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Abstract

Background: Nosocomial infections caused by the bacterial pathogen Staphylococcus aureus can lead to serious
complications due to the varying presence of secreted toxins. Comparative studies of genomic information and
production rates are needed to assess the pathogenic potential of isolated strains. Genotypic and phenotypic profiling
of clinical and colonising isolates of S. aureus was used to characterise the release of exotoxins. Blood isolates were
compared with colonisation strains to determine similarities and differences of single strains and clusters.

Results: Fifty-one fresh isolates obtained from colonised individuals (n = 29) and S. aureus bacteremia (SAB) patients
(n=22) were investigated. The prevalence of genes encoding for three cytolysins (alpha/beta/gamma toxin)
and twenty-four superantigens (SEA-SE/IX) was determined. Isolates exhibited eighteen distinct combinations
of superantigens. Sequence analysis identified mutated open reading frames in hla in 13.7 % of all strains,

in selw (92.2 %) and in selx (15.7 %). All corrupted genes were associated with specific clonal complexes. Functional
assessment of alpha toxin activity by a rabbit erythrocyte lysis assay revealed that supernatants lacking alpha toxin still
displayed hemolysis. This was due to the presence of gamma toxin, as proven by inhibition experiments using antisera
raised against the respective recombinant proteins. Alpha toxin, SEC, and TSST1 production was quantified by enzyme-
linked immunosorbent assays on supernatants of all hig, sec, and tst positive isolates. Blood isolates and colonising
strains showed comparable amounts of secreted proteins within a wide range. Agr types | to IV were identified, but
did not allow a prediction of high or low production rates. In contrast, alpha toxin production rates between
distinct clonal complexes clearly differed. Spa typing was performed and revealed thirty-two unique spa gene
patterns and eight small clusters comprising nineteen isolates. Recognised spa-typing clusters displayed highly
similar production rates.

Conclusion: Production rates of the three most prevalent exotoxins varied within both groups of blood isolates and
colonising strains. By comparing genotypes and secretion, we found that identical complex gene patterns did not
allow predictions of toxin production and function. However, identification of spa typing clusters was suitable to
predict similar quantities of released exotoxins.
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Background

The importance of Staphylococcus aureus as a human
pathogen continued to rise in the first decade of this cen-
tury [1]. Staphylococcal infections can lead to various,
often devastating diseases, such as skin abscesses, osteo-
myelitis, endocarditis, necrotising pneumonia, sepsis and
the toxic shock syndrome (TSS) [2]. Despite an increase of
infections due to community-acquired methicillin-resistant
S. aureus (CA-MRSA) [3], methicillin-sensitive strains
(MSSA) still cause the majority of S. aureus infections in
Western and Northern parts of the European Union [4]. In
a long-term study on the epidemiology of TSS in Minne-
sota (US), MRSA caused only 7 % of all TSS cases [5].

Discussion regarding which virulence factors favor the
spread of certain clones in the community is ongoing.
Secreted and membrane-associated proteins contribute
to virulence of S. aureus [6—8]. The majority of virulence
factors are encoded in the core genome, which is esti-
mated to include approximately 78 % of the whole gen-
ome [9]. However, a prominent group of virulence
determinants is sited on vectors such as pathogenic
islands (SaPIs) or prophages [10, 11]. Different combina-
tions of these factors might contribute to the broad
range of invasion sites and infection outcomes.

The challenging group of exotoxin virulence factors
comprises cytolytic toxins and mitogenic superantigen
toxins. Members of both have been shown to contribute
significantly to the lethal outcome of S. aureus infections
[12]. The most prominent cytolytic toxin genes encode
for pore-forming proteins (alpha toxin and gamma
toxin) and are part of the core genome [13]. Alpha toxin
is thought to be expressed by all strains, although high
and low producers have been described [14]. Similarly,
the gamma toxin locus was found in 99 % of all strains
[15]. The large group of superantigens (also termed as
staphylococcal enterotoxins, SE) is variously spread
among clinical isolates [16]. Altogether, twenty-four super-
antigen genes have been discovered so far. With two
exceptions (selw and selx), superantigens are found on
pathogenic islands and prophages. Clinical severity such
as sepsis with or without septic shock has been linked to
the genomic setup of isolates [17].

Genotypes of clinical strains have been investigated ex-
tensively worldwide [18—-22]. In contrast, exploration of
gene expression and toxin production of clinical isolates
is scarce. Transcriptional profiling of superantigens was
done in nasal isolates and an outbreak of food poisoning
[23, 24]. Protein production of superantigens was ana-
lysed in isolates from patients with atopic dermatitis and
diabetic foot ulcers [16, 25]. In addition, specific produc-
tion of SEB, SE/K and SEH was quantified in clinical
isolates [18, 26, 27]. Protein production of alpha toxin
was determined in CA-MRSA strains and in isolates
from hemodialysis patients [28—30].
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Thorough analysis of the production of virulence factors
from obtained clinical isolates could help to recognise
potencies of bacteria to lyse host cells or hyperstimulate
the immune system. In this study, we performed genomic
analyses, as well as quantification and functional analyses
of secreted toxins from consecutive isolates collected in
large hospitals in Vienna and Linz, Austria. Typing of
seven house-keeping genes, the spa gene and the agr locus
was done to link production rates to possible clusters.

Methods

Bacterial strains and growth

Bacterial strains were obtained from the general hospital
in Vienna and the general hospital in Linz, Austria. As
clinical isolates were anonymous and data of the patients
were not accessible, the study was exempt from ethical
approval, which was testified by the Ethics Committee of
the Immunology Outpatient Clinic (www.itk.at/news)
after detailed evaluation of the study protocol. Isolates
were identified as S. aureus by standard laboratory pro-
tocols, grown on tryptic soy broth agar plates. Isolates
were not subcultured and thereafter stored at —80 °C for
further exploration. Bacteremia isolates were designated
with the letter B. All strains were identified as MSSA,
and genotyped for twenty-four superantigen (-like)
genes, four cytolysin genes, the agr groups I-1V, and the
spa gene. All primer pairs are listed in Additional file 1:
Table S1. None of the primer pairs reacted with our nega-
tive control strain Staphylococcus epidermidis ATCC
49461. Genomic DNA templates were purified from over-
night cultures according to manufacturer’s protocols using
the Wizard Purification Kit (Promega). For cell wall disrup-
tion cells were treated with lysostaphin and lysozyme
(Sigma). DNA was amplified in a T3 thermocycler (Biome-
tra) by 28 cycles of 95 °C (denaturation) for 30 s, specific
annealing temperature for 45 s, and 68 °C (elongation) for
60 s, using the Platinum Taq PCRx DNA polymerase (Invi-
trogen). The reaction was initiated by 10 min incubation at
95 °C, and terminated by 10 min incubation at 68 °C.
Primer sequences and PCR annealing temperatures are
shown in Additional file 1: Table S1. Absence of the gene
selv was verified through analysis of the genes sei and selm.
Distribution statistics were done using the Pearson’s chi-
squared test (y?).

