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The mechanistic Target of Rapamycin (mTOR) is a growth-related kinase that, in the
context of the mTOR complex 1 (mTORC1), touches upon most fundamental cellular
processes. Consequently, its activity is a critical determinant for cellular and organismal
physiology, while its dysregulation is commonly linked to human aging and age-related
disease. Presumably the most important stimulus that regulates mTORC1 activity is
nutrient sufficiency, whereby amino acids play a predominant role. In fact, mTORC1
functions as a molecular sensor for amino acids, linking the cellular demand to the
nutritional supply. Notably, dietary restriction (DR), a nutritional regimen that has been
shown to extend lifespan and improve healthspan in a broad spectrum of organisms,
works via limiting nutrient uptake and changes in mTORC1 activity. Furthermore,
pharmacological inhibition of mTORC1, using rapamycin or its analogs (rapalogs), can
mimic the pro-longevity effects of DR. Conversely, nutritional amino acid overload has been
tightly linked to aging and diseases, such as cancer, type 2 diabetes and obesity. Similar
effects can also be recapitulated by mutations in upstream mTORC1 regulators, thus
establishing a tight connection betweenmTORC1 signaling and aging. Although the role of
growth factor signaling upstream of mTORC1 in aging has been investigated extensively,
the involvement of signaling components participating in the nutrient sensing branch is less
well understood. In this review, we provide a comprehensive overview of the molecular and
cellular mechanisms that signal nutrient availability to mTORC1, and summarize the role
that nutrients, nutrient sensors, and other components of the nutrient sensing machinery
play in cellular and organismal aging.
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INTRODUCTION

Aging is characterized by a progressive decline in multiple cellular and organismal functions,
collectively described as “the hallmarks of aging” (reviewed in Lopez-Otin et al. (2013)). A
fundamental process that—directly or indirectly—influences virtually all other pillars of aging is
the ability of cells to sense the presence or absence of intra- and extra-cellular nutrients. Accordingly,
dysregulation of the cellular nutrient sensing machinery is tightly linked to cellular dysfunction in
aged tissues. At the molecular level, a serine/threonine protein kinase called mechanistic Target of
Rapamycin (mTOR) functions both as the main nutrient sensor and a key controller of cellular
metabolism. mTOR participates in two distinct multiprotein complexes, namely mTOR complex 1
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(mTORC1) and mTOR complex 2 (mTORC2), which differ in
their composition, upstream regulation, and downstream
functions. Although both complexes respond to growth
factor signaling, nutrients—like amino acids and
glucose—signal mainly via mTORC1. When nutrients are
abundant, active mTORC1 promotes anabolic processes, such
as protein, nucleotide and lipid biosynthesis, while inhibiting
processes mediating protein and organelle turnover, like
autophagy and lysosomal biogenesis (Kim and Guan, 2019).
Consistently, mTORC1 is readily inactivated upon nutrient
starvation, or in response to a multitude of cellular stresses,
to cease growth. As a central node in sensing environmental
cues and translating them to cellular growth and metabolism, it
is not surprising that mTORC1 activity is commonly
dysregulated upon aging and in most age-related maladies,
including cancer, metabolic diseases, and neurological
disorders (Liu and Sabatini, 2020). Because, in some cases,
mTORC1 activity is aberrantly elevated in aged cells (Chen
et al., 2009), pharmacological or nutritional ways to target and
inhibit this complex have been the focus of intense research over
the last several decades.

In line with the well-established role of mTORC1 in nutrient
sensing and in aging, dietary restriction, a nutritional regimen
that positively influences lifespan and healthspan in a large
panel of model organisms, including disease models, functions
primarily via downregulating mTORC1. Limitation of protein
intake, in particular, has been shown to lower mTORC1 activity
in tumors and somatic tissues (Lamming et al., 2015), and to
have beneficial effects on various health-related parameters,
including insulin resistance, type 2 diabetes, obesity and
mortality (Lagiou et al., 2007; Sluijs et al., 2010; Lagiou et al.,
2012; Vergnaud et al., 2013; Levine et al., 2014; Fontana et al.,
2016). This growing body of evidence highlights amino acids as
key nutrients that are relevant for aging and disease, and amino
acid sensing as an important cellular function that determines
physiological and pathological mTORC1 signaling. Here, we
comprehensively summarize the cellular mechanisms and
principles of mTORC1 regulation by upstream stimuli,
focusing primarily on the intricate network that signals
amino acid availability to control mTORC1 activity and thus
cellular growth and metabolism. Additionally, we discuss how
nutritional, genetic and pharmacological perturbations that
influence mTORC1 activity affect aging and age-associated
diseases, and describe the role of upstream mTORC1
regulators, and downstream cellular functions in these
processes.

THE PHYSIOLOGICAL ROLE OF MTORC1
IN GROWTH AND METABOLISM

Composition of mTORC1
mTOR is a highly conserved serine/threonine protein kinase that
belongs to the PIKK (PI3K-related protein kinases) family
(Richardson et al., 2004b). In mammals, it exists as the
catalytic component of two complexes, mTORC1 and

mTORC2, which display distinct qualities (Liu and Sabatini,
2020). In this review, we focus primarily on mTORC1, which
functions as the master nutrient sensor in cells. A characteristic
subunit of mTORC1, with both functional and structural roles, is
RAPTOR (regulatory-associated protein of mTOR) (Hara et al.,
2002; Kim et al., 2002). It acts as a scaffold protein that is
necessary for the integrity of the complex, and facilitates
substrate recognition via binding sequences in certain
mTORC1 targets, called TOS (TOR signaling motifs) (Nojima
et al., 2003; Schaim et al., 2003). A second mTORC1 component
is mLST8 (mammalian lethal with SEC13 protein 8; also known
as GβL) (Kim et al., 2003). Although mLST8 was shown to act by
enhancing the interaction between RAPTOR and mTOR, other
reports suggested that mTORC1 activity is not affected in its
absence (Guertin et al., 2006; Yang et al., 2013). Two additional
mTORC1 subunits, PRAS40 (proline-rich AKT substrate 40 kDa;
also known as AKT1S1) (Sancak et al., 2007; Vander Haar et al.,
2007) and DEPTOR (DEP-domain-containing mTOR-
interacting protein) (Peterson et al., 2009) interact with the
complex via binding to RAPTOR and mTOR, respectively,
and were shown to act as endogenous inhibitors of mTORC1
kinase activity.

Role of mTORC1 in the Regulation of
Protein Synthesis
Presumably the best-characterized downstream mTORC1
process is protein synthesis, a highly energy-consuming
cellular function. By mTORC1 acting simultaneously as a
central sensor for nutrient availability and the overall cellular

FIGURE 1 | mTORC1 positively or negatively regulates multiple cellular
functions via key effector proteins. Proteins that are regulated by mTORC1
only indirectly are shown in red. See text for details. Created with
BioRender.com
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metabolic status, and as a regulator of protein synthesis, cells
ensure that they only make proteins when they have sufficient
building blocks and energy. mTORC1 controls protein synthesis
in many different ways, the best-studied being via
phosphorylation of its canonical substrates, 4E-BP (eukaryotic
initiation factor 4E binding proteins) and S6K1 (p70 S6 Kinase 1)
proteins, both of which contain TOS motifs (Burnett et al., 1998;
Nojima et al., 2003; Schaim et al., 2003). 4E-BP1 functions as a
negative regulator of 5′-cap-dependent translation, via binding to
eIF4E (eukaryotic translation initiation factor 4E). Multisite
phosphorylation of 4E-BP1 by mTORC1 reduces its inhibitory
interaction with eIF4E, thus promoting translation (Hara et al.,
1997; Gingras et al., 1999) (Figure 1). A recent study uncovered
the structural basis of 4E-BP1 phosphorylation by mTORC1,
showing that 4E-BP1 is tethered to mTORC1 by two distinct
interactions, which explain the hierarchical mode of 4E-BP1
phosphorylation (Bohm et al., 2021). In addition, 4E-BP1 can
be phosphorylated by mTORC1 both in its free state and in the
eIF4E-bound form, to guarantee that all pools of 4E-BP1 are
targeted and ensure efficient translation initiation when
mTORC1 is active (Bohm et al., 2021). mTORC1 is also
known to favor translation of TOP (terminal oligopyrimidine
tract) mRNAs, which bear a 5′ oligopyrimidine sequence
downstream of the N7-methyl guanosine triphosphate cap,
present in most ribosomal mRNAs (Levy et al., 1991; Hsieh
et al., 2012; Thoreen et al., 2012). Although previous studies
implied 4E-BP1 as the key factor in TOP mRNA translation
(Hsieh et al., 2012; Thoreen et al., 2012), a recent report showed
that mTORC1 directly phosphorylates and inactivates LARP1
(La-related protein 1), another important repressor of TOP
mRNA translation (Jia et al., 2021) (Figure 1).

