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Abstract: Carrots are gaining attention due to their health effects, high yield, low cost,
and bright color in food processing. This study analyzed the impact of carrot whole flour
(CWF) on steamed cake quality. The effects of CWF and its active ingredients, carrot
dietary fiber (CDF) and carrot polyphenols (CPs), on gluten and starch properties were
studied. Results showed that steamed cake quality was better at a 12% additional dose.
CPs caused gluten to form more hydrogen bonds, increasing the specific volume. CDF
weakened the gluten structure by reducing disulfide bonds, decreasing the hardness. Both
CDF and CPs disrupted the starch structure by decreasing the short-range order, causing
a reduction in springiness and cohesiveness. CDF and CPs increased starch crystallinity,
which also contributed to decreasing springiness. This study systematically evaluated the
effect of CWF on the steamed cake from the microstructure level to macroscopic quality.
Wheat-vegetable blend flour is a key path for nutritional upgrading of traditional staple
foods and an essential direction for functional wheat products.
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1. Introduction
As a traditional fermented food in China, steamed cake is made by fermenting batter

and then steaming it, giving it a soft, elastic texture and a continuous, spongy internal
network [1]. It is widely consumed and very popular in China. Compared to traditional
bakery products, more nutrients are retained in steamed cake because of the comparatively
low steaming temperature [2]. The credo “Make food your medicine, make medicine
your food” invoked by Hippocrates nearly 2500 years ago has recently rekindled scientific
interest, sparking a passion for studying bioactive compounds and functional food [3].
Studies had revealed that adding plant-based ingredients such as oyster mushroom flour [4]
and grape pomace flour [5] can enhance the nutritional value of wheat products. Carrots
are one of the root vegetables that are widely consumed around the world. Furthermore,
carrots serve as an effective food source due to their substantial contribution to diverse
nutraceuticals, such as carotenoids, dietary fiber, and phenolics [6]. These natural products
are certainly of the essence in averting various illnesses, including heart disease, eye retinal
conditions, and cancer [7].

There are many different techniques for drying fruits and vegetables, and freeze-drying
is recognized as the method that retains the most nutrients [8]. However, freeze-drying is
costly [9]. The production cost of freeze-drying is 4 times that of spray drying and 8 times
that of hot air drying, and the energy consumption is 4 to 10 times that of hot air drying,
which limits the use of this technology to high-value products. The food industry has
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shown a keen interest in microwave drying, attracted by its ability to provide volumetric
heating, enhance drying speed, improve the quality of products, and partially eliminate
water that has adhered [10]. Microwave drying could dry various fruits and vegetables,
such as orange-fleshed sweet potato chips [11], apples [12], and pleurotus eryngii [13].
Continuous application of microwave radiation has the disadvantages of uneven heating
and quality degradation. Most often, microwave energy is applied intermittently. The
advantages of intermittent microwave drying include short drying times; low energy
consumption; high drying capacity; and better preservation of colors, flavors, and bioactive
compounds [14].

Protein and starch are the most important ingredients in wheat flour. Wheat protein is
mainly divided into albumin, globulin, glutenin, and gliadin. Glutenin and gliadin jointly
stabilize the gluten matrix, making up roughly 80% of the gluten protein’s dry weight.
Gluten is essential in determining the viscoelasticity, extensibility, and plasticity, and it
greatly influences the overall quality of wheat-based products [15]. Batter is a system
consisting of a gluten matrix, a protein network, and starch granules [16]. The starch
particles are located within the gluten network to help keep the gluten matrix stable [17].
When carrot whole flour is mixed with wheat flour, the dietary fiber and polyphenols from
the carrot flour interact with the wheat starch and protein during the process of forming
the steamed cake, greatly influencing the final quality of the steamed cake.