Isolated genomic DNA of all strains was sequenced
using the Illumina MiSeq sequencer, the Nextera XT
library kit, and the MiSeq reagent kit as instructed by
the manufacturer (Illumina). Upon checking the average
size of amplicons using the BioAnalyzer (Agilent), and
measuring the concentration using the QuBit system (Life
technologies), four genomic libraries were combined for
sequencing. Reads were mapped to S. aureus gene se-
quences extracted from GenBank (accession numbers: sea
NC_003923.1, seb NC_002951.2, sec KF386012.1, sed
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AF053140.1, see M21319.1, tst AB678405.1, seg NC_
009782.1, seh NC_002953.3, sei NC_009782.1, selj AF05
3140.1, selk NC_007793.1, sell NC_009782.1, selm NC_0
02745.2, seln EF531605.1, selo CP002388.1, selp NC_00
2745.2, selg NC_017347.1, selr AB330135.1, sels AB33
0135.1, selt AB330135.1, selu AY205307.1, selu2 EF03
0428, selv EF030427, selw CP000046, selx CP007447.1, hla
BX571857.1, higl S65052.1, hig2 S65052.1, agr type 1 AF2
10055.1, agr type II AF001782.1, agr type I1II AF001783,
agr type IV AF288215.1) using the alignment program
CLC (CLCbio, Qiagen). All isolates were sequenced with a
minimum coverage of 20-fold. In order to analyse repeat
patterns in spa, de novo assembly of reads was done using
CLC [31]. Blastn of contigs against spa (NC002952.2) was
performed, and identified gene variants were assigned
using the SPATYPEMAPPER software (download at
http://www.clondiag.com/fileadmin/Media/Downloads/SP
ATypeMapper_0_6.zip). All unknown repeat patterns
were re-sequenced (Sanger).

Multilocus sequence typing (MLST) was performed as
described in [32]. The seven included genes are arcC, aroE,
glpF, gmk, pta, tpi, and ypiL. Loci information and primer
sequences are available on the MLST website, which was
also used to analyse all alleles (http://www.mlst.net). New
spa type and new MLST type were uploaded to the spa
website (http://www.spaserver.ridom.de) and MLST web-
site. Newly identified selx and /la mutations have been
deposited at GenBank (accession numbers KT943499 and
KU236387).

Protein analysis

For production of superantigens and hemolysins, strains
were cultured to stationary phase (16 h) in 25 ml of
tryptic soy broth at 37 °C with shaking at 170 revolu-
tions per minute (rpm). Optical densities (ODgq) of cell
cultures were normalised at the beginning of growth
(0.02) and compared. In order to receive cell-free super-
natants, cultures were centrifuged at 3220 g for five
minutes, followed by a sterile filtration of supernatants
(PALL Acrodisc 25 mm Syringe Filters with 0.2 pm Posi-
dyne Membrane) as described before [33]. Filtrates were
tested for bacterial growth on agar plates. Samples were
stored at —20 °C.

Upon addition of sample buffer, supernatants were
boiled for three minutes. 20 pl of each sample were re-
solved on 15 % SDS-polyacrylamide gels. For Western
Blotting, proteins were transferred onto 0.2 um nitrocel-
lulose membranes (GE Healthcare) in a cooled wet blot
apparatus (Biorad). Membranes were blocked in a 2 %
BSA 1X PBS 0.1 % Tween 20 solution overnight at 4 °C.
Antisera used as primary antibodies were employed in a
1:40,000 dilution, secondary antibodies were diluted
1:50,000. Development procedure was performed ac-
cording to manufacturer’s instructions (GE Healthcare).
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Expression and purification of proteins

Recombinant wild type alpha toxin, gamma toxin, SEC,
and TSST1 proteins were produced in our lab. Escheri-
chia coli strains (One Shot, Invitrogen) transformed with
a pET expression vector (Novagen) carrying hemolysin
or superantigen genes, were grown at 28 °C and protein
expression was induced by arabinose for 24 h. Pellets
from alpha toxin and TSST1 protein expressing bacteria
were resuspended in citrate buffer (pH 5), sonicated and
centrifuged at 47,000 g. Pellets containing one of the two
protein components of gamma toxin, HLG1 or HLG2,
were resuspended in phosphate buffer (pH 6.5). The pellet
containing the superantigen SEC was resuspended in
citrate buffer (pH 5.5). Supernatants were loaded on SP-
Sepharose FF columns (GE Healthcare) and proteins were
eluted with a NaCl gradient. The peak fraction was dia-
lysed with Tris (pH 8) and applied to Q-Sepharose FF col-
umns (GE Healthcare). The peak fraction was dialysed
against 1X PBS and samples were stored at —20 °C.

For the production of antisera, New Zealand White rab-
bits were purchased from Charles River Laboratories. Ani-
mals were kept in standard facilities with free access to
water and food (Ssniff), according to the guidelines of the
Austrian Ministry for Science and Research. Animal exper-
iments had been approved and controlled by the Veterin-
ary Department of the City of Vienna. Antisera were
obtained from rabbits after four rounds of immunisation.
Titers were determined through an indirect enzyme-linked
immunosorbent assay (ELISA). Flat-bottomed-96-well
plates were coated with 0.5 pg per well of wild type recom-
binant alpha toxin or SEC in carbonate buffer pH 9.6 and
further prepared as described in the ELISA section. Plates
were incubated with 50 pl per well of samples for 1 h at
37 °C. Horseradish peroxidase-conjugated goat anti-rabbit
IgG-HRP antibodies (GE Healthcare) were added in a
1:20,000 dilution. Titers of antisera were determined and
expressed as the inverse of the highest dilution (done in
twofold dilution steps) for valid detection signals. Anti-
serum raised against wild type alpha toxin had an
ELISA titer of 94,445, wild type SEC antiserum con-
tained a binding titer of 112,382. Antiserum raised
against wild type TSST1 had a titer of 46,330 and
was described previously by Stich et al. [34]. Poly-
clonal IgGs were precipitated (37 % ammonium sul-
fate) from each rabbit antiserum, reconstituted to the
initial volume, and stored at —20 °C for further use.