Unlike its inhibitory effect on 4E-BP1, mTORC1-driven S6K1
phosphorylation (Burnett et al., 1998) actually leads to its
activation, and to subsequent phosphorylation of its
downstream substrates (Figure 1). Full S6K1 activation also
requires its phosphorylation by a second factor, PDK1
(Phosphoinositide-dependent kinase-1), which takes place at
distinct residues (Alessi et al., 1998; Pullen et al., 1998). The
best-described S6K1 target is S6 (ribosomal protein S6), although
the function of its phosphorylation is still unclear, with some
studies reporting that S6 phosphorylation is required for
translation of ribosomal genes (Chauvin et al., 2014),
whereas others showing that non-phosphorylatable S6
mutants have no effects on translation (Ruvinsky et al.,
2005). S6K1 also activates transcription of ribosomal RNAs
by enhancing RNA polymerase I activity via directly
phosphorylating the regulatory factors UBF (upstream
binding factor) (Hannan et al., 2003) and TIF-1A
(transcription initiation factor 1A) (Mayer et al., 2004).
Similarly, phosphorylation of the RNA polymerase III
inhibitor MAF1 (repressor of RNA polymerase III
transcription MAF1 homolog) (Shor et al., 2010) was also
shown to be controlled by S6K1, although a second report
suggested that MAF1 is a direct target of mTORC1 (Michels
et al., 2010). In the context of protein translation initiation,
S6K1 phosphorylates and activates eIF4B (eukaryotic
translation initiation factor 4B), a positive regulator of the

5′-cap-binding eIF4F (eukaryotic translation initiation factor
4F) complex, thus promoting translation of mRNAs with
complex 5′ untranslated regions (Holz et al., 2005).
Additional S6K1 targets that are involved in translation are
the negative regulator of the RNA helicase eIF4A (eukaryotic
translation initiation factor 4A), PDCD4 (programmed cell
death protein 4) (Dorrello et al., 2006), as well as the exon
junction complex subunit SKAR (also known as POLDIP3;
polymerase delta-interacting protein 3) that, when
phosphorylated by S6K1, increases the efficiency of translation
of spliced mRNAs (Richardson et al., 2004a; Ma et al., 2008).

Role of mTORC1 in the Regulation of Lipid
Biosynthesis
Cell growth requires concurrent membrane biogenesis, hence,
mTORC1 is logically also involved in the regulation of lipid
synthesis via various mechanisms (Figure 1). First, via S6K1,
mTORC1 activates the SREBP (sterol regulatory element-
binding proteins) transcription factors to promote de novo
lipid biosynthesis (Porstmann et al., 2008; Duvel et al., 2010).
Furthermore, mTORC1 controls expression of lipid
biosynthesis genes by directly phosphorylating Lipin1, a
negative regulator of SREBP, thus preventing its nuclear
entry and allowing SREBP-dependent gene expression
(Peterson et al., 2011). The mTORC1-S6K1 axis also
promotes phosphorylation of SRPK2 (SRSF protein kinase
2), and, in concert with its phosphorylation by CK1 (casein
kinase 1), induces SRPK2 nuclear translocation and the
splicing of lipogenic-related transcripts (Lee et al., 2017).
Additionally, the activity of PPARγ (peroxisome
proliferator–activated receptor-γ), a transcription factor that
promotes adipogenesis, is also tightly regulated by mTORC1
(Kim and Chen, 2004). Recently, a new layer in the regulation
of lipid synthesis bymTORC1was uncovered, with the finding that
the levels of HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A
reductase), a rate-limiting enzyme in cholesterol biosynthesis are
controlled by the activity of the deubiquitinase enzyme USP20, a
direct mTORC1 substrate (Lu X.-Y. et al., 2020).

Role of mTORC1 in the Regulation of
Nucleotide Biosynthesis
As for the aforementioned processes, cell growth and
proliferation also require increased DNA replication and
rRNA (ribosomal RNA) production (Figure 1). In this regard,
pyrimidine biosynthesis is also controlled downstream of
mTORC1, via S6K1-mediated phosphorylation of CAD
(carbamoyl-phosphate synthetase 2, aspartate
transcarbamoylase, dihydroorotase), the rate-limiting enzyme
catalyzing the first three steps in the pyrimidine biosynthesis
pathway (Ben-Sahra et al., 2013; Robitaille et al., 2013). Similarly,
mTORC1 also regulates purine biosynthesis by regulating the
levels of MTHFD2 (mitochondrial tetrahydrofolate cycle enzyme
methylenetetrahydrofolate dehydrogenase 2) via the
transcription factor ATF4 (cyclic AMP-dependent
transcription factor ATF-4) (Ben-Sahra et al., 2016). Finally,
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mTORC1 upregulates the oxidative arm of the pentose phosphate
pathway, via SREBP, as an additional way of fueling nucleotide
biosynthesis (Duvel et al., 2010).

Role of mTORC1 in Energy Production and
Metabolism
Because all cellular biosynthetic activities are energy-
consuming processes, mTORC1 also controls energy
production and metabolism (Figure 1). Via 4E-BP1,
mTORC1 induces the expression of nuclear-encoded
mitochondrial transcripts to boost ATP production
(Morita et al., 2013). Moreover, mTORC1 also regulates
mitochondrial biogenesis via the transcriptional YY1
(yin–yang 1) − PGC1α (PPARγ coactivator 1α) complex
(Cunningham et al., 2007; Blattler et al., 2012). In parallel
to promoting increased mitochondrial energy production,
mTORC1 also acts on metabolic pathways that support cell
growth, either by providing energy in the form of ATP
(adenosine triphosphate) or by supplying precursors
required for macromolecule biosynthesis. The best-studied
example of mTORC1-mediated metabolic regulation is its
role in the regulation of HIF1α (hypoxia inducible factor 1α)
levels both via transcriptional (Duvel et al., 2010; He et al.,
2018) and translational mechanisms (Zhong et al., 2000;
Laughner et al., 2001; Hudson et al., 2002; Zid et al.,
2009). Increased HIF1α, in turn, promotes several anabolic
cellular functions, including glycolysis, a main energy-
producing metabolic pathway (Duvel et al., 2010; He et al.,
2018). In the liver, mTORC1 suppresses feeding- and aging-
induced ketogenesis, presumably through promoting the
nuclear relocalization of NCoR1 (nuclear receptor
corepressor 1) to inhibit PPARα (peroxisome proliferator-
activated receptor α)-mediated expression of ketogenic genes,
thus coordinating hepatic ketone body production and the
response to fasting/feeding (Sengupta et al., 2010; Kim K.
et al., 2012).

Role of mTORC1 in Autophagy Inhibition,
Lysosomal Biogenesis and Unconventional
Protein Secretion
Concomitantly with the upregulation of anabolic processes,
mTORC1 also inhibits catabolic cellular functions, thus
preventing degradation of cellular components and
macromolecules that are necessary for cell growth
(Figure 1). One such process is autophagy, via which
cytoplasmic parts, damaged proteins and organelles are
directed to lysosomes for degradation, facilitating the
recycling of cellular components. Autophagy is a complex,
multi-step process, with mTORC1 controlling several stages
via the phosphorylation of key components of the autophagic
machinery. When mTORC1 is inactive, autophagy induction is
coordinated by an initiation complex formed by FIP200 (200-
kDa FAK family kinase-interacting protein), ATG101
(autophagy-related protein 101), ULK1 (serine/threonine-
protein kinase ULK1), and ATG13 (autophagy-related

protein 13). Active mTORC1 phosphorylates and inactivates
ULK1 (Kim et al., 2011) and ATG13 (Ganley et al., 2009;
Hosokawa et al., 2009), thereby inhibiting autophagy
initiation. Another target of mTORC1 involved in
autophagy initiation is AMBRA1 (activating molecule in
BECN1-regulated autophagy protein 1), which is crucial for
ULK1 protein stability (Nazio et al., 2013). Moreover,
mTORC1 inhibits the activity of the PIK3C3
(phosphatidylinositol 3-kinase catalytic subunit type 3)
protein complex (also known as VPS34 complex) that is
involved in the early steps of autophagy, via directly
phosphorylating the ATG14 (autophagy-related protein 14)
component (Yuan et al., 2013). Similarly, mTORC1
phosphorylates UVRAG (UV radiation resistance-associated
gene product), a component involved in autophagosome
maturation, thus inhibiting this process (Kim et al., 2015).

In addition to the control of autophagy by directly
regulating components of the autophagic machinery,
mTORC1 also controls the expression of genes involved in
autophagy and lysosomal biogenesis by directly
phosphorylating TFEB (transcription factor EB), as well as
the related factors MITF (microphthalmia-associated
transcription factor) and TFE3 (transcription factor E3)
(Settembre et al., 2012). By phosphorylating TFEB,
mTORC1 promotes its interaction with 14-3-3 proteins,
which causes its cytoplasmic retention (Martina et al.,
2012; Roczniak-Ferguson et al., 2012; Martina and
Puertollano, 2013). In contrast, when mTORC1 is inactive,
calcineurin (serine/threonine-protein phosphatase 2B) acts
by dephosphorylating TFEB, thus promoting its nuclear
translocation (Medina et al., 2015). Nuclear TFEB then
promotes a transcriptional program which induces the
expression of autophagy-related genes like UVRAG, as
well as core lysosomal genes, such as vacuolar (H+)-
ATPase (v-ATPase) subunits (Sardiello et al., 2009;
Palmieri et al., 2011). Finally, a recent study showed that
mTORC1 can drive the specific degradation of mRNAs
coding for autophagy-related genes via stabilizing the m6A
methyltransferase complex (MCT) (Tang et al., 2021). In
sum, the tight connection between mTORC1 and the
cellular recycling machinery ensures that cells follow an
anabolic program while inhibiting catabolism when
conditions are optimal. Accordingly, because autophagy
activation causes the release of nutrients via the
degradation of complex macromolecules, it also mediates
the reactivation of mTORC1 to prevent excessive self-
eating and maintain a fine balance between anabolism and
catabolism in cells (Yu et al., 2010).

