate
retention in bone and osseointegration. BGs can aid in bonding the implant with the
bone, providing antimicrobial protection and thus reducing the total time required for the
treatment [77]. As BGs can produce favorable biological response, after they are in contact
with surrounding fibro-osseous tissues, they are seen as a favorable material [78].

One of the most widely adopted and conventional methods of improving surface
bioactivity and biocompatibility is the process of surface coating. BGs are highly biocompat-
ible and have a better chance of bonding and integrating with human tissue than the metal
implants, making them a good option for improving the bioactivity and biocompatibility
of these metals. If the implant surface fails to integrate firmly with the host tissues, fibrous
tissue would develop at the interface, and this would lead to loosening of the implant,
which ultimately results in the failure of the implant [79]. As the metallic implants are
bio-inert, they get encapsulated with fibrous tissue after implantation and fail to attach
with the tissue, which poses a serious need for implants to have bioactive coatings [80].
BGs offer a wide range of benefits such as (i) replacing damaged tissue and bone that will
integrate well with the body’s environment, (ii) facilitating regeneration of tissue, and (iii)
degrading at a rate similar to the rate of regeneration of tissue. In terms of coating BGs
on metal implants, they can form hydroxyapatite at the interface of the implant and host
tissue, which facilitates in better integration of the implant [79]. Furthermore, they can
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also regulate or inhibit corrosions of the metallic implant in the biological system. The
glass matrix can maintain its glass character and its chemical and physical properties even
after doping them. Many new glass compositions have been proposed and found sev-
eral biomedical applications including dental fillings and coatings [79]. This composition
flexibility allows us to introduce additional functionalities such as enhancement of osteo
growth by doping with Sr2+ and angiogenesis by doping with Cu2+ [79,81]. BGs can be
easily coated on metallic dental implants, such as on titanium implants with screw threads.
However, it must be made sure that the thermal expansion coefficients of the glass and
the metal match in order to prevent the glass from being pulled away from the metal
while processing [82,83]. For instance, the thermal expansion coefficient of the Bioglass
and titanium do not match. In order to tackle such a problem, the Na2O and CaO of the
Bioglass (SiO2–CaO–MgO–Na2O–K2O–P2O5) system are replaced with K2O and MgO,
respectively, in order to modify the thermal expansion coefficient [84]. Another example is
coating with the following composition (by weight): 53% SiO2, 6% Na2O, 22% CaO, 11%
K2O, 5% MgO, 2% P2O5, and 1% B2O3 on titanium implants [85].

Studies have shown that compared to non-coated implants, coated implants saw more
bone growth on them. Using appropriate compositions, the mismatch of thermal expansion
coefficients can be made to match, and BGs can be successfully used as coatings. The use
of BG as a coating material for dental implants has produced better results in terms of
adherence to the metal surface of implant and bone regeneration; however, more research
is still needed in this area.

3.4. Enamel Re-Mineralization

Re-mineralization of the dental hard tissues (enamel and dentin) is a challenging
problem faced by dentists across the globe on a daily basis [86,87]. The available tech-
nologies require to be applied repeatedly and take a long time to achieve significant
re-mineralization of the dental hard tissues [86,87]. Orthodontic patients have increased
incidence of demineralization because of the increased bacterial counts in their saliva [88].
Many research groups have focused their efforts to design materials and agents capable of
efficiently re-mineralizing enamel and dentin within short duration [86,87]. The challenge
faced by researchers in the field of dentistry to employ BGs as re-mineralizing agents
was the absence of enamel-forming ameloblast cells, which are normally lost during the
eruption of the human teeth and are lacking in the mature enamel [89]. Studies have
suggested that adding an acidic medium to the bioactive glasses can boost their bioactivity
and result in releasing large amounts of calcium and phosphate ions onto the dental hard
tissues, which results in their re-mineralization [86,87,90–96].