At present, carrot whole flour is a type of functional food ingredient used to realize
diversified applications in foods. There were some reports regarding wheat-carrot products
focused on dough characteristics, physicochemical properties, and nutritional value [18–20].
Nevertheless, the quantitative correlation studies between the structure (covalent bonds,
noncovalent bonds, short-range ordered, and long-range ordered) of the gluten-starch
composite matrix in the processing system of CWF steamed cake and the key indicators
(specific volume, texture) are limited. Therefore, the quality in texture, specific volume,
and sensory properties of CWF steamed cake were investigated. The gluten structure (free
sulfhydryl, disulfide bond, intermolecular interaction force, and secondary structure) were
evaluated. The starch structure (short-range ordered, long-range ordered) and pasting
properties were also determined. We explored the relationship between CWF-induced
changes in gluten-starch structure and the CWF steamed cake quality. This study provided
the foundation for the application of fruit and vegetable powders in wheat-based products.

2. Materials and Methods
2.1. Materials

Wheat flour (WF) was procured from Wudeli Co., Ltd. (Handan, China), and carrots
were sourced from the retail market (Baoding, China). The carrot slices were placed in a
microwave oven (40 ◦C, 500 W, G80F23CN3XLN-R6K(R9), Guangdong Galanz Group Co.,
Ltd., Foshan, China) and heated for 20 s with 60 s intervals, and the microwave drying time
was 2 h. Afterward, microwave-dried carrot slices were ground for 10 s with 60 s intervals
by an experimental pulverizer (25,000 rpm, AF-04A, Yongkang Red Sun Electromechanical
Co., Wenzhou, China) and sieved through an 80-mesh screen to produce carrot whole
flour (CWF).

2.2. Determination of Chemical Compositions

Crude protein (AOAC 978.04), moisture AOAC (2000), fat (AOAC 920.85), and ash
(AOAC 923.03) were assessed based on standard analytical methods. Dietary fiber content
was measured following the enzymatic method, aligning with AOAC 994.13. Total polyphe-
nols (TPs) were quantified via the Folin–Ciocalteu method. The analysis of carotenoid
content adhered to the methodology outlined by Landim Parente et al. [21].
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2.3. Preparation of Steamed Cake

The steamed cake batter was prepared by mixing 300 g wheat flour, 4.5 g yeast, 1.5 g
baking powder, and 270 g water. Different levels of carrot flour (0%, 4%, 8%, 12%, and
16% w/w based on wheat flour) were added. All the ingredients were blended with
water to obtain a homogeneous batter (DKM201, Guangdong Shunde Diyi Utility Electric
Technology Co., Foshan, China) for 6 min at medium speed, which was then fermented
(60 min, 35 ◦C, 80% RH; DIYATE MXF-A, Shandong Meiying Food Equipment Co. Ltd.,
Jinan, China). Then, every 100 g of batter was poured into a mold (4 inches, 11.5 cm
diameter × 4.5 cm height), followed by fermenting for 20 min again, and subsequently was
steamed by an electric steamer (Z06YA3B-G2, Shandong Duoxing Electric Appliance Co.,
Zibo, China) for 30 min. The number of samples per batch was 15.

2.4. Steamed Cake Characteristics
2.4.1. Specific Volume

The specific volume of steamed cake was measured via rapeseed displacement volume
(mL) with subsequent normalization to sample weight (g).

2.4.2. Texture Analysis

The texture characteristics of the steamed cake were evaluated using a texture analyzer
(TMS-PRO, Ying Sheng Hengtai Technology Co., Ltd., Beijing, China) fitted with a 25 mm
diameter cylindrical probe (P/25). Central cake sections with uniform 25 mm thickness
were prepared and positioned on the testing platform. The conditions were as follows:
a compression ratio of 50%, a testing speed of 1 mm/s, and an initial force of 5 g [22].