The only other cellular function that is inhibited by active
mTORC1—besides autophagy and lysosomal biogenesis—is
unconventional protein secretion (UPS), a process through
which cells reshape their extracellular proteome in response to
stress. The Golgi-residing GRASP55 protein is a key player in
cargo transport via UPS routes. In unchallenged cells,
mTORC1 phosphorylates directly GRASP55 at the Golgi to
retain its subcellular localization. In contrast, inactivation of
mTORC1 upon starvation or other cellular stresses leads to
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GRASP55 dephosphorylation and relocalization to secretory
compartments of UPS, such as autophagosomes and
multivesicular bodies (MVBs), to promote UPS of selected
cargoes (Nüchel et al., 2021). Therefore, the mTORC1-
GRASP55 hub links nutrient availability and stress signaling
to secretory pathway activity and the regulation of the
composition of the extracellular proteome.

REGULATION OF MTORC1 ACTIVITY BY
AMINO ACIDS

The availability of amino acids (AA), the building blocks of
proteins, is presumably the strongest stimulus that activates
mTORC1. Already in the 90’s, early studies identified key
regulators of protein synthesis, such as S6K1 and 4E-BP1, to
be responsive to AA sufficiency, thus linking AA to mTORC1
activation (Blommaart et al., 1995; Hara et al., 1998). However, it
was not until 2008 that two groups independently discovered the
Rag (Ras-related GTP-binding protein) GTPases as a major hub

in AA-sensing by mTORC1 (Kim et al., 2008; Sancak et al., 2008)
(Figure 2).

The Lysosomal Rag GTPases in Amino Acid
Sensing and mTORC1 Regulation
The Rag GTPases (hereafter referred to as Rags) form obligate
heterodimers, with RagA or RagB binding to RagC or RagD
(Sekiguchi et al., 2001), that reside on the lysosomal surface.
Because the Rags do not harbor a lipid modification, they are
tethered to the lysosomal surface indirectly, via protein-protein
interactions with the lysosomal LAMTOR (late endosomal/
lysosomal adaptor and MAPK and mTOR activator) complex
(also known as “Ragulator”) (Sancak et al., 2010). AA sufficiency
induces activation of the Rag dimer, with RagA/B being bound to
GTP and RagC/D being bound to GDP (Kim et al., 2008; Sancak
et al., 2008; Shen et al., 2017; Lawrence et al., 2018) (Figure 2).
Mechanistically, active Rags bind RAPTORwith higher affinity to
promote lysosomal mTORC1 recruitment (Sancak et al., 2008).
Recent structural studies identified a “claw”-shaped region on

FIGURE 2 | Amino acids regulate mTORC1 at the lysosomal surface via a complex upstream regulatory protein network that impinges upon the Rag GTPase
dimers. Positive mTORC1 regulators shown in green; negative regulators shown in red. Additional subcellular locations, where mTOR was previously found, are also
depicted. See text for details. Created with BioRender.com
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RAPTOR via which it recognizes the active state of the Rags
(Anandapadamanaban et al., 2019; Rogala et al., 2019).
Notably, the Rag-RAPTOR interaction and the lysosomal
recruitment of mTORC1 are not sufficient to promote its
activation, but rather allow mTORC1 to encounter another
small GTPase, its direct activator RHEB (Ras homolog
enriched in brain). Accordingly, RHEB depletion inhibits
mTORC1 activation by AA without delocalizing it away
from lysosomes, thus highlighting the existence of two
interconnected mechanistic branches in mTORC1
activation: its lysosomal recruitment by the Rags and its
direct activation by RHEB (Sancak et al., 2008; Sancak et al.,
2010). Of note, RagA knockout mice die at embryonic day
E10.5, underscoring the importance of proper lysosomal
mTORC1 regulation in mouse development (Efeyan et al.,
2014). Additionally, mice harboring a constitutively active
RagA mutant allele, thus being unable to properly inactivate
mTORC1 and activate autophagy, die neonatally, further
suggesting that fine-tuning of the mTORC1 signaling
pathway in response to AA signaling is essential for
organismal homeostasis (Efeyan et al., 2013).

Role of the Rag GTPases and TSC
Relocalization in mTORC1 Inactivation
Upon Starvation
The main upstream negative regulator of mTORC1 is the
heterotrimeric Tuberous Sclerosis Complex (TSC), which is
composed of TSC1 (or hamartin), TSC2 (or tuberin) and
TBC1D7 (TBC1 domain family member 7) (Dibble et al.,
2012; Yang et al., 2021). As discussed more extensively in the

following sections, TSC functions by inactivating the direct
mTORC1 activator, RHEB (Figure 2). Nearly all stimuli that
regulate mTORC1, including AA, signal at least in part via the
TSC (Demetriades et al., 2016) (Figure 3). Previous work
from our group and others revealed that AA removal
inactivates mTORC1 via the lysosomal relocalization of the
TSC complex, and that the TSC is necessary for proper
mTORC1 inactivation and cellular response to AA
starvation (Demetriades et al., 2014; Carroll et al., 2016).
Together with additional lysosomal factors (discussed
below), the Rags play a key role in the recruitment of TSC
to lysosomes. Lowering Rag expression or preventing the
starvation-induced inactivation of the Rag dimer (e.g., by
knocking-down GATOR1 components) was able to prevent
accumulation of TSC to lysosomes upon AA deprivation
(Demetriades et al., 2014). Accordingly, decreasing Rag
levels in Drosophila or mammalian cells makes them
partially insensitive to AA removal due to the defective
recruitment of the TSC (Demetriades et al., 2014).
Therefore, in addition to regulating mTORC1 re-activation
in response to AA resupplementation, the Rags are also
actively involved in the inhibition of mTORC1 in starved cells.

Follow-up work suggested that the lysosomal relocalization of
TSC is not restricted to AA starvation, but is rather a universal
response to cellular stresses; each individual stress stimulus, when
applied singly to cells, is sufficient to drive the accumulation of
TSC to the lysosomal surface to inhibit mTORC1 (Menon et al.,
2014; Demetriades et al., 2016). Although this response is a shared
characteristic between multiple stresses, each stress seemingly
leads to TSC relocalization via diverse signaling cascades, with
growth factor signaling causing the Akt (also known as PKB,
protein kinase b)-mediated phosphorylation of TSC2 (Menon
et al., 2014), whereas hyperosmotic stress leads to the activation of
a calyculin-A-sensitive phosphatase and various kinases
impinging upon TSC2 to regulate TSC localization (Plescher
et al., 2015).

Interestingly, some studies suggested that—besides the Rag-
TSC interaction—TSC binding to membrane-bound RHEB is
also contributing to its recruitment to lysosomes upon growth
factor or arginine removal (Menon et al., 2014; Carroll et al.,
2016). More recent work has revealed two additional tethering
mechanisms via which TSC is recruited to lysosomes to inhibit
mTORC1 in response to simultaneous removal of AA and
growth factors: the G3BP1/2 (Ras GTPase-activating protein-
binding proteins 1 and 2) proteins, which are canonically
involved in stress granule formation (Prentzell et al., 2021)
and recruit the TSC via interacting with the TSC2 subunit; and
the lysosomal PI3,5P2 (phosphatidylinositol 3,5-biphosphate)
lipids that facilitate TSC tethering via interactions with a
positively charged region at the N-terminus of TSC1
(Fitzian et al., 2021). Importantly, these studies demonstrate
that the inactivation of mTORC1 is not a passive process, due
to the absence of positive signals, but rather involves the active
participation of key cellular mechanisms, such as the nutrient
starvation- and stress-induced lysosomal relocalization of the
TSC complex. Notably, the mechanistic aspects of signal
integration on TSC, of its recruitment to the lysosomal

FIGURE 3 | Intra- and extra-cellular stimuli control mTORC1 activity
through diverse signaling cascades and upstream mTORC1 regulatory
proteins. See text for details. Created with BioRender.com
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surface, and of the cellular adaptation to stress are not yet fully
understood.

Regulation of Rag GTPase Activity by Amino
Acids
Following the initial discovery of the Rags as key players in AA
sensing and mTORC1 regulation, a complex upstream regulatory
protein network that signals AA sufficiency to regulate their
activity was identified (Figure 2). Typically, guanine exchange
factors (GEFs) or GTPase activating proteins (GAP) regulate the
activity of small GTPases via promoting their binding to GTP or
catalyzing GTP-to-GDP hydrolysis, respectively. The pentameric
LAMTOR complex was the first identified GEF for RagA/B and
their interaction was shown to be dependent on AA and the
v-ATPase (Zoncu et al., 2011; Bar-Peled et al., 2012). A later study
identified SLC38A9 (sodium-coupled neutral amino acid
transporter 9), an AA transporter that resides on the
lysosomal surface as a RagA GEF (Shen and Sabatini, 2018).
In contrast, the trimeric GATOR1 protein complex consisting of
DEPDC5 (DEP domain-containing 5), NPRL2 (nitrogen
permease regulator-like 2), and NPRL3 (nitrogen permease
regulator-like 3) functions as a GAP for RagA, and promotes
GTP hydrolysis upon AA insufficiency via a poorly understood
mechanism (Bar-Peled et al., 2013; Shen et al., 2018). In turn,
GATOR1 acts downstream of a protein complex named
GATOR2, that is composed of MIOS (meiosis regulator for
oocyte development), WDR24 (WD repeat domain 24),
WDR59 (WD repeat domain59), SEH1L (Seh1-like
nucleoporin), and SEC13 (Sec13 homolog nuclear pore and
COPII coat complex component) and is required for
mTORC1 activity. GATOR1 lysosomal recruitment was also
found to be regulated by KICSTOR, a protein complex
comprised of KPTN (Kaptin), ITFG2 (integrin-α FG-GAP
repeat containing 2), C12orf66, and SZT2 (seizure threshold
2), which bind GATOR1 and facilitate its interaction with
both the Rags and GATOR2 (Peng et al., 2017; Wolfson et al.,
2017). Additionally, SH3BP4 (SH3 domain-binding protein 4)
was shown to be a negative regulator of the Rags by interacting
with the inactive dimer and preventing its activation during AA
starvation (Kim Y.-M. et al., 2012).