Recently, BGs such as Bioglass [93–96] and FBG (fluoride bioactive glass) [90] have
shown promising results in re-mineralizing dental enamel and dentin. Studies have shown
that these materials can form a bioactive film mainly consisting of phosphate and calcium
on top of the enamel. This bioactive film was found to be resistant to abrasion and
erosion and hence can be used as orthodontic sealers (Figure 4). It has been suggested that
bioglasses can possibly be applied as dentin desensitizers, re-mineralizing agents, or as a
bioactive temporary filling material [86–97].

Dentin hypersensitivity (DH) is one of the most common clinical conditions usually as-
sociated with exposed dentinal surfaces. Dentin hypersensitivity is caused by the exposure
of the dentinal tubule, and with the increasing diameter of the tubule, dentin is demineral-
ized by micro-organisms within the oral cavity or by acidic food. Thus, the key point of DH
treatment is to desensitize dentin through the re-mineralization of the exposed dentin by
obstructing the exposed dentinal tubules [98]. Bio-silicate (P2O5–Na2O–CaO–SiO2), A fully
crystallized bioactive glass-ceramic has been proposed to treat DH by depositing hydroxyl
carbonate apatite in open dentinal tubules [99].
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Figure 4. 45S5 bioactive glass re-mineralization for the enamel process. (A) Finger pointer pointing to the original
enamel surface. Dashed line showing the level that the interaction layer (IL) formed by Bioglass (can reach approximately
40 microns). (B) The interaction layer is integrated with the surface of enamel with no gaps observed at this magnification
(courtesy of Dr. Ahmed Samir Bakryand Dr. Mona Aly Abbassy).

3.5. Treatment of Periodontitis

Periodontium is a biologically complex structure that supports the human teeth. It
consists of gingiva, periodontal ligaments, cementum, and alveolar bone. Periodontitis
is one of the most common acute or chronic inflammation of periodontal structures en-
countered in dental clinics. It is mainly initiated due to the bacterial biofilm presence at the
dental structure causing a destruction of the periodontium and resulting in gingivitis and
pockets formation between the tooth roots and the overlying gingival. Theses pockets are
characterized by loss of periodontal ligaments (PDL) and alveolar bone resorption with or
without gingival recession [100]. Eventually, periodontitis results in tooth loosening and,
consequently, tooth loss [101]. The improvement of periodontal disease prognosis requires
the application of biomaterials that both stimulate the periodontal tissue repair and pre-
vent bacterial accumulation. BGs, which are well known for their osteogenic stimulatory
effect, have also been shown to have antimicrobial impacts when implanted in areas of
periodontal defects, or applied as topical endodontic disinfectants with no effects on dentin
stability [102–104]. Thus, a special concern has been given to BG-containing products
such as PerioGlas, which can be packed inside the periodontal defect to stimulate the peri-
odontal bone regeneration, particularly the defective interproximal bone structure [105].
Furthermore, PerioGlashas been involved in periodontal surgery, not only for bone stim-
ulation but also as a hemostatic agent for the trabecular bone hemorrhage [105–107]. In
endodontic surgery, PerioGlas demonstrates a highly successful regeneration of the apical
bone structure [108].

Other BG-containing products such as ERMI (endosseous ridge maintenance implant)
have also been considered in periodontal surgery as a means of maintaining the alveolar
ridge height from resorption. ERMI is a cone-shaped BG product designed to fit the dental
socket immediately after tooth extraction to offer a steady ridge for teeth and to patch up
the tooth root. The five-year follow up investigation proved the safety of ERMI clinical
application and demonstrated 85.7% cone retention within the socket, which provided a
significant support for periodontal structures and the dental prosthetic treatment [109].