Hemolysis assay

The assay was adapted from [35, 36]. In detail, a 2 ml
sample of blood from rabbits was washed three times
with 40 ml of 1X PBS (610 g, 10 min). Washed rabbit
erythrocytes were resuspended in 12 ml 1X PBS and
verified to have 10% cells per ml using Neubauer count-
ing chambers. The amount of erythrocytes was adjusted
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to give an optical density of 1.5 at 570 nm (Tecan micro-
plate reader) when added to Saponin (Sigma), which was
used as a positive control. Staphylococcal supernatants
were used in a final dilution of 1:50. Antisera were
employed in 1:50, 1:200, and 1:400 dilutions. Samples con-
sisting of supernatants and antisera were incubated in
round-bottomed-96-well plates for 1 h at 37 °C. Upon
addition of rabbit erythrocytes, samples were incubated at
37 °C for 30 min and afterwards spun down at 610 g for
3 min. 150 pl of supernatant were transferred to a new
plate, and the optical density of samples was measured at
570 nm thereafter.

Enzyme-linked immunosorbent assay

For sandwich enzyme-linked immunosorbent assays
(ELISA) monoclonal antibodies were used as capture anti-
bodies, polyclonal antibodies from rabbits were used for
detection. In detail, flat-bottomed-96-well plates were
coated with 50 pl per well of commercially available
monoclonal anti-alpha toxin (MAb6D3, BBI Solutions),
anti-TSST1 (MADb5T, BioVeris) or anti-SEC (MAb1C3,
BioVeris) antibodies in a dilution of 1:3000 (alpha toxin),
1:1000 (TSST1), or 1:2000 (SEC) in carbonate buffer
pH 9.6 and stored at 4 °C. After 16 h of incubation, the
plates were washed four times with 1X PBS pH 7.2 con-
taining 0.1 % (v/v) Tween-20. Next, wells were blocked
with 200 pl per well using 1X PBS containing 2 % (w/v)
BSA and 0.1 % (v/v) Tween-20, and plates were incubated
for 1 h at room temperature with gentle agitation. Plates
were then stored at -20 °C.

Standards, samples (supernatants) and controls were
diluted in blocking buffer and plates were incubated
with 100 pl per well at room temperature for 90 min
with 150 revolutions per minute. The plates were then
washed four times and 100 pl per well of polyclonal IgG
preparations from rabbit antisera in a dilution of
1:15,000 (alpha toxin) or 1:7500 (TSST1, SEC) in block-
ing buffer were added. After incubation for 90 min at
room temperature, plates were again washed three times.
Goat anti-rabbit IgG-HRP antibodies (GE Healthcare)
were added in a 1:5000 dilution (100 ul per well) for 1 h
at room temperature and continuous movement (150
revolutions per minute). An o-phenylendiamine pastille
(Sigma) was suspended in substrate buffer. H,O, was
added to catalyse the reaction, which was kept in the
dark at room temperature. To stop this colorimetric
reaction, 100 pl of a 1 % (v/v) sulfuric acid solution were
added per well. The plates were scanned for absorbance
at 492 nm wavelength (Tecan micro-plate reader).

Results

Analysis of toxins genes

In this study, the distribution and expression of genes
encoding superantigens and hemolysins was explored in
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51 fresh clinical and colonisation isolates. 22 strains
were derived from patients with bacteremia, 29 isolates
were collected from the nasal cavity of healthy individ-
uals. The prevalence of four cytolysin genes and 24
superantigen genes was determined in all strains by
singleplex-PCR amplification and whole genome sequen-
cing (Additional file 2: Table S2).

Since both hemolysins, alpha toxin and gamma toxin
belong to the core genome, we detected these genes
(hla, higl, hig2) in all strains. Despite the fact, that /la
was found in all strains by PCR, sequence analysis re-
vealed, that ten isolates (19.6 %) had a known nonsense
mutation leading to a shortened alpha toxin protein
[37]. The majority of isolates (80.4 %) showed a cor-
rupted beta toxin gene hlb, based on the presence of the
phage ¢Sa3. In contrast, gamma toxin genes hlgl and
hlg2 were present and in frame in all isolates.

The genomic distribution of all known superantigen and
superantigen-like genes was further analysed (Additional
file 2: Table S2). The latest discovered superantigen-like
genes selw and selx were found in 51 isolates (100 %) and
39 isolates (76.5 %), respectively. Importantly, sequence
analysis revealed the lack of a start codon in selw in the
vast majority of isolates and only four strains displayed a
functional open reading frame of selw (7.8 %). In addition,
a yet unknown one base pair deletion has been detected
in selx right after the start at position twelve in eight iso-
lates (15.7 %). The resulting frameshift led to a stop codon
in selx at codon position eleven. This means that 20 out of
51 isolates (39.2 %) did not express SEIX due to the cor-
ruption or absence of the gene. Further, two strains had a
shorter version of selu, which has already been described
as selu2 [38].

Genotypic analysis did not reveal a correlation be-
tween gene profiles and the source of isolates in this
study. Two superantigen encoding genes (st, selp) were
more often found in blood isolates (Fig. 1). However, the
difference between blood isolates and colonising isolates
was not statistically significant (Table 1). Pseudogene
versions of selw were excluded from this analysis. Fur-
ther, comparison of isolates having no superantigen or
superantigen-like genes at all (with the exception of selw
and selx), resulted in an even distribution (n, =6, n.=5;
P =0.44) as well.

To assess clonality of strains, spa typing was per-
formed with all 51 isolates (Table 2). We identified 39
types, among which 30 types were unique (58.8 %). 21
strains were identified to belong to one of nine clusters.
The largest cluster comprised four strains (spa type
t084), which belonged to the group of isolates without
prominent superantigens. One cluster contained three
isolates (t091), showing an identical superantigen and
cytolysin gene pattern. Six clusters were found to con-
tain only two isolates each (displaying the repeat
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patterns t056, t015, t021, t342, t246, t433). These pairs
had identical superantigen and cytolysin gene patterns,
however, in one cluster (t056), #lb was found to be cor-
rupted in only one isolate.