Although the GEF for RagC/D is still unknown, the FLCN
(Folliculin)-FNIP1/2 (FLCN-interacting proteins 1 and 2)
complex was described as a GAP for these Rags (Petit et al.,
2013; Tsun et al., 2013). Because, in the active Rag dimer, RagC/D
is GDP bound, the FLCN-FNIP complex functions as a positive
regulator of mTORC1 in response to AA. Of note, FLCN is
mutated in Birt-Hogg-Dubé syndrome patients, where RagC/D
activity and downstream regulation of TFEB/TFE3 seem to be
particularly affected, highlighting FLCN-Rag-mTORC1-TFEB as
an important signaling axis in human disease (Napolitano et al.,
2020). Interestingly, in cells with inactive mTORC1, nuclear
TFEB upregulates RagD gene expression, thus forming a
regulatory loop that facilitates fine-tuning of mTORC1 activity
in response to AA availability (Di Malta et al., 2017).

Several other proteins have been previously shown to respond
to AA availability to regulate mTORC1 via the Rags, with the

precise mechanistic details being less clear for some of those. For
instance, MAP4K3 (mitogen-activated protein kinase 3) was
shown to participate in AA signaling upstream of RagC/D
(Findlay et al., 2007; Yan et al., 2010). Another seemingly
important factor for mTORC1 activation by AA is SQSTM1
(sequestosome1; or p62), which interacts with both RAPTOR and
the Rags to facilitate lysosomal recruitment of mTORC1 when
AA are present (Duran et al., 2011). Moreover, SQSTM1 acts in
coordination with TRAF6 (TNF receptor associated factor 6) in
the K63-linked ubiquitination of mTOR, which is also involved in
regulating lysosomal translocation of mTORC1 (Linares et al.,
2013). Finally, GPR137B (G protein-coupled receptor 137B) was
recently shown to positively regulate mTORC1 via binding to
RagA (Gan et al., 2019), presumably regulating its activity and
lysosomal localization, which is in line with previous findings
showing that the Rags cycle on and off the lysosomal surface in
response to AA availability (Lawrence et al., 2018). Future work
will be important to disentangle how this diverse panel of proteins
act coordinately to signal AA sufficiency to the Rags, and what is
the relative contribution of each of them inmTORC1 signaling, in
response to different nutritional conditions and in different
cell types.

Direct Amino Acid Sensors Upstream of the
Rag GTPases
Several studies over the last decade have identified a number of
lysosomal or cytoplasmic proteins that function as direct sensors
for specific individual AA (or groups of AA) and transmit
information about their availability to control Rag activity and
lysosomal recruitment of mTORC1 (Figure 2). Notably, this
striking specificity for certain AA suggested the existence of
multiple parallel routes via which AA regulate mTORC1.

Arginine sensing: SLC38A9 is a neutral amino acid transporter
that acts as a lysosomal arginine sensor. Upon binding to
arginine, SLC38A9 activates mTORC1 in a v-ATPase- and
LAMTOR-dependent manner (Jung et al., 2015; Rebsamen
et al., 2015; Wang et al., 2015; Wyant et al., 2017).
Interestingly, SLC38A9 is important for the arginine-
dependent export of leucine from the lysosomal lumen,
highlighting the crosstalk between AA that activate mTORC1
(Wyant et al., 2017). Additionally, arginine can be sensed by the
cytoplasmic sensors CASTOR1/2 (cytosolic arginine sensor for
mTORC1), which bind and inhibit GATOR2 when arginine
levels are low, thus inactivating mTORC1. When arginine is
abundant, its binding to CASTOR1/2 weakens the inhibitory
CASTOR-GATOR2 interaction, leading to mTORC1 activation
(Saxton et al., 2016a; Chantranupong et al., 2016).

Leucine sensing: Similar to the CASTOR proteins in arginine
sensing, SESTRIN proteins bind and inactivate GATOR2 in
leucine-deprived cells (Chantranupong et al., 2014; Parmigiani
et al., 2014). Leucine binding to SESTRIN2 relieves GATOR2
inhibition, which can then signal to activate mTORC1 via the
Rags (Saxton et al., 2016b; Wolfson et al., 2016). Interestingly,
SESTRINs were originally discovered as stress response proteins
(Budanov et al., 2002) and were also identified to negatively
regulate mTORC1 via the AMPK-TSC2 axis (Budanov and Karin,
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2008), suggesting that they are part of a broader cellular response
to suboptimal growth conditions (Lee et al., 2016). A recent study
identified SAR1B (secretion associated Ras-related GTPase 1B) as
an independent leucine sensor that acts in the same way as
SESTRINs to regulate mTORC1 (Chen et al., 2021).
Additionally, leucine can also activate mTORC1 via its
aminoacyl-tRNA synthetase, LARS (leucyl-tRNA Synthetase
1), which acts as a GAP for RagD (Han et al., 2012). More
recently, an alternative sensing mechanism for leucine was
proposed based on acetyl-CoA, a downstream product in
leucine metabolism, hence expanding the spectrum of possible
signaling molecules in AA sensing: in this case, acetyl-CoA was
shown to signal leucine availability via facilitating RAPTOR
acetylation, a modification that led to mTORC1 activation
(Son et al., 2019).

Methionine sensing: As with leucine, methionine sensing
occurs via a downstream metabolite. S-adenosylmethionine
(SAM) is a methionine-derived compound that functions as a
donor of the methyl group for methylation of cellular proteins
and DNA. Opposite to leucine and arginine, SAM does not signal
via GATOR2, but instead binds to SAMTOR
(S-adenosylmethionine sensor upstream of mTORC1; or
C7orf60) to release its interaction with GATOR1 and
KICSTOR and to promote mTORC1 activation (Gu et al., 2017).

Threonine sensing: Similar to the role of LARS in leucine
signaling, threonine levels regulate mTORC1 via TARS2
(mitochondrial threonyl-tRNA synthetase 2). Threonine
binding to TARS2 causes its association with GTP-bound
RagC, and subsequent activation of the RagA-RagC dimer,
leading to activation of mTORC1 (Kim et al., 2021). Because
TARS2 seemingly lacks GEF domains, it is unlikely that it acts
directly on RagA, raising the possibility that it might act through a
so-far-unknown GEF.

Sensing of other AA: Glutamine was previously shown to
activate mTORC1 in a Rag-dependent manner via
α-ketoglutarate, a product of glutaminolysis, which also
requires leucine (Duran et al., 2012). In addition to the AA
discussed above, alanine, histidine, serine and valine have also
been linked to mTORC1 activation (Kobayashi et al., 2014;
Dyachok et al., 2016) and were shown to act via Rag-
dependent mechanisms (Meng et al., 2020). Interestingly,
certain AA seem to play a dominant role over others in the
regulation of mTORC1, further highlighting the intricate
complexity of the cellular AA sensing network (Dyachok et al.,
2016). More studies are required to fully understand the
differential activation of mTORC1 by distinct AA, and
additional direct AA sensors are likely to emerge in the near
future.

Rag-independent Regulation of mTORC1
by Amino Acids
Although most studies investigating how AA regulate
mTORC1 have focused on the Rag-dependent upstream
signaling network, a growing body of evidence in the recent
years hints for the existence of additional Rag-independent
mechanisms, via which AA control mTORC1 activity

(Figure 2). Notably, in RagA/B double-knockout
cardiomyocytes that show impaired lysosomal function,
phosphorylation of mTORC1 substrates, such as 4E-BP1, is
not significantly affected (Kim et al., 2014). Similar
observations were drawn from work using RagA-mutant
zebrafish (Shen et al., 2016) and Rag knockout or knock-
down cells (Demetriades et al., 2014; Efeyan et al., 2014;
Kim et al., 2014; Jewell et al., 2015; Shen et al., 2016).
Moreover, glutamine resupplementation was shown to
reactivate mTORC1 independently from the Rag GTPases,
via inducing its lysosomal relocalization in an Arf1
(adenosine diphosphate ribosylation factor-1)- and
v-ATPase-activity-dependent manner (Jewell et al., 2015). A
follow-up study suggested the involvement of PLD1
(Phospholipase D1)—an enzyme previously linked to mTOR
complex stability and activity, via the production of
phosphatidic acid (PA) (Toschi et al., 2009; Yoon et al.,
2011)—and of α-ketoglutarate in the Arf1-dependent, Rag-
independent mTORC1 activation (Bernfeld et al., 2018).
Interestingly, the Rag-independent mode of glutamine
signaling to mTORC1 seems to be conserved also in yeast
lacking expression of Gtr (GTP-binding protein GTR)
proteins, the Rag orthologs (Stracka et al., 2014). However,
Pib2 (phosphatidylinositol 3-phosphate-binding protein 2),
the proposed glutamine sensor in yeast (Ukai et al., 2018),
is not conserved in humans, and the closest candidates Phafin1
or R3HCC1 (R3H and coiled coil domain–containing protein
1) did not affect glutamine signaling to mTORC1 (Meng et al.,
2020). Since glutamine is one of the most important AA to fuel
cell growth and metabolism, it is of utmost importance to
understand the precise mechanisms by which this AA controls
the master regulator of cell growth, mTORC1. A recent study
showed that, besides glutamine, also asparagine can activate
mTORC1 in Rag-mutant cells via Arf1 (Meng et al., 2020). It
should be noted, however, that the mechanism via which the
Golgi-localized Arf1 GTPase influences the lysosomal
recruitment and reactivation of mTORC1 remains elusive.
Considering the more general role of Arf1 in ER-Golgi
vesicle trafficking, a more indirect mechanism involving the
maturation of the endo-lysosomal machinery cannot be
excluded, based on the currently available data.