Another clinical study demonstrated the effectiveness of BG application in patients
with generalized aggressive periodontitis. Post-surgery, 6- and 12-month clinical results
demonstrated a reduced depth of the periodontal pocket by probing and improved pe-
riodontal attachment level. This suggests the potential of BG not only for stimulation of
bone repair but also for the long junctional epithelium formation [110]. Figure 5 shows the
clinical application of BG in a patient with generalized aggressive periodontitis [78].
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Figure 5. Clinical application of BG in a patient with generalized aggressive periodontitis. (a,b) Intra-bony defect prior to
surgery. The arrow sign on the radiograph indicates distal cervical caries and the location of the cemento-enamel junction as
a landmark. (c,d) Intraoperative situation after exposure of the defect. (e,f) Clinical and radiological situation 12 months
after surgery. Moreover, the distal cervical caries was treated with a new filling [78].

Moreover, BG demonstrates significant improvement of the signs related to gingivitis.
In Vivo studies have demonstrated that significant reduction in gingival bleeding and supra-
gingival plaque formation can be achieved by a dentifrice containing Nova Min as compared
to a placebo dentifrice [111]. In another study conducted on human subjects with gingivitis,
the topical application of BG reduced the signs of gingival inflammation [112,113].

3.6. Wound Healing in Dentistry

The wound healing process is highly complex, mainly involving three overlapping
phases, namely, inflammation, proliferation, and remodeling. Any disruption leads to
abnormal wound healing [114]. Procedures that dentists perform such as exodontia rely
on adequate wound healing. Some of the BGs, such as the silicate-based BG (Bioglass)and
borate-based 13-93B3, have been shown to have enhanced the wound healing process due
to their ability to release ions that can stimulate various processes such as hemostasis,
antibacterial efficacy, and angiogenesis, amongst others. A wound dressing made of a
borate-based glass has recently received regulatory approval for use in the treatment of
acute and chronic wounds [115]. BGs enhance wound healing mainly by releasing various
therapeutic ions from their structure (Figure 6) [116]. The capability of BG to stimulate
soft tissue regeneration relies on its enhancement of collagen deposition and angiogenesis
during the process of wound healing [117]. In vitro and in vivo experiments have demon-
strated that the ionic release of BG causes macrophage activation to the M2 phenotype in
addition to stimulating macrophages for more anti-inflammatory and angiogenic growth
factor expression [117]. The in vitro cultures of macrophages with BG revealed an accel-
erated fibroblast and endothelial cell migration in addition to the fibroblast stimulation
to express more proteins and growth factors such as fibronectin, collagen type I, basic
fibroblast growth factor (bFGF), epidermal growth factor (EGF), and vascular endothelial
growth factor (VEGF) [117] with the subsequent increase of extracellular matrix protein
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deposition and the formation of capillary-like endothelial networks (D). Furthermore, the
in vivo experiments demonstrated that BG application at the wound site demonstrated a
reduction of the inflammation, manifested as more M2 macrophage phenotype and less
neutrophils during initial healing stages in addition to the enhanced blood vessel formation
and fibroblasts differentiation into myo-fibroblasts [118] with the subsequent acceleration
of wound closure [117].

Figure 6. The release of some metal ions from BGs into the surrounding environment has a positive effect on wound
healing [116].

Clinical studies that involved generalized aggressive periodontitis cases demonstrated
that the application of BG in the deep intra-bony pockets resulted in a statistically signifi-
cantly reduced pocket depth 6–12 months after surgical intervention, with the five-years
results being shown to be radiographically optimal [119].

In biphasic dental implant procedures, dental implants are generally placed either at
the same level as the surface of the bone or directly under it. It is between the prepared
osteotomy edge and the edge surface of the implant that the healing of the bone occurs [120].
Depending on the mechanical stress caused by occlusal forces, bone remodeling around the
dental implant persists for at least 1year. BGs inducing active bio mineralization in vivo
have been in high demand in the development of clinical regenerative medicine. The
replacement of tissues demands very high importance in this technological era. The scope
of application of BGs in this area is enormous, due to its versatility, and it is something that
must be worked upon.