Assessment of agr types revealed the presence of all
four types in this study (Table 2). Type I was most
prevalent (n =23, 45.1 %), whereas type II and III were
found in ten (19.6 %) and thirteen (25.5 %) isolates, re-
spectively. Type IV was present in five strains (9.8 %).
There was no significant correlation between agr types
and isolation site. Strains within each spa type cluster
displayed identical agr types. Among the groups of tst-
positive and sec-positive strains, only one agr type was
predominant: type I was found in all sec-positive isolates,
type III was present in seven out of eight tst-positive
strains. All other groups defined through superantigen
patterns displayed an even distribution of agr types.

Further, MLST was performed to investigate the dis-
persion of clonal complexes among blood samples and
nasal isolates (Table 3). In addition, identified spa types
and agr loci were linked to present clonal complexes,
and distribution of superantigen and superantigen-like
genes was assessed. In total, fourteen clonal complexes
were found, with CC30, which comprised twelve isolates,
being the most prevalent one. Interestingly, identified
valid start codons of selw were restricted to CC5,
whereas the nonsense mutation of selx was linked to
CC45. MLST of the strain 767 N-10, which displayed
spa type t008, revealed a new single locus variant (SLV)
of sequence type 8 (ST8), with a different allele of aroE.
In far the most cases, identical spa types belong to the
same clonal complex. Here, we identified a peculiar de-
viation, t008 was found in ST8 (B5990) and the newly

discovered variant ST3275 (767 N-10). Both STs also dif-
fered in their superantigen gene patterns.

Protein expression of bacterial toxins

Concentrations of alpha toxin, SEC, and TSST1, were
determined by ELISA, using commercially available
monoclonal antibodies (see Table 2). First, we assessed
amounts of alpha toxin in all supernatants grown to sta-
tionary phase and compared concentrations of this toxin
between distinct groups. Due to the fact that hla was
present in all strains, isolates were grouped a priori
based on the distribution of superantigens (Table 2, first
column). Among the panel of strains bearing no promin-
ent superantigen gene, all supernatants displayed meas-
urable amounts of alpha toxin. Interestingly, we found
an up to 500-fold difference in alpha toxin concentration
between supernatants. Two strains produced signifi-
cantly higher amounts: Rv53944 (25.4 pg/ml) and B7715
(11.45 pg/ml). 0.05 pg/ml was the lowest amount of
alpha toxin found in the supernatants of two blood iso-
lates (B5990 and B50188).

Within the group of sec-positive strains, the divergence
between secreted alpha toxin amounts was less pro-
nounced. However, the supernatant with the highest
amount of alpha toxin produced, belonged to this group:
B958 with 36.1 pg/ml. Among the group of tst-positive
strains, we found seven strains bearing the nonsense
mutation in kla (7/8, 87.5 %). In these strains, concen-
tration of alpha toxin was below the detection limit of
0.01 pg/ml. The only isolate with a functional alpha
toxin among these strains (B2284, sole agr type II)
showed an amount of 0.99 pg/ml. Characterisation of
strains from the two remaining groups of egc strains and
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Table 1 Prevalence of superantigen and superantigen-like open
reading frames in blood and colonising isolates

All (n=51)*  Blood (n=22)"  Colonising (n=29)" P-value®

sea 8 (15.7) 2(9.1) 6 (20.7) 0.26
seb 1019 0(0) 134 nd
sec 6(11.8) 3(13.6) 3(103) 0.72
sed 1019 0(0) 1(34) nd
see - - -

tst 8 (15.7) 5(27) 3(103) 0.23
seg 31 (60.8) 12 (54.5) 19 (65.5) 043
seh 3(59 1(4.5) 2 (6.9 0.72
sei 33 (64.7) 12 (54.5) 21 (724) 0.19
selj 1019 0(0) 1(34) nd
selk - - -

sell 6(11.8) 3(13.6) 3(103) 0.72
selm 33 (64.7) 12 (54.5) 21 (724) 0.19
seln 33 (64.7) 12 (54.5) 21 (724) 0.19
selo 33 (64.7) 12 (54.5) 21 (724) 0.19
selp 6(11.8) 4(182) 2 (69) 0.22
selg - - -

selr 109 0 (0) 1(34) nd
sels - - -

selt - - -

selu” 21 (41.2) 8 (36.4) 13 (44.8) 0.54
selv - - -

selw? 4 (78) 29 2(69) 077
selx 39 (76.4) 17.(77.3) 22 (75.8) 0.91

?No. of PCR-amplified and sequenced genes, percentages are in parentheses
PPearson’s chi-squared test (x*) performed for distribution of in-frame

genes (n>1)

selu and selu2 combined as selu

9selw with identified ATG as start codon

variant strains revealed similar, wide-ranging alpha toxin
concentrations.

Thereafter, we determined the amount of secreted SEC
and TSST1 (Table 2). Analysis of the respective protein
production revealed a broad range of production rates.
All six strains bearing sec were able to produce signifi-
cant amounts of SEC. However, there was a ten-fold dif-
ference between the highest (19.71 pg/ml) and lowest
(1.95 pg/ml) amount measured. We also found varying
TSST1 concentrations among tst-positive strains. Six out
of eight samples showed one-digit pug values. Two strains
stepped out of the line: the nasal isolates Rv52959 and
Rv54054, which were both identified to carry the intact
tst gene, produced only minimal amounts of TSST1
(0.06 pg/ml and 0.01 pg/ml, respectively).

Comparison of production rates and agr types did not
unravel the broad range of concentrations of superanti-
gens or alpha toxin. Of note, among the small group of
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agr type IV strains, all produced alpha toxin in pg
ranges. All isolates bearing the /#/a mutation were found
to have agr type IIL. In contrast, comparison of alpha
toxin production rates revealed noteworthy differences
between clonal complexes (see Table 3, last column). We
found clonal complexes with rates around 1 pg per ml
(CC5, ST7), clonal complexes displaying much higher
average amounts (CC8, CC22, CC45), and clonal com-
plexes showing much lower amounts (CC15, and CC30).
However, sample sizes between clonal complexes dif-
fered considerably. Strikingly, spa typing of isolates re-
vealed a high similarity of production rates among
identical spa types and exotoxin gene patterns (Table 4).
These similarities within spa type clusters were found
throughout all clonal complexes. The two members of
the sec-positive cluster produced almost identical quan-
tities of SEC, the two pairs of tst-positive isolates showed
highly similar amounts of TSST1 in their supernatants.
In addition, within the eight spa typing clusters, quanti-
fication of alpha toxin revealed related amounts.