2.4.3. Color

The steamed cake (top side) color was measured by a chromameter (NR60CP, Shenzhen
Sanenchi Technology Company) using the CIE-L*a*b* parameters. L* values represented
lightness on a scale from 0 (absolute black) to 100 (pure white), a* values indicated chro-
maticity along the red–green axis (positive values = redness; negative values = greenness),
b* values represented chromaticity along the yellow–blue axis (positive values = yellow-
ness; negative values = blueness). Total color difference (∆E) was calculated using the
following equation:

∆E =

√
(L − LO)

2 + (A − A0)
2 + (B − B0)

2 (1)

2.4.4. Sensory Evaluation

Sensory analysis was conducted by 10 panelists (20–30 years) adapting the method by
Zhu and He et al. [23,24]. Panelists assessed the textural characteristics and appearance of
the steamed cake using a rating scale. Parameters included color, structure, odor, taste, and
mouthfeel. The 100-point scoring system comprised the specific volume (20%), color (15%),
structure (20%), odor (15%), taste (10%), and mouthfeel (20%). The sensory evaluation
standard of the steamed cake was shown in Supplementary Material Table S1.

2.5. Preparation of Samples
2.5.1. Preparation of Dietary Fiber and Polyphenols

Carrot dietary fiber (CDF) was extracted according to the method described by
Dong et al. [25]. The extraction of carrot polyphenols (CPs) was performed following
the method described by Dong et al. [26]. In order to exclude the effect of other components
in CWF, equal levels of CDF and CPs were used for adding; the amount of CDF and CPs
added to the flour were 2.24 g/100 g and 60 µL/100 g, respectively.
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2.5.2. Preparation of Gluten and Starch

Wheat starch and gluten were separated using the handwashing method. CWF and
its active ingredients (CDF and CPs) were added to wheat flour (100 g) and mixed with
distilled water (50 mL) to form the dough, which was washed with water to separate the
gluten and starch. The starch-water mixture was centrifuged (1760× g, 15 min) [27]. Starch
and wet gluten were vacuum freeze-dried (BenchTop Pro, SP Scientific, Warminster, PA,
USA) and milled by an experimental pulverizer (MFJ-W153, Beijing Liren Science and
Technology Co., Beijing, China). The starch and gluten were passed through an 80-mesh
sieve and refrigerated at 4 ◦C.

2.6. Gluten Properties
2.6.1. Free Sulfhydryl and Disulfide Bonds Analysis

Free sulfhydryl and total sulfhydryl contents were measured according to the method
of Tian et al. [28]. The gluten powder (100 mg) was mixed with 10 mL of Tris-Gly-8M urea
and stirred magnetically at 400 rpm for 10 min after centrifugation for 10 min at 3500× g,
and the supernatant was analyzed.

For free sulfhydryl, Ellman’s reagent (0.1 mL) was added to 4 mL of supernatant and
kept in the dark for 20 min, and the absorbance value was determined at 412 nm.

For total sulfhydryl, a mixture of 0.4 mL of supernatant, 1.6 mL of Tris-Gly-8M urea,
and 0.04 mL of β-mercaptoethanol was prepared and kept in the dark for 1 h. The mixture
was treated with 4 mL of 12% (w/v) trichloroacetic acid (TCA) and incubated for another
hour in the dark. Afterward, the mixture was centrifuged for 10 min at 3500× g. The
precipitate was collected and washed twice with 5 mL of 12% TCA to remove residual
β-mercaptoethanol. The final precipitate was dissolved in 4 mL of Tris-Gly-8M urea, mixed
with 0.1 mL Ellman’s reagent, and kept in the dark for 20 min, and the absorbance value
was determined at 412 nm.

2.6.2. Intermolecular Interactions Analysis

To investigate specific molecular interactions, samples were treated with four different
extraction buffers (all prepared in 0.05 M phosphate buffer, pH 7.0): 0.05 M NaCl (S1),
0.6 M NaCl (S2), 0.6 M NaCl + 1.5 M urea (S3), and 0.6 M NaCl + 8 M urea (S4). For each
treatment, 15 mg samples were homogenized with 1 mL of the respective buffer, followed
by centrifugation (10,000× g, 20 min) and subsequent stirring for 1 h. Supernatant protein
content was quantified using the Bradford reagent (Brilliant Blue G-250) [29].