mTORC1 Regulation at Distinct Cellular
Locations
Although the lysosomal surface has emerged as the main
subcellular location for mTORC1 activation by AA (Sancak
et al., 2010), this view has been expanded in the recent years
to include additional compartments (summarized in Betz and
Hall (2013)) (Figure 2). Interestingly, roughly half of mTOR does
not colocalize with lysosomes (Lawrence et al., 2018) and has
been found on other organelles, such as the Golgi, mitochondria,
ER (endoplasmic reticulum), and in the nucleus (Schieke et al.,
2006; Liu and Zheng, 2007; Ramanathan and Schreiber, 2009;
Yadav et al., 2013; Giguere, 2018; Gosavi et al., 2018). Similarly,
many of the upstream mTORC1 regulators and downstream
substrates are either non-lysosomal or only partially lysosomal
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proteins. For instance, RHEB, the indispensable direct mTORC1
activator, is also found to be enriched in many different
endomembranes besides lysosomes, including the Golgi, ER
and peroxisomes (Buerger et al., 2006; Hanker et al., 2010;
Yadav et al., 2013; Zhang et al., 2013; Gosavi et al., 2018; Hao
et al., 2018; Angarola and Ferguson, 2019). Moreover, TSC2, the
main negative regulator of mTORC1, has been shown to
accumulate in non-lysosomal structures, some of which can be
peroxisomes (Zhang et al., 2013; Demetriades et al., 2014). As also
mentioned above, Arf1 seems to regulate mTORC1 activity
independently from the Rags, functioning from the Golgi
(Jewell et al., 2015). Finally, mTORC1 substrates, such as S6K1
and 4E-BP1, are cytoplasmic components of the translation
initiation machinery, further supporting a model for active
mTORC1 also away from the lysosomal surface (Holz et al.,
2005; Zhou et al., 2015; Ahmed et al., 2019). Interestingly, a recent
study found mTORC1 partially colocalizing with focal adhesions
(FA), where it relocalizes via peripheral lysosome distribution.
Because growth factor (GF) receptors and AA transporters also
show local accumulation at FA, the presence of mTORC1 at these
structures highlights them as key signaling hubs for mTORC1
activation by both GF and AA (Rabanal-Ruiz et al., 2021).
Collectively, these findings suggest that the regulation of
mTORC1 by AA is broader than previously described, and
likely involves additional, currently unknown regulatory
factors, mechanisms, and subcellular compartments.

REGULATION OF MTORC1 BY OTHER
PHYSIOLOGICAL STIMULI

Growth Factor and Cytokine Signaling
The regulation of mTORC1 by GF signaling is largely mediated
by the TSC protein complex (Tee et al., 2002) (Figure 3).
Mutations in TSC1 or TSC2 lead to the development of
tuberous sclerosis, a disease characterized by multiple benign
tumors in several organs, hinting to its function in the growth-
related mTORC1 pathway (Huang and Manning, 2008). TSC2
acts as a GAP towards RHEB, and inactivates it by promoting the
conversion of RHEB-GTP to RHEB-GDP, thus also inactivating
mTORC1 (Tee et al., 2003b; Garami et al., 2003). TSC activity is
regulated via multi-site phosphorylation of TSC2 by Akt, which is
in turn controlled directly by GF availability (Inoki et al., 2002;
Manning et al., 2002; Tee et al., 2003a). Growth factor binding to
the respective GF receptor at the cell surface promotes the
activation of PI3K (phosphoinositide 3-kinase) and PDK1,
with the latter directly phosphorylating Akt (Hoxhaj and
Manning, 2020). Moreover, mTORC2 phosphorylates a
different residue on Akt for maximal Akt activity, thus
establishing a crosstalk between the two mTOR complexes
(Sarbassov et al., 2005). Akt-dependent phosphorylation of
TSC2 promotes its dissociation from the lysosomal surface
where RHEB also resides, thereby releasing RHEB inhibition
and promoting mTORC1 activity (Menon et al., 2014;
Plescher et al., 2015; Demetriades et al., 2016). Furthermore,
active Akt can also activate mTORC1 directly via
phosphorylating PRAS40 and releasing its endogenous

inhibitory function within the complex. Notably, active
mTORC1-S6K1 signaling forms a negative feedback loop in
the GF signaling pathway, through an S6K1-dependent
inhibitory phosphorylation event on IRS-1 (insulin receptor
substrate 1), which is important for fine-tuning the cellular
response to GF and in the development of resistance to
mTOR inhibitors (Harrington et al., 2004; Shah et al., 2004).

An additional branch in the GF signaling pathway also acts via
the TSC to regulate mTORC1. Phosphorylation of TSC2 by ERK
(mitogen-activated protein kinase 3) and RSK (p90 ribosomal S6
kinase), downstream of the Ras/receptor tyrosine kinase pathway,
leads to TSC inhibition (Roux et al., 2004; Ma et al., 2005). In
addition to the canonical GF-dependent TSC inactivation, TSC2
is also phosphorylated and inhibited by GSK3β (glycogen
synthase kinase-3 beta), a component on the Wnt signaling
pathway, which increases mTORC1 activity (Inoki et al.,
2006). Unlike most phosphorylation events that take place on
TSC2, IKKβ (inhibitor of nuclear factor kappa-B kinase subunit
beta) directly phosphorylates the TSC1 component in response to
TNFα stimulation (Lee et al., 2008), whereas CDK1 (cyclin-
dependent kinase 1) couples cell growth to cell cycle control
via TSC1 phosphorylation (Astrinidis et al., 2003).

Energy, Glucose and Oxygen Availability
As cell growth is a highly energy consuming cellular process,
mTORC1 activity also responds to fluctuations in energy
availability (Figure 3). The major component of the cellular
energy sensing machinery is the protein kinase AMPK (5′-
AMP-activated protein kinase; also known as PRKAA1),
which responds to AMP when cells confront energetic
stress, e.g., upon nutrient (AA or glucose) starvation, or
under low oxygen conditions (Herzig and Shaw, 2018).
Therefore, AMPK functions as a negative regulator of
mTORC1, linking the cellular energy status to downstream
metabolic functions. At the molecular level, AMPK inhibits
mTORC1 by directly phosphorylating and activating TSC2
upstream of mTORC1 (Inoki et al., 2003), as well as by
phosphorylating RAPTOR within the mTOR complex
(Gwinn et al., 2008). Glucose seems to regulate mTORC1
via multiple different pathways, some of which may also be
linked to each other (Figure 3). While initial studies showed
that glucose starvation inhibits mTORC1 through AMPK
activation, others suggested that glucose also regulates
mTORC1 activity and lysosomal localization in a Rag-
dependent manner, even in AMPK knockout cells (Efeyan
et al., 2013). A recent follow-up study identified the glycolysis
intermediate DHAP (dihydroxyacetone phosphate) as a
metabolite that activates mTORC1 independently from
AMPK, when glucose is present, although the direct sensor
remains elusive (Orozco et al., 2020). Whether DHAP controls
mTORC1 activity upstream of the Rags or in a Rag-
independent manner is also unclear (Orozco et al., 2020).
Finally, low glucose levels are also sensed by mTORC1 via
directly interacting with the glycolytic enzyme hexokinase-II
(HK-II) (Roberts et al., 2014).

Hypoxia also acts independently from AMPK to suppress
mTORC1 activity (Arsham et al., 2003), via upregulating REDD1
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(regulated in development and DNA damage responses 1) levels
(Figure 3). In normoxic conditions, TSC2 is inactivated via
binding to 14-3-3 proteins. REDD1 binding to 14-3-3 proteins
releases TSC2, which in turn inhibits mTORC1 (Brugarolas et al.,
2004; DeYoung et al., 2008).

Nucleotides and Lipids
Concomitantly with mTORC1 controlling nucleotide and lipid
biosynthesis, the levels of these macromolecules signal to regulate
mTORC1 activity (Figure 3). Purine nucleotide availability was
reported to activate mTORC1 either by influencing RHEB
farnesylation and membrane association (Emmanuel et al.,
2017), or by inhibiting TSC activity (Hoxhaj et al., 2017).
Lipids were also proposed to directly activate mTORC1, for
instance via the generation of PA (Menon et al., 2017), which
is essential for the stability and activity of both mTORC1 and
mTORC2 (Toschi et al., 2009). PA was also recently shown to
play a role in the lysosomal recruitment of mTORC1 (Frias et al.,
2020). Additionally, over the past years, an increasing body of
evidence showed that cholesterol signals directly to activate
mTORC1 at the lysosomal surface, via a mechanism that
involves SLC38A9 (sodium-coupled neutral amino acid

transporter 9) and the NPC1 cholesterol transporter
(Castellano et al., 2017; Lim et al., 2019; Davis et al., 2021).