Functional assessment of hemolysis

Alpha toxin quantification confirmed the expression of
hla in the majority of strains. Assessment of functional
activity of alpha toxin in all supernatants to lyse freshly
prepared rabbit erythrocytes revealed hemolytic activities
in corresponding strains (data not shown). However, sur-
prisingly, all ¢st-positive isolates having the /la nonsense
mutation displayed hemolysis. Therefore, based on vary-
ing alpha toxin production rates, we chose to compare
hemolysis of strains within three major, homogeneous
groups of isolates defined through distinct superantigen
and cytolytic gene patterns. Strains identified as tst-posi-
tive showed no alpha toxin production (with one excep-
tion), sec-positive isolates displayed high amounts of
alpha toxin in their supernatants, whereas strains with-
out prominent superantigens showed a very broad vari-
ation of production (see Table 2). Strains were divided
into three sets i) having no superantigens (n=11), ii)
having sec (n=6), and iii) having tst (n=38) (Fig. 2a).
Within the first group, all supernatants displayed
hemolysis. The two blood isolates that showed the lowest
alpha toxin production (B5990, B50188), also showed the
weakest hemolysis. All supernatants of the sec-positive
strains showed hemolytic activity as well. Surprisingly, in
the group of tst-positive isolates, five supernatants dis-
played hemolysis despite the absence of full-length alpha
toxin. Only two tst-positive colonising samples (Rv52959,
Rv54054) showed no hemolysis.

We explored the reason for the hemolytic activity of
all tst-positive strains lacking functional /la in more
detail. Beside alpha toxin, pore-forming gamma toxin
lyses blood cells as well. To assess the putative pres-
ence of gamma toxin in the fst-positive samples, we
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Table 2 Results for testing the presence of superantigens, cytolysins and the measurement of protein amounts in hospital-derived isolates

Isolates Typing Superantigens Cytolysins a toxin SEC TSST
ISP spa agr [ug/ml]

no superantigens® Rv53944 c 1377 Y2 selw”, selx hia, hib, hig1, hig2 254 - -
B7715 b 1024 | selw”, selx hla, hlb, higi1, hig2 1145 - -
B3276 b 1056 I selw®, selx hla, hib, hig1, hig2 6.12 - -
B3478 b 1056 | selw”, selx hia, hig1, hig2 54 - -
Rv54213 C 1648 | selw”, selx hla, hlb, higi1, hig2 483 - -
Rv52743 c 1084 Il selw®, selx hla, hig1, hig2 137 - -
Rv54192 C 1084 Il selw, selx hla, hlgl, hlg2 043 - -
771 N-10 C 1084 Il selw”, selx hla, higl, hlg2 0.15 - -
B7761 b 1084 Il selw®, selx hla, hig1, hig2 0.10 - -
B5990 b 1008 | selw”, selx hia, hig1, hig2 0.05 - -
B50188 b 12453 Il selw”, selx hla, higl, hig2 0.05 - -

sec B958 b t790 I sec, sell, egc, selw”, selx hia, hig1, hig2 36.13 19.71 -
Rv52832 C 1583 | sec, sell, egc, seln”, selx hla, higl, hig2 744 577 -
Rv51398 c 1230 [ sec, sell, egc? selw, sel’  hla, higl, hig2 6.05 112 -
876 N-10 c 1333 [ sec, sell, egc® selwf, sel’  hlg, higl, hig2 272 195 -
B1721 b t015 | sec, sell, egcd, seln”, selx’ hla, higl1, hig2 275 6.93 -
B3427 b t015 | sec, sell, egcd, selw?, selx’ hla, higl, hig2 1.75 579 -

tst B2284 b t067 Il tst, selp, egc® selw, selx hla, higl, hig2 0.99 - 283
B1848 b 1021 Il tst, egc, selws, selx hia?, hib, hig1, hlg2 <0.01 - 3.71
B1793 b 1021 Il tst, ege, selw”, selx hia?, hib, hig1, hig2 <0.01 - 324
840 N-10 C 342 11l tst, sea, egc, selw’, selx hia®, higl, hig2 <001 - 05
B34571 b 1342 Il tst, sea, egc, selw’, selx hia®, higl, hig2 <0.01 - 0.85
B11019 b 115407°¢ Il tst, seh, egc, selw® hia®, hig1, hig2 <0.01 - 266
Rv52959 C 1012 11l tst, sea, egc, selw’, selx hia®, higl, hig2 <001 - 0.06
Rv54054 C 3805 Il tst, seh, egc, selw” hia?, hib, hig1, hlg2 <0.01 - 0.01

egc Rv53955 C 1246 IV egc, selw”, selx hla, higl, hlg2 6.58 - -
Rv54216 C 1246 I\ eqgc, selw”, selx hla, higl, hig2 2.88 - -
784 N-10 c 1065 [ egc® selw®, sel’ hia, hig1, hlg2 826 - -
Rv51334 C 113078 | egcd, selw”, selx hla, higl1, hig2 11.64 - -
Rv51410 C t617 Il egc, seln” hla%, higl, hig2 <001 - -
Rv51412 C 11980 Il egc, selw” hlas, higl, hig2 <0.01 - -
Rv52825! c 1005 [ egc® selw®, selx hla", higi, hig2 0.02 - -
Rv52825lI c 350 [ egc”, selw®, selx’ hla, hig1, hlg2 399 - -
B7709 b 13232 | ege, seln”, selx hia, hig1, hlg2 1.85 - -
B3186 b 1553 [ egc, selw, sel’ hia, hig1, hlg2 455 - -
Rv54035 C 1284 Y ege, selw”, selx hla, hib, higl1, hlg2 287 - -
B16586 b 14401 Il ege, selw” hia®, higl, hig2 <0.01 - -
B1455 b 1071 I egc?, selw, selx hia, hig1, hlg2 101 - -
803 N-10 C 11441 [\ egc, selw”, selx hla, hib, hig1, hig2 2823 - -

diverse Rv54209 C 1548 Il egc"/ selp, selw, selx hla, hlb, hig1, hig2 0.29 - -
869 N-10 C 1002 Il egcd, selp, selw, selx hla, higl, hig2 2.01 - -
B69108 b t091 I selp, selw®, selx hla, higl, hig2 1.73 - -
B24743 b 1091 | selp, selw”, selx hla, higl, hig2 0.69 - -
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Table 2 Results for testing the presence of superantigens, cytolysins and the measurement of protein amounts in hospital-derived isolates