3.7. Protection of Dental Pulp

Dental pulp is the essential part of the tooth, consisting of blood vessels and nerves and
being responsible for nutrition, sensation, and vitality of the tooth. Pulp chamber is directly
surrounded by dentin, and coronal dentin forms the roof of this chamber. Dental pulp
might be exposed due to a variety of reasons such as caries, trauma, or mechanical cavity
preparation of the tooth during dental treatment. In order to maintain the exposed pulp
tissue from bacterial invasion, many biomaterials that induce the formation of reparative
dentin over the exposed portion are involved. The reparative dentin forms a calcified tissue,
known as dentin bridge, facilitating pulp healing [121]. A variety of biomaterials have
been applied for pulp capping such as calcium hydroxide, calcium eugenol, tricalcium
phosphate, isobutyl cyanoacrylate, and calcitonin. These materials, however, represent a
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number of drawbacks and limitations including pulp tissue dystrophic calcification and
persistent pulp inflammation, which leads to pulp degeneration [122,123]. In addition to
difficult clinical manipulation and low compressive strength causing bulk fractures of the
restoration [124], micro-leakage and pulp infection may occur [125]. Thus, a special concern
has been directed towards BG as a bioactive material capable of forming a hydroxyapatite
surface layer when contacting an aqueous environment. The in vivo application of Bioglass
over the exposed dental pulp results in the formation of reparative dentin complete bridges
covering the entire pulp exposure. In this study, the reparative dentin bridge beneath
Bioglass was free of soft-tissue embodiment in comparison to reparative dentin formed
under the autologous demineralized dentin matrix (DDM) [126] and hydroxyapatite pulp
caps [127]. Moreover, the reparative dentin bridges formed beneath Bioglass pulp caps
were tubular, in comparison to those formed under calcium hydroxide (Life), which differed
according to the underlying pulp condition. Accordingly, tubular reparative dentin was
observed in association with superficial pulp-tissue necrosis, while tubular reparative
dentin formed in the absence of pulp-tissue necrosis [126]. Thus, the variety of mechanisms
of dental pulp repair in relation to the particular pulp-capping material must be considered
in the future clinical application.

3.8. Bioactive Glass Application in Surgical Sutures

A variety of surgical sutures are utilized for the purpose of tissue approximation
during the procedure of wound closure [128]. A major disadvantage of surgical sutures
is the susceptibility to bacterial biofilm adherence at the suture surface or among the
braided multi-filaments causing a surgical site infection and healing impairment [129–131].
Therefore, much effort has been dedicated to improve the suture antibacterial impact,
and hence the antibiotic coatings of sutures have been developed as infection-combating
approaches [131]. The prolonged utilization of antibiotics, however, supports the develop-
ment of bacterial resistance and the surgery site infection as a consequence [132]. Thus, the
attempts of finding an antibiotic alternative for coating the surgical sutures have directed
the research concerns towards the possibility of coating surgical sutures with bioactive
glass as a well-known antibacterial biomaterial [133]. Interestingly, the antibacterial activity
of BG is not only determined by the bacterial strain but also by the ionic release and the
prompt alteration in the pH of the surrounding environment, which are highly depen-
dent on the BG composition, concentration, and the particle size [134,135]. An interesting
in vitro study investigated the BG-coated sutures with different ionic compositions for
their efficacy against Staphylococcus aurous, Streptococcus mutans, and Lactobacillus bacteria
as predominant oral cavity strains highly related to oral infections [133]. The investigation
involved BG-coated sutures of two different types: the original BG (Bioglass) and the multi-
component BG that was achieved by adding Zn, Mg, and K into the Bioglass composition.
Both BG coatings were of <45 µm particle size.

The results demonstrated that the antibacterial activity of multi-component BG was
significantly higher than that of the Bioglass. This noticeable difference in the antibacterial
activity could be attributed to the higher content of alkali metals and alkaline earth ions in
the composition of multi-component BG, which consequently increases the alkalinity of the
surrounding culture medium and thereby demonstrates a higher antibacterial impact [133].