In conclusion, these studies highlight the dual role of
mTORC1 both as a regulator of virtually all cellular
biosynthetic processes and as a sensor of key metabolites and
nutrients that are produced from these metabolic pathways. The
existence of such intricate autoregulatory loops allows for proper
control of metabolism and homeostasis in cells.

ROLE OF MTORC1 SIGNALING AND
DOWNSTREAM FUNCTIONS IN AGING

During aging, cellular and organismal physiology are
progressively dysregulated, increasing susceptibility to diseases
and, ultimately, leading to death. A key hallmark of aging is
deregulated nutrient sensing, which is mainly reflected in
mTORC1 signaling (Lopez-Otin et al., 2013). In turn, by
regulating the majority of cellular functions, mTORC1 impacts
most other hallmarks of aging, thus highlighting its central role in
the control of organismal homeostasis (Papadopoli et al., 2019).
The spectrum of mTORC1 downstream functions that are

FIGURE 4 | A central role for mTORC1 in aging. Interventions and upstream cellular components that regulate mTORC1 activity, and downstream effectors and
functions that are regulated by mTORC1, participate in the aging process. Components with anti-aging properties shown in green; components with pro-aging
properties shown in red. See text for details. Created with BioRender.com
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dysregulated upon aging underscores the complex nature of the
aging process itself, and complicates our understanding about the
intricate interplay between these cellular activities.

Dysregulation of Protein Synthesis
Proteins are the main effectors of cellular functions; hence, it is of
extreme importance that both protein synthesis and protein
quality control systems work flawlessly for cells to function
properly. It is now well-established that, with aging, protein
synthesis becomes deregulated, both in quantitative and
qualitative terms, and that this dysfunction is a major
contributor to age-related maladies (Tavernarakis, 2008;
Steffen and Dillin, 2016; Gonskikh and Polacek, 2017;
Anisimova et al., 2018).

Since protein synthesis is a key function regulated by
mTORC1, several approaches to understand the role of
mTORC1 in aging have focused on the known translation-
related effectors downstream of mTORC1 (Figure 4).
Accordingly, the lifespan extension in fruit flies treated with
Rapamycin to inhibit TORC1, fully depends on both S6K1
and 4E-BP (Bjedov et al., 2010). Further confirming the
importance of the S6K signaling branch in aging, mutation of
the yeast (Sch9; Serine/threonine-protein kinase SCH9)
(Kaeberlein et al., 2005), C. elegans (rsks-1; ribosomal protein
S6 kinase) (Hansen et al., 2007; Pan et al., 2007), Drosophila
(dS6K; ribosomal protein S6 kinase) (Kapahi et al., 2004), or
mouse S6K1 homologs (Selman et al., 2009), recapitulated most
of the lifespan extension effects observed in the respective mTOR
mutants. Similarly, in Drosophila, dietary restriction resulted in
increased levels of the translation inhibitor 4E-BP (Zid et al.,
2009). The importance of 4E-BP-mediated translation inhibition
is also evident in C. elegans, where interventions that decrease
eIF4E-dependent translation have also been linked to lifespan
extension (Hansen et al., 2007; Pan et al., 2007; Syntichaki et al.,
2007). Moreover, 4E-BP expression in Drosophilamuscles is able
to improve systemic proteostasis and promote lifespan extension
(Demontis and Perrimon, 2010), in line with a later mouse study
showing that 4E-BP1 activity in muscles influences organismal
metabolism during aging (Tsai et al., 2015). Collectively, these
studies show that the modulation of the translational machinery
downstream of mTORC1 is a conserved process that is tightly
linked to aging.

In the search for a convergentmechanism among known lifespan
extension interventions, including TOR activity modulation,
nucleolar size—an indicator of ribosomal biogenesis—was found
as a common evolutionarily-conservedmarker, with smaller nucleoli
correlating with increased longevity in worms, mice, fruit flies, and
humans (Tiku et al., 2017; Tiku and Antebi, 2018) (Figure 4), and
nucleolar size correlating with donor age in healthy individuals
(Buchwalter and Hetzer, 2017). Moreover, a model of Hutchinson-
Gilford progeria syndrome (HGPS) shows larger nucleoli, increased
ribosomal biogenesis and an overall increase in protein translation
levels (Buchwalter and Hetzer, 2017), thus ascribing a potential
functional connection between this aging biomarker and the global
increase in protein synthesis that is observed over aging. These
findings suggest that, beyond the direct regulation of multiple
translational components by mTORC1, the translational

machinery is functionally interconnected at different levels.
Untangling the causal relationship between these individual links
will be an important milestone in our understanding of how
interventions that extend lifespan work at the molecular level.

Dysregulation of Autophagy
Aging is accompanied by a progressive functional decline in the
cellular protein quality control and organelle degradation
machineries. Autophagy is a central process in the clearance of
damaged cellular components, as well as in the mobilization and
recycling of cellular nutrients, therefore its malfunction directly
impairs organismal homeostasis (Leidal et al., 2018). Accordingly,
dysregulated autophagy results in the accumulation of protein
aggregates and damaged organelles, which is a characteristic of
many age-associated diseases such as Alzheimer’s (Leidal et al.,
2018; Barbosa et al., 2019). In fibroblasts, constitutive mTORC1
activation upon aging also disturbed autophagy, while rapamycin
treatment potently reversed this effect (Romero et al., 2016)
(Figure 4). Generally, autophagic function and the expression of
autophagy-related genes (ATGs), in particular, are downregulated
upon aging in many organisms, such as in C. elegans (Chang et al.,
2017), Drosophila (Simonsen et al., 2008), rodents (Donati et al.,
2001; Del Roso et al., 2003; Kaushik et al., 2012), and humans
(Lipinski et al., 2010). Consequently, approaches aiming to restore
autophagy are frequently investigated in the context of lifespan
extension studies. For instance, autophagy activation by
overexpression of a single autophagic protein, ATG5, was shown
to extend lifespan in mice (Pyo et al., 2013). Moreover, a Beclin1
mutant knock-in mouse model, in which basal autophagy is
enhanced, demonstrated increased lifespan and healthspan
(Fernandez et al., 2018). Similar approaches that aim to increase
autophagic levels, as a means to extend lifespan, were also employed
in other model organisms, including C. elegans (Melendez et al.,
2003; Kumsta et al., 2019) and Drosophila (Simonsen et al., 2008;
Aparicio et al., 2019; Bjedov et al., 2020). The fact that most of the
lifespan extending interventions that target mTORC1 were also
shown to influence autophagy, as observed in yeast, C. elegans,
and Drosophila studies (Jia and Levine, 2007; Hansen et al., 2008;
Alvers et al., 2009; Bjedov et al., 2010; Matecic et al., 2010),
underscores the importance of fine-tuning autophagy in the
aging process.

Lysosomal Dysregulation
Lysosomes are important cellular organelles that lie both
upstream and downstream of mTORC1—being a major site of
mTORC1 activation, and of autophagic degradation, respectively.
Additionally, mTORC1 controls both lysosomal activity and
biogenesis via the phosphorylation of the TFEB/TFE3
transcription factors: mTORC1 inhibition causes TFEB/TFE3
relocalization to the nucleus and induction of a transcriptional
program that promotes lysosomal biogenesis and autophagy. In
C. elegans, nuclear localization of the TFEB homolog, namely hlh-
30 (helix-loop-helix protein 30), is a core feature of many lifespan
extending interventions (Lapierre et al., 2013), and blocking
TFEB/hlh-30 nuclear export was shown to be sufficient for
lifespan extension (Silvestrini et al., 2018). Likewise, livers of
dietary-restricted mice show increased nuclear TFEB, suggesting
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that the beneficial effects of TFEB activation are conserved
through evolution (Lapierre et al., 2013). Further supporting a
link between TFEB function and healthy aging, Alzheimer’s and
ALS (amyotrophic lateral sclerosis) patients have an overall
decrease of nuclear TFEB (Wang et al., 2016).

Because lysosomal degradation is the last step in the
autophagic process, it is not surprising that lysosomal function
is also impaired in aging cells, as observed in the yeast vacuole
(Hughes and Gottschling, 2012) and in C. elegans lysosomes
(Folick et al., 2015; Sun et al., 2020). In yeast, changes in vacuolar
pH seemingly constitute an important factor for the decline in its
function, with elevated pH values observed upon aging (Hughes
and Gottschling, 2012). This increase influences the ability of
vacuoles to store AA, potentially resulting in a toxic accumulation
of cytosolic AA (Hughes and Gottschling, 2012). Accordingly, in
human leukocytes, the expression of LAMP2 (lysosome-
associated membrane protein 2), an important protein for
lysosomal function (Eskelinen et al., 2002) and
autophagosome-lysosome fusion (Saftig et al., 2008) also
decreases with age (Huang et al., 2012). Highlighting its role
in lifespan extension, improvement of lysosomal function is also a
common feature of many lifespan extending interventions (Sun
et al., 2020). For instance, methionine restriction in yeast
enhances autophagy at least in part via modulating vacuolar
pH (Ruckenstuhl et al., 2014). The identification of lysosomes as
signaling platforms, in conjunction with their role as the main
cellular recycling organelles, establishes them as a central point
for interventions targeting aging.