(Continued)
B3597 b t091 | selp, selw”, selx hia, hig1, hig2 1.52 - -
Rv54009 C 433 Il sea, egc, selw”, selx hla, higl, hig2 1.58 - -
Rv54010 C 433 Il sea, egc, selw”, selx hla, higl, hig2 145 - -
Rv52745 C 13802 | seq, selw”, selx hla, higl, hig2 244 - -
B3155 b 13308 | seq, selw”, selx hla, higl, hlg2 216 - -
767 N-10 C 1008 | seq, selws, selx hla, higl, hig2 3.80 - -
Rv51379 C 6873 Il seb, seh, egc, selw”, selx hla, higl, hig2 031 - -
638 N-10 C 1878 Il sed, sej, selr, selw”, selx hla, higl, hlg2 7.34 - -

Zexcept selw and selx

Blsolation Site including (b) blood isolates and (c) colonising strains
‘new, unique repeat pattern 04-54-31-12-16-34-16-12-25

%no selu

¢due to the absence of the atg start codon designated as pseudogene
fframeshift nonsense mutation in selx (111)

9nonsense mutation in hla (Q113)

Pframeshift nonsense mutation in hla (M317) plus a different C-terminus E315K E316K

performed western blotting with all zs¢-positive strains for
HLG1, one essential monomer of gamma toxin (Fig. 2b).
Despite a high background level due to the Fc binding
capacity of certain S. aureus supernatants, five isolates
which had displayed hemolysis before, were positive for
HLG1. The two colonising isolates (Rv52959 and
Rv54054), which did not perform any hemolysis at all, did

not show HLG1 protein. Thereafter, we determined activ-
ity of recombinant wild type alpha toxin and recombinant
wild type gamma toxin (Fig. 2a right panel). We were able
to detect hemolysis at toxin concentrations as low as
10 ng per well.

Then we selectively blocked hemolysis of supernatants
in this assay by applying alpha toxin and gamma toxin

Table 3 Characterisation of clonal complexes and comparison of alpha toxin production rates

Clonal complex ST (n) spa (n)
s STS (3) t071, 1548, t002
ST1457 (1) 1067
CCoe ST6 (1) 13802
ST7 ST7 (3) t091 (3)
ST8 (4) 3308, 1024, t008, 1648
cc8 ST3275 (1)* 1008
ST630 (1) 377
CcC10 ST10 (1) 6873
s ST15 (2) 12453, 1084
ST582 (3) 1084 (3)
CC22 ST22 (3) 1790, t13078, t005
CC25 ST25 (1) 13232
ST30 (10) 1433 (2), 14401, 111980, t617, t012, 1021 (2), 1342 (2)
0 ST34 (2) 3805, t15407
CC45 ST45 (8) t015 (2), t333, 1230, 583, 1065, t350, t553
CC50 ST50 (2) 246 (2)
CCs1 ST121 (2) 1284, 1441
Ccci1o1 ST101 (2) 1056 (2)
CC779 ST779 (1) 878

agr (n) Superantigehsb Production (m/sd)® a toxin
I1(3)  selp (2), egc (3), selw (3), selx (3) 1.1 (+/-0.7)

Il tst, selp, egc, selw, selx

| sea, selx

I (3) selp (3), selx (3) 1.32 (+/-0.55)

sea (1), selx (4)

I (5)
sea (1), selx (1) 8.78 (+/—10.23)
vV selx
Il seb, seh, egc, selx
selx (2)
Il (5) 042 (+/-0.55)
selx (3)

I (3) sec (1), sell (1), egc (3), selx (3) 15.93 (+/-1843)
| ege, selx

tst (5), sea (5), egc (10), selx (10)

tst (2), seh (2), egc (2), selx (2)

| (8) sec (5), sell (5), egc (8), selx (8)

<0.01

4.69 (+/-2.36)
egc (2), selx (2)

egc (2), selx (2)

1 (2) selx (2)

Il sed, sej, selr, selx

Strain 767 N-10 displayed a different allele of aroF, being a new single locus variant of ST8

PAll superantigen genes were included with the exception of pseudogenes
“Superantigen-like gene selx including frameshift nonsense mutation (111)

9Mean (m) and standard deviation (sd) of production rates were determined of CC groups comprising one or more STs (number of strains n > 3)
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Table 4 Comparison of protein amounts in spa typing clusters
with identical superantigen and alpha toxin gene patterns of
hospital-derived isolates

Typing a toxin SEC TSST1
IS spa agr CcC [pg/ml]

B3276 b 1056 I 101 6.12 - -
B3478 b 056 I 54 - -
Rv52743 c 1084 Il 15 137 - -
Rv54192 C 1084 Il 043 - -
771 N-10 C 1084 Il 0.15 - -
B7761 b 1084 Il 0.10 - -
B1721 b t015 I 45 2.75 6.93 -
B3427 b t015 I 1.75 5.79 -
B1848 b 1021 Il 30 <001 - 3.71
B1793 b t021 Il <0.01 - 324
840 N-10 C 1342 Il 30 <0.01 - 0.5
B34571 b 1342 Il <0.01 - 0.85
Rv53955 C 1246 v 50 6.58 - -
Rv54216 C 1246 v 288 - -
B69108 b 1091 | ST7 1.73 - -
B24743 b 091 I 0.69 - -
B3597 b 091 I 152 - -
Rv54009 C 433 Il 30 1.58 - -
Rv54010 C 433 Il 145 - -

antisera from rabbits immunised with recombinant pro-
teins (Table 5). Both antisera blocked only hemolysis of
the specific hemolysin, thereby reaching neutralisation
levels of 95 % (Fig. 2c). In the first group (upper panel),
supernatants had to be neutralised by antisera against
both, alpha toxin and gamma toxin, while other superna-
tants could be neutralised with antiserum against alpha
toxin alone. Interestingly, the two isolates of one spa
type cluster, which also differed in the presence of the
intact /lb gene, differed in the neutralisation patterns of
hemolysis: the supernatant of B3478 had to be neutra-
lised with both antisera, whereas the supernatant of
B3276 was neutralised with antiserum against alpha
toxin alone. In the sec-positive group, it was necessary to
apply both antisera, indicating that all supernatants con-
tained both, alpha toxin and gamma toxin. In the group
consisting of tst-positive strains, supernatants of five
strains lacking full length alpha toxin were neutralised
by gamma toxin antiserum alone, while the remaining
supernatant (B2284) was neutralised by alpha toxin
alone. This underlined the extraordinary potency of
both, alpha and gamma toxin, to harm cells of the host.
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Discussion

Comprehensive studies of genotypes and phenotypes of
clinical S. aureus isolates are scarce. To contrast differ-
ences between SAB isolates and colonising strains, we
performed MLST, spa and agr typing, we determined
the presence of four hemolysin genes and 24 superanti-
gen genes in 22 blood and 29 colonising isolates, and
thereafter compared production of alpha toxin, and the
two prominent superantigens, TSST1 and SEC. Alloca-
tion of genes and production rates of exotoxins was
equally distributed between blood and colonising sam-
ples. However, corrupted genes and production patterns
were linked to certain clonal complexes. Spa typing was
found to be a suitable predictor for highly similar toxin
production rates.