4. 3D Printing of Bioactive Glasses

3D bio-printing or additive manufacturing is an evolving technology in which scaf-
folding materials and cell-laden hydrogels are deposited in a pre-determined fashion to
generate 3D porous constructs. Currently, researchers are coalescing materials such as
bioactive glasses and advance techniques such as3D printing techniques to generate cus-
tom scaffolds with precise pore architectures. Bergmann et al. prepared a composite of
β-tricalcium phosphate (β-TCP) and a bioactive glass by the 3Dprinting process, proving
that there is promise in the capacity to print custom-made bone substitute implants [136].
Murphy et al. 3D printed human adipose stem cells (ASCs) with a polycaprolactone
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(PCL)/bioactive borate glass composite, which showed a high potential for bone regen-
eration [137]. Pires et al. used the 3D printing technique to bio-fabricate scaffolds from
T14P43 glass powders that had good mechanical properties suitable for bone tissue regen-
eration with low load-bearing properties [138]. Qi et al. prepared 3D BG scaffolds by the
3D printing technique and coated their surface with mesoporous bioactive glass (MBG),
which retained good osteoinductive and osteogenic properties, making them attractive
candidates for bone defect repair [139]. Wu et al. prepared a combination of mesoporous
bioactive glass, sodium alginate, and gelatin by a three-dimensional printing technique
along with naringin and calcitonin gene-related peptide as drugs to prepare drug-loaded
scaffolds. There sustained release hydrogel 3D scaffolds deliver a prospective applica-
tion for bone tissue engineering [140]. Zhang et al. fabricated the 3Dprinted scaffolds of
ternary composites containing mesoporous bioglass fibers of magnesium calcium silicate
(mMCS), gliadin (GA), and polycaprolactone (PCL), which displayed tremendous in vivo
osteogenesis demonstrating abundant future for bone regeneration [141].

Montalbano et al. tried a combination of type I collagen and strontium-containing
mesoporous bioactive glasses to obtain hybrid material with high osteogenic behavior [142].
Baino et al. prepared bioactive silicate glass scaffolds of SiO2–P2O5–CaO–MgO–Na2O–K2O
glass by a robocasting process that supports the possible suitability of the material for bone
repair applications [143].

Kolan et al. fabricated scaffolds with five different architectures at different porosi-
ties with bioactive borate glass using the selective laser sintering (SLS) process, which
demonstrated potential for bone repair [144]. Toure et al. designed multi-layer scaffolds of
poly(caprolactone), poly(glycerol sebacate), and bioactive glasses through combination of
3D printing and electrospinning techniques, which has possible applications in tendon and
ligament tissue engineering [145] (Figure 7).

Figure 7. Cont.
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Figure 7. SEM images at different magnifications of (a,b) the 3D-printed scaffolds, showing also the BG microspheres
exposed onto the surface or embedded into the polymer matrix (insets); (c,d) the surface of the composite scaffold covered
with a layer of electrospun polycaprolactone (PCL)– poly (glycerol sebacate) (PGS) mats, pointing out the fusion between
fibers; (e,f) the surface of the composite scaffold without the layer of electrospun fibers [145].

5. Conclusions

The use of bioactive glasses is a promising field of study that has achieved positive
results in various applications. In the last few decades, BGs have been extensively studied
and many challenges have been overcome. BG composites have been synthesized to
enhance the various necessary properties for BGs to become a better bioactive material.
BGs have the potential to revolutionize the field of regenerative medicine, hard tissue
regeneration in particular, in the near future. This review article discussed the bioactive
glasses in general, including their composition, processing, and properties, as well as their
medical applications in hard tissue regeneration.

Furthermore, regenerative medicine in the field of dentistry has had a large number
of great achievements in recent years. With more studies and better understanding of
BGs, we can possibly achieve complete regeneration of tooth along with its associated
tissues, regeneration of bone, and also improved soft tissue regeneration. However, most
of these achievements rely on complicated techniques and require long-term studies and
in vivo testing to confirm its reliability, efficiency, and exact mechanisms of action. With the
increase in in vivo studies and positive results, a greater number of healthcare providers
will adopt these techniques and technologies in their daily practice.
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