Our current understanding of the aging process positions
mTORC1 simultaneously as a gate-keeper of cellular
physiology and as the main driver of most age-associated
pathological alterations. Whether dysregulation of mTORC1
over aging is the trigger for the malfunction of key cellular
processes, such as translation, autophagy, and lysosomal
biogenesis, or vice versa is an important question that remains
to be elucidated.

INTERVENTIONS TARGETING MTORC1 TO
TACKLE AGING

Due to the central role of mTORC1 and the importance of
associated downstream functions in cellular and organismal
aging, genetic, nutritional, and pharmacological anti-aging
interventions commonly target the mTORC1 pathway, aiming
to reverse deregulated homeostatic processes.

Genetic Perturbations in mTORC1 Signaling
Components
Similar to the mTORC1 effectors described above, components of
this complex, as well as some of its upstream regulators, were also
shown to play an important role in the aging process (Figure 4).
Not unexpectedly, downregulation of the C. elegans mTOR
homolog, let-363 (Vellai et al., 2003; Hansen et al., 2007), or
the RAPTOR homolog, daf-15 (Jia et al., 2004; Robida-Stubbs
et al., 2012) robustly increase lifespan. Notably, human studies

suggested that the offspring of nonagenarians show reduced
RAPTOR expression in blood cells, which hints that having
less mTORC1 is beneficial for human lifespan (Passtoors et al.,
2013). Consistently, hypomorphic mTOR mice, that express
approximately a quarter of wild-type mTOR levels, live longer
and exhibit improved aging tissue biomarkers, compared to their
wild-type counterparts (Wu J. J. et al., 2013). Additionally, RNAi
of the essential TOR activator Rheb/rheb-1 also led to increased
lifespan in C. elegans (Robida-Stubbs et al., 2012). In line with
their role in AA sensing, the longevity effects that are achieved by
protein or AA restriction in C. elegans can also be recapitulated by
mutations or decreased expression of the RagA/RagC homologs,
namely raga-1/ragc-1 (Schreiber et al., 2010; Robida-Stubbs et al.,
2012). Similarly, the leucine sensor SESTRIN was shown to be
necessary for the dietary-restriction-induced lifespan extension in
Drosophila, while a constitutively active SESTRIN mutant, that
cannot bind leucine, downregulates TORC1 activity and is
sufficient to promote longevity even in fed flies (Lu J. et al.,
2020). The study by Lu et al. suggests that individual AA sensors
may be promising candidates for the development of compounds
that target specific branches of mTORC1 signaling. Finally,
perturbations in TSC, a shared component of the growth
factor and AA sensing machineries, were shown to modulate
aging inmodel organisms: flies overexpressing dTSC1 and dTSC2
live longer, due to decreased TORC1 activity (Kapahi et al., 2004);
and proper TSC function is essential for the beneficial effects of
protein restriction in mice (Harputlugil et al., 2014), further
supporting a key role for TSC in aging and the response to
nutrients.

Perturbations in the Insulin/IGF Signaling
Pathway
The first longevity-related phenotype was described in the late
1980’s in C. elegans: worms harboring mutations in the PI3K
homologous gene showed increased lifespan (Friedman and
Johnson, 1988). PI3K is a kinase activated upon insulin
binding to the IR (insulin receptor) or to IGF1R (insulin-like
growth factor 1 receptor). Establishing the insulin signaling
pathway (IIS) as a major determinant of aging, mutations in
daf-2 (the C. elegans IR/IGF1R homolog), or InR (the Drosophila
IR/IGF1R homolog) also extended lifespan (Kenyon et al., 1993;
Tatar et al., 2001). Moreover, heterozygous mice harboring only
one allele of the IGF1R gene also live longer (Holzenberger et al.,
2003). Remarkably, the effect of the IIS pathway seems to be
confirmed also in centenarian humans, where genetic alterations
in the IGF1R gene are associated with increased longevity (Suh
et al., 2008). Although part of the effects of the IIS pathway is
attributed to the regulation of the Akt/FOXO (Forkhead box
protein O) branch (Kenyon et al., 1993), many of the IIS-related
interventions impinge on mTORC1 to control its activity
(Figure 4), further establishing this complex as a central hub
in aging.

Rapamycin Treatment
Rapamycin is a naturally-derived macrolide compound that
demonstrates immunosuppressive, chemotherapeutic, and anti-
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aging effects in model organisms and in humans. Importantly,
rapamycin and its analogs are currently being used in the clinic
against various cancers and neurological disorders (Benjamin
et al., 2011; Li et al., 2014; Arriola Apelo and Lamming, 2016).
Rapamycin acts as a specific allosteric inhibitor of mTORC1, the
master regulator of cellular and organismal physiology.
Mechanistically, rapamycin functions via a family of proteins
called FKBPs (peptidyl-prolyl cis-trans isomerases), which bind
to mTOR and inhibit its activity in a rapamycin-dependent
manner. Consistent with mTORC1 inhibition being a potent
lifespan extension approach, rapamycin constitutes one of the
best-described anti-aging compounds (Figure 4). Rapamycin
treatment increases chronological lifespan in yeast (Powers
et al., 2006) and in Drosophila (Bjedov et al., 2010). Similarly,
mice treated with rapamycin starting at either 9 or 20 months of
age showed increased survival (Harrison et al., 2009),
demonstrating that pharmacological interventions are a
feasible approach to achieve lifespan extension in mammals,
and, most importantly, that such treatments could also be
initiated later in life. Several follow-up studies, using various
drug concentrations and time points, strengthened this notion
further (reviewed in Selvarani et al. (2020)). Because of the role of
rapamycin as an anti-cancer agent, and the involvement of
hyperactive mTORC1 in most cancer types, it was originally
assumed that its beneficial effects in aging are attributed largely to
its ability to prevent cancer. However, underscoring the
multifaceted role of mTORC1 inhibition in aging, a number of
studies showed that rapamycin treatment improves multiple
aspects of the aging phenotype, besides lowering cancer
incidence (Partridge et al., 2020).

In humans, susceptibility to respiratory tract infections (RTIs)
increases with age, most likely because of a decline in immune
function. Therefore, the fact that rapamycin can also function as
an immunosuppressant seemingly contradicts its role as an anti-
aging compound. Against this hypothesis, a landmark study
showed that rapamycin treatment actually improved the
immune response of elderly to vaccination against influenza
(Chen et al., 2009). Furthermore, a recent clinical trial that
tested the RTB101 mTOR inhibitor, alone or in combination
with the rapamycin analog everolimus, showed a significant
reduction in the incidence of RTIs in old individuals (Dzankic
and Partridge, 2021; Mannick et al., 2021). Despite rapamycin
being one of most promising anti-aging interventions, long-term
treatment has been associated with significant side effects, such as
hyperlipidemia, hypercholesterolemia, hypertriglyceridemia,
glucose intolerance and insulin resistance, thus restricting its
wide-spread use to tackle aging in humans (Arriola Apelo and
Lamming, 2016; Partridge et al., 2020). Of note, most of these side
effects were later attributed to the concomitant inhibition of
mTORC2, which occurs following chronic mTORC1 inhibition
and as a result of rapamycin binding to mTOR, thus affecting
mTORC2 formation (Lamming et al., 2012). Treatment regimens
that would prevent mTORC2 inhibition, or the use of different
rapamycin analogs have been proposed to circumvent these
undesired effects (Apelo et al., 2016). Whether rapamycin (or
rapalog) administration will prove to be a safe, mainstreamway to
fight age-related conditions in humans remains to be seen.

Dietary Restriction
Dietary restriction (DR) is defined as the reduction of the intake
of most constituents of a diet, with the exception of vitamins and
minerals, without malnutrition. DR has been shown to increase
lifespan and healthspan in rodents several decades ago (McCay
et al., 1935; Maeda et al., 1985), and is generally considered a
prominent evolutionarily-conserved anti-aging strategy, with
several studies demonstrating similar beneficial effects in
multiple model organisms (reviewed in Fontana et al. (2010),
Fontana and Partridge, (2015)), as well as in human healthspan
(Mercken et al., 2013). In yeast, C. elegans andDrosophila, DR did
not elicit a further increase in the lifespan extension achieved by
downregulation of TOR signaling, suggesting that both
perturbations act through the same pathway (Kapahi et al.,
2004; Kaeberlein et al., 2005; Hansen et al., 2007) (Figure 4).
Interestingly, the Rapamycin-induced lifespan extension was still
additive to that caused by DR in Drosophila, hinting that DR may
be employing additional mechanisms to mTORC1 inhibition to
exert its full effect (Bjedov et al., 2010). More recent studies
solidified the notion that pharmacological inhibition of mTORC1
by rapamycin does not equal the effect on mTORC1 caused by
DR (Unnikrishnan et al., 2020). A plausible explanation is that
rapamycin only partially inhibits phosphorylation of certain
downstream mTORC1 substrates, with some of the 4E-BP1
phosphorylation sites being largely unaffected (Kang et al.,
2013). Although the precise role that the 4E-BP1
phosphorylation code plays in its function is not fully
understood, the important role of 4E-BP1 in the translational
response downstream of mTORC1 (Morita et al., 2013; Hulea
et al., 2018), hints that this may be a key difference between the
two conditions.

Protein and Amino Acid Restriction
Importantly, DR extends lifespan due to the limitation of dietary
nutrients, rather than the limitation of calorie intake alone (Mair
et al., 2005), with certain diet components playing a stronger role
than others. As a rule of thumb, restriction of nutritional proteins
(protein restriction, PR), AA groups, or even individual AA, was
shown to be more important than restriction of sugars (Mair
et al., 2005; Lopez-Torres and Barja, 2008). This is in line with AA
being the most robust activator upstream of mTORC1 in cells
(Figure 4). Therefore, interventions aiming to restrict specific
macronutrients were proposed as a more targeted alternative
to DR.