The prevalence of genes encoding superantigens or
superantigen-like proteins was both abundant and di-
verse among blood and nasal isolates. In 2004, a German
multicenter study including 429 isolates from 32 hospi-
tals revealed 73 % of all samples studied to be SE posi-
tive [19]. Among 51 isolates, we found 78 % to carry
common superantigen genes. In accordance with the
majority of previous reports, we did not see any correl-
ation between superantigen distribution and isolation
site [18, 19]. We assume that the presence or absence of
superantigens and cytolysins does not decide about the
success of colonisation. In this line, subsequent bacteremia
is likely to be more dependent on host factors than the
arsenal of exotoxins [39]. Still, we cannot exclude that
these virulence factors can facilitate invasion at specific
entry sites. The severity of disease upon invasion such as
pneumonia or endocarditis has been shown to be effected
by the presence of prominent superantigens in rabbit
models [40, 41].

All tested isolates contained at least two staphylococ-
cal enterotoxin-like genes, since both, selw and selx were
found in all strains, even those lacking any other super-
antigen. Selw was identified in all strains, whereas selx
was found in 76.5 % of isolates. Importantly, we found
that more than 90 % of isolates had no corresponding
start codon at the correct position in sel/w, questioning
its relevance as a putative virulence factor. However, we
could not exclude the use of alternative codons as tran-
scription start site. The exact role of SE/W remains to
be determined [42]. Interestingly, selx was found to be
mutated in seven isolates. Thus functional SEIX was
lacking in 39.2 % of all isolated strains. Wilson and col-
leagues discovered selx in 95 % of 114 tested isolates
[43]. To our knowledge, our study was the first to in-
clude both, selw and selx, in genotypic analysis of clinical
and colonisation isolates.

Agr typing revealed the presence of all four types.
Homogeneous distribution was found in sec-positive iso-
lates (type I), and in fst-positive isolates (type III), as
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Fig. 2 Hemolysis of erythrocytes through supernatants from S. aureus depends on alpha toxin and gamma toxin. a To measure percentage of
hemolysis, cells were grown to stationary phase, and sterile-filtered supernatants were diluted 1:50 in 1X PBS. Absolute hemolysis was defined as
the optical density of freed heme upon the addition of the natural glycoside saponin (from Quillaja saponaria) and was set at 100%. Each run of
hemolysis was accompanied by parallel measurement of saponin as positive control and 1X PBS as negative control. Percentages were calculated
from mean values out of three independent experiments. Groups i) to iii) are defined in the text. Recombinant wild type alpha toxin and recombinant
wild type gamma toxin were diluted in 1X PBS to receive 100 ng, 10 ng, and 1 ng per well. For neutralisation, 100 ng of toxin was incubated with or
without 50-fold diluted antisera (AS) in parallel for 1 h at 37 °C. b Western blot analysis of HLG1 protein levels in the supernatants of tst-positive isolates.
20 pl were taken from each supernatant (sn) and loaded undiluted. 0.1 pg/ul of recombinant wild type HLGT was used as positive control (lane 1, grey
arrow). Broad range standard (Biorad) was added to identify correct bands (lane 2). Upon blotting, membrane was cut to avoid extensive background.
¢ Neutralisation of hemolysis of erythrocytes through antisera was assessed. To verify specificity, antiserum against alpha toxin or gamma toxin was
used as control for the opposite hemolysin (100 ng per well). Antisera were applied in a final 50-fold dilution and incubated for 1 h at 37 °C. Hemolysis
and percentage calculation (here for neutralisation of hemolysis) was done as described in (a)

previously reported [44]. All agr types were equally dis-
tributed in the remaining isolates. Spa typing uncovered
30 unique strains whereas the minority of strains were
linked to small clusters. Epidemiological data from con-
tact tracing information were not available. Genotypic
information of isolates clustered by MLST and spa typ-
ing was identical, with one exception. The disruption of
hilb was reversed in the second isolate of the paired clus-
ter with the spa repeat pattern t056. Phage excision
resulting in reintroduction of beta toxin production has
already been shown [45].

Differences in hemolytic activity regarding TSS isolates
were already reported in 1982 [46, 47]. The involvement
of alpha toxin was shown a few years later [48, 49], the
specific nonsense stop mutation also detected in our
strains was described in 1990 [37]. In our study, highly

variable expression rates of alpha toxin could be de-
tected in both blood and colonising isolates. In fact,
alpha toxin production by individual blood strains varied
up to 700-fold. This might be due to variations in the
concentration of the regulator RNAIII, or the lack of
host cell stimulators [50]. In our study, analysis of agr
typing revealed that all strains having the &la mutation
belonged to agr type III. Low producers were also found
in agr types I and II. Remarkably, 20 % of all strains pro-
duced less that 1 pg per ml of alpha toxin. Analysis of
the agrC sequence of the two isolates producing less
than 0.1 pg per ml (B5990, B50188) did not reveal the
already described agrCgssr single nucleotide polymorph-
ism [51]. Small spa clusters were found among alpha
toxin high and low producers, and isolates having the
hla mutation. Spaulding and colleagues hypothesised
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Table 5 Analysis of hemolytic performance of hemolysins upon neutralisation in hospital-derived isolates

Isolates Cytolysins >90 % Inhibition of hemolysis
a toxin ASC y toxin AS® a/y toxin ASC
no superantigens® Rv53944 hla, hib, higl, hig2 1:50/1:200
B7715 hla, hib, higi, hig2 1:100/1:200
B3478 hla, hlgl, hig2 1:400/1:400
Rv54213 hia, hib, hig1, hig2 1:400/1:200
Rv54192 hla, higl, hig2 1:400/1:400
B3276 hia, hib, hig!, hig2 1:400
Rv52743 hia, hig1, hig2 1:400
B50188 hia, hig1, hlg2 1:400
771 N-10 hla, higl, hig2 1:400
B5990 hia, hig1, hig2 1:400
B7761 hia, hig1, hig2 1:400
sec B958 hla, higl, hig2 1:50/ 1:400
Rv52832 hia, higl, hig2 1:400/1:200
Rv51398 hla, higl, hig2 1:400/1:200
B1721 hla, higl, hig2 1:400/1:400
876 N-10 hia, hig1, hig2 1:400/1:400
B3427 hla, higl, hig2 1:400/1:400
tst B2284 hia, hig1, hig2 1:400
B11019 hia® hig1, hig2 1:200
840 N-10 hia®, hig1, hlg2 1:400
B34571 hia®, hig1, hig2 1:200
B1848 hia®, hib, higi, hig2 1:200
B1793 hia®, hib, higi, hig2 1:200
Rv52959 hila®, hig1, hig2 - - -
Rv54054 hia®, hib, higi, hig2 - - -

%except selw and selx
Pnonsense mutation in hla (Q113)
°AS antiserum

that the reduction of alpha toxin production in USA200
strains facilitates colonisation of mucosal surfaces [2]. In
a recent publication, Sharma-Kuinkel et al. describe that
the absence of functional alpha toxin was associated
with a negative clinical outcome, indicating the clinical
relevance of other virulence factors [30]. In their study,
14.5 % of 200 tested strains showed no alpha toxin pro-
duction. Here, we found that 19.6 % of all isolates lacked
alpha toxin production.

Overall, high-level alpha toxin secretion does not seem
to be mandatory for the colonisation of the human host
by S. aureus, since strains lacking /la expression are
continuously isolated from patients. Long-term persist-
ence might be easier to achieve through the decrease of
the overall burden caused by secreted exotoxins. Com-
promised body defence mechanisms could be a major
reason for those strains to enter the bloodstream and
organs. It was already reported before that CC30

isolates, which are often associated with severe infection,
accumulate the /hla nonsense mutation [51]. In our
study, CC30 tst-positive clones displayed complete ab-
sence of functional Hla. Amounts of alpha toxin varied
between the identified clonal complexes with CC22 dis-
playing the highest yield of Hla. CC22 was found to be
associated with osteoarticular infections but was nega-
tively associated with persistent bacteremia [39, 52]. Fur-
ther quantifications of exotoxins are needed to confirm
their relevance for persistence, invasion and severity of
disease. It remains to be clarified whether in vitro toxin
production rates reflect the situation in the host. Com-
parison of alpha toxin production in vitro and in an infect-
ive endocarditis model in rabbit revealed the production
of significant amounts in both settings [53].

Alpha toxin is still thought to be one of the most im-
portant candidates of S. aureus for vaccine development,
clinical studies test monoclonal antibodies against alpha
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toxin as primary targets for treatment. However, the role
of gamma toxin should not be underestimated, our
results suggest that gamma toxin is of importance for
toxicity in the absence of hla expression. Alpha toxin
and gamma toxin act at least partly on the same target
cells [13, 54]. It was shown that both promote virulence
in a murine model [55]. Both, alpha toxin and gamma
toxin were found to activate caspase-1 in the presence of
bacterial lipoprotein, ultimately leading to necrotic cell
death [56]. Synergy of alpha toxin and gamma toxin
could facilitate survival in the host. In our study, the
necessity to neutralise both alpha toxin and gamma
toxin, to block hemolysis in 44 % of all tested isolates,
demonstrated this functional redundancy. The specific
role of gamma toxin for the lysis of human erythrocytes
was just recently shown by Spaan et al. [57].

Availability of both monoclonal antibodies and poly-
clonal antisera allowed us to further characterise TSST1
and SEC. Blood isolates and colonising isolates con-
tained high and low producers. We did not see a con-
cordance between production rates of superantigens and
production rates of alpha toxin. Varshney et al. deter-
mined the expression rate of seb in S. aureus isolates
[18]. They also found that SEB production varied greatly
among individual strains grown under identical condi-
tions. When we compared expression rates of SEC within
the genetically homogeneous sec-positive group, we found
an up to 10-fold difference. Among the eight tst-positive
isolates, we found four distinct superantigen patterns.
Accordingly, results of these strains varied even more.
Nevertheless, weak expression of superantigens may still
be a potential threat for host cells [58]. Beside the lack of
genotypic differences between colonising strains and
blood isolates, production rates of superantigens did not
distinguish between them either. For example, the two
sec/sell strains with the highest production rates of SEC
displayed identical complex gene patterns (with the excep-
tion of selu2), but were isolated from both, the nasal cavity
and blood. We suggest that fatality of superantigens
comes into play when S. aureus manages to enter the
bloodstream and organs [59].

Importantly, in both groups, SAB and colonisation, the
small clusters based on spa typing displayed similar pro-
duction rates. Even though not surprising, this correl-
ation of spa types and specific production rates has not
been shown before. In contrast, identical complex gene
patterns, including both superantigen encoding genes lo-
cated on various insertion sites and cytolysin encoding
genes belonging to the core genome, gave no informa-
tion about expectable production rates of the tested exo-
toxins. Despite being a single-locus typing technique,
analysis of the polymorphic repeats within the spa gene
gave a sufficient resolution to identify clusters of high or
low producers of specific toxins. Thus, identical virulence
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gene patterns could not predict production rates, but spa
typing was suitable for correct predictions, regardless of
the isolation site.

Conclusions

Quantitative and functional characterisation of toxins sup-
ports the understanding of clinical relevance. In this study,
we compared distribution and secretion of S. aureus exo-
toxins of fresh isolates. Genotypic analysis revealed that all
superantigen genes were in frame with the exception of
the two new superantigen genes located in the core gen-
ome, selw and selx, showing unexpectedly high corruption
rates, which were linked to specific clonal complexes.
Identical genotypic characteristics did not allow a quanti-
tative prediction for secretion. Essentially, we discovered
that strains within each of the spa typing clusters pro-
duced highly similar amounts of the respective toxins in
supernatants. Despite a broad range, we found that clonal
complexes displayed distinct alpha toxin production rates.
A high prevalence of both the &la nonsense mutation and
tst was found in CC30. Phenotypic analysis showed that
both, alpha toxin and gamma toxin participated, albeit to
different degrees, in the hemolytic activity detected in cul-
ture supernatants. In addition to genotypic characterisa-
tion, we consider further quantification of varying toxin
productions in bacterial populations to be clinically im-
portant for the development of efficient treatments.
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