Studies in yeast: Specific restriction of methionine is a potent
lifespan inducer in yeast (Wu Z. et al., 2013). This effect was
shown to depend on the v-ATPase (Ruckenstuhl et al., 2014),
which is coupled to yeast TOR activation (Saliba et al., 2018).
Removal of asparagine or glutamate from the culture media, or
inhibition of the yeast glutamine synthetase, also extended
chronological lifespan in yeast (Powers et al., 2006). Similarly,
further studies proposed that removal of threonine, valine, or
serine promotes lifespan extension, with threonine and valine
acting in a TOR-dependent manner (Mirisola et al., 2014).

Studies in Drosophila:Work aiming at understanding how DR
leads to healthspan and lifespan extension, revealed that PR alone
is sufficient to extend lifespan (Mair et al., 2005; Min and Tatar,
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2006). Remarkably, resupplementation of essential amino acids
(EAA) to dietary-restricted flies was sufficient to abrogate the
DR-induced lifespan extension, underscoring EAA as a major
determinant of the DR effect in Drosophila (Grandison et al.,
2009). In addition, maximum lifespan extension is obtained in
flies fed a high carbohydrate/low protein diet, further suggesting
that low nutritional protein is a key parameter (Bruce et al., 2013).
Similar to findings from yeast, methionine restriction also extends
lifespan in Drosophila (Lee et al., 2014). Accordingly, genetic
perturbations that decrease the levels of SAM (S-adenosyl
methionine), a methionine-derived metabolite, are sufficient to
elicit lifespan extension (Obata and Miura, 2015). Of note, in
mammalian cells, SAM was shown to signal methionine
availability to activate mTORC1 (Gu et al., 2017), hinting for
a potentially conserved mechanism in flies. Another important
group of AA are branched-chain amino acids (BCAA), consisting
of leucine, isoleucine, and valine. BCAA potently induce
mTORC1 activity and are hence considered of particular
relevance for aging. However, to date, the role of BCAA in
aging has been controversial (Juricic et al., 2020). A recent
report comparing the effect of BCAA deprivation to
simultaneous removal of threonine, histidine and lysine—three
EAA that have not been previously associated with lifespan
modulation—revealed similar effects between the two AA
groups in both TORC1 activity and lifespan extension (Juricic
et al., 2020). This study hinted that sufficient TORC1
downregulation upon starvation may be the determining factor
for lifespan extension, regardless of which the deprived AA are.

Studies in rodents: As observed in Drosophila, the nutrient
composition of a given diet is more influential than its caloric
content for determining the aging and metabolic phenotype also
in mouse studies (Solon-Biet et al., 2014). Several studies over the
years showed that PR is able to promote lifespan and healthspan
extension in mice (Pamplona and Barja, 2006), consolidating PR
as a promising anti-aging intervention. Notably, PR modulates
mTORC1 activity both in somatic tissues and in tumors, and
consequently reduces tumor growth (Lamming et al., 2015).
Methionine restriction, in particular, was shown since the 90’s
to be sufficient to induce lifespan extension in rats and mice, thus
representing an attractive approach that would require restriction
of a single EAA (Orentreich et al., 1993; Richie et al., 1994;
Zimmerman et al., 2003; Miller et al., 2005; Malloy et al., 2006;
Perrone et al., 2013). Accordingly, the DR-induced effect was also
blunted by resupplementing the diet with EAA in mice, with the
effect being particularly dependent on methionine (Yoshida et al.,
2018). Interestingly, circulating or liver methionine levels are
substantially lower in the long-lived naked mole rat, as compared
to mice, further supporting an important role for methionine in
aging (McIsaac et al., 2016). Finally, besides methionine,
tryptophan is another EAA that has been linked to lifespan
extension (Segall and Timiras, 1976; Segall et al., 1983).

The fact that BCAA are known to influence metabolic health
(Fontana et al., 2016; Cummings et al., 2018), implied a similar role in
aging. Indeed, lifelong BCAA restriction led to extended lifespan and
improved healthspan, specifically in male mice, thus revealing a sex-
specific role for BCAA in aging (Richardson et al., 2021). Moreover,
transcriptome analyses in skeletal muscles of BCAA-restricted and

fully-fed mice revealed downregulated mTOR signaling upon
starvation—linked to upregulation of its negative regulators
Sestrin2 and Castor1—indicated by reduced phosphorylation of
mTORC1 downstream targets (Richardson et al., 2021). Finally, a
recent report showed that restriction of dietary isoleucine and valine
were of particular importance for metabolic health (Yu et al., 2021),
confirming previous data that leucine starvation alone is not able to
elicit the beneficial effects of PR (Fontana et al., 2016). Because a low
isoleucine diet did not elicit effects in hepatic mTORC1 activity (Yu
et al., 2021), whether isoleucine and valine improve metabolic health
via distinct mechanisms, or by influencingmTORC1 activity in other
tissues, remains to be investigated.

Studies in humans: Aging research aims to propose nutritional
regimens that improve healthspan, diminish age-related maladies,
and—at the same time—can be easily implemented by humans. An
important milestone in this endeavor will be the identification of
specific macronutrients that are involved in these processes,
presumably via modulating mTORC1 activity in metabolically-
relevant tissues. In this regard, high nutritional protein
consumption is associated with insulin resistance, type 2 diabetes,
obesity, increased cancer incidence and mortality in humans (Lagiou
et al., 2007; Sluijs et al., 2010; Lagiou et al., 2012; Vergnaud et al.,
2013). Interestingly, however, this association is only found for
individuals younger than 65 years old (Levine et al., 2014). For
individuals over 65, higher protein consumption actually appears
to be beneficial and to be associated with reduced cancer risk and
mortality, thus pointing to higher protein uptake as a factor required
for homeostasis (Levine et al., 2014). Importantly, a small randomized
trial showed that a reduction in protein consumption is beneficial for
humans by improving metabolic health (Fontana et al., 2016). Future
investigations are necessary to conclusively show whether a specific
PR or AA-restricted diet can be translated in increased human
lifespan and healthspan, and to define the target groups that
would benefit the most from such interventions.

DISCUSSION

Research over the last several decades has consolidated a key role
for mTORC1 and the nutrient sensing pathway in aging and in
the development of age-related diseases. Accordingly, nutritional,
pharmacological or genetic interventions that influence
mTORC1 activity, as well as a number of cellular processes
that are regulated downstream of mTORC1, are also crucial
modulators of lifespan and healthspan. Although more recent
work has provided significant insights on how these perturbations
mechanistically influence aging, several key questions remain
unanswered.

Consistent with the fact that AA availability is a strong
activating signal for mTORC1, dietary restriction of certain
AA groups—or even of individual AA—is now a well-
established anti-aging intervention. However, different AA
have been shown to affect mTORC1 in different ways, at
variable degrees, and through distinct sensors and signaling
cascades (Jewell et al., 2015; Liu and Sabatini, 2020).
Comparative studies on the role of various AA in the
regulation of mTORC1, and in the modulation of metabolic
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health over aging are now starting to emerge (Yu et al., 2021), and
highlight the need for a more spherical investigation of these crucial
cellular processes. At the next level, the functional interplay between
AA and other macronutrients that are important for mTORC1
activity, such as sugars and lipids, will also need to be addressed.

Pharmacological or nutritional interventions that are
commonly used as anti-aging strategies are known to function
via decreasing mTORC1 activity, suggesting that it is the
hyperactivation of this complex upon aging that drives the
age-related functional decline. Interestingly, a study looking at
mTORC1 signaling in tissues of various mouse strains and rats
over aging reported tissue-, sex-, and substrate-specific effects,
with most tissues showing no obvious increase in mTORC1
signaling upon aging (Baar et al., 2016). Similarly, isoleucine
restriction improved metabolic health, without influencing
hepatic mTORC1 activity in mice (Yu et al., 2021).
Furthermore, in certain tissues, like muscles, mTORC1 activity
even declines with age, in part due to the development of anabolic
resistance—a major cause for muscle wasting in the elderly—with
mTORC1 requiring higher AA amounts to maintain proper
cellular metabolic activities (Dardevet et al., 2012).
Accordingly, a growing body of evidence shows that increased
AA uptake in older individuals may be beneficial for certain
aging-related parameters (Levine et al., 2014; Edwards et al.,
2015). Further complicating the potentially causal role of
mTORC1 in age-related conditions, Rapamycin and DR, two
interventions that elicit potent anti-aging effects and are known
to limit mTORC1 activity, seem to drive distinct responses, and to
control partially non-overlapping processes (summarized in
(Unnikrishnan et al., 2020)).

Summarizing, although the nutrient sensing pathways
upstream of mTORC1 have been the focus of intense
investigation over the last 10–15 years, how AA regulate

mTORC1 in vivo is poorly understood. By increasing our
knowledge on how nutrients signal to regulate mTORC1 in
the context of cellular and organismal physiology and aging,
we expect that novel, more targeted ways will be discovered that
allow us tomodulate these key processes in the right organs, at the
right time, and to the right extent. Ultimately, this research will
come up with suggestions about how our nutritional habits
should be modified, and, more importantly, what exactly these
pharmacological interventions should be targeting.
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