2.6.3. Secondary Structure Analysis

The secondary structure of freeze-dried gluten samples was characterized by Fourier-
transform infrared spectroscopy (FTIR) (Nexus 670, Thermo Electron Corporation, Waltham,
MA, USA) following the methodology of Fu et al. [30]. Spectra were acquired in the region
of 400–4000 cm−1, featuring 64 scans and 4 cm−1 resolution.

2.7. Starch Properties
2.7.1. Pasting Properties

The pasting properties of starch samples were analyzed using a Rapid Visco Analyzer
(RVA-4800, Perten Instrument, Hägersten, Sweden) following the method of Cai et al. [31].
The testing protocol consisted of (1) initial premixing at 960 rpm for 10 s, (2) maintaining at
160 rpm for 1 min at 50 ◦C, (3) heating to 95 ◦C over 7.5 min, and (4) holding at 95 ◦C for
5 min.
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2.7.2. Short-Range Order

Short-range order was determined according to Section 2.6.3.

2.7.3. Starch Crystallinity

The starch samples were scanned by an X-ray diffractometer (Bruker D2PHASER,
Karlsruhe, Germany). The conditions were set as follows: Cu Kα radiation at 30 kV/10 mA
scanning from 5◦ to 50◦ (2θ) at 2◦/min with 0.02◦ step size [32]. The diffraction patterns
were processed using Origin 2023b software to calculate relative crystallinity, defined as
the ratio of crystalline peak areas to the total diffracted area.

2.8. Statistical Analysis

Data were processed and analyzed by one-way ANOVA using SPSS 27.0 statistical
software, and the Duncan test was chosen to compare the differences between multiple
groups of experimental data (p < 0.05). Data visualization was conducted in Origin 2023b.

3. Results
3.1. Chemical Compositions

The chemical composition of wheat flour and carrot flour is summarized in Table 1.

Table 1. Chemical compositions of raw materials.

Wheat Flour Carrot Whole Flour

Moisture (g/100 g) 12.51 ± 0.03 b 7.45 ± 0.07 a
Protein (g/100 g) 12.10 ± 0.23 b 6.17 ± 0.21 a

Fat (g/100 g) 0.86 ± 0.08 a 2.27 ± 0.15 b
Ash (g/100 g) 0.40 ± 0.01 a 5.57 ± 0.06 b

Total dietary fiber (g/100 g) 1.09 ± 0.10 a 18.52 ± 0.14 b
Total polyphenolic (mg/100 g) 75.93 ± 0.85 a 190.58 ± 0.59 b

Carotenoid (mg/100 g) 0.49 ± 0.03 a 135.35 ± 1.93 b
Note: Values were calculated on a dry basis. Different letters represented the distinctions between diverse
materials (p < 0.05).

3.2. Steamed Cake Characteristics
3.2.1. Volumetric Properties

The specific volume had a strong influence on the decisions of consumers. Figure 1
illustrated the specific volume and height variations in steamed cakes with different CWF
substitution levels. The specific volume of steamed cake initially increased, followed
by a decrease. When the CWF addition was 12%, the specific volume of steamed cake
significantly increased from 2.29 to 2.38 mL/g. ln addition, the rate of change in the height
of the steamed cake increased from 50.98% to 68%. This might be because of covalent and
non-covalent interactions between gluten and CPs, which positively affected the gluten
network formation and consequently increased the specific volume of the steamed cake [33].
In addition, CWF had a higher reduced sugar content than wheat flour [34], and sugar was
a major source of yeast fermentation, which promoted yeast reproduction. When the CWF
addition was higher than 12%, the specific volume significantly decreased. During the
steaming process, the high fiber content in CWF combined with water, which could limit
water availability for starch-gluten network development. Consequently, CWF resulted in
an underdeveloped gluten network and a reduction in steamed cake specific volume [35].
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Figure 1. (A) Specific volume of steamed cake with 0%, 4%, 8%, 12%, and 16% carrot whole flour.
(B) Height variation (before and after fermentation) of steamed cake with 0%, 4%, 8%, 12%, and 16%
carrot whole flour. Different letters in the same filling pattern represented significant differences
among different carrot additions (p < 0.05).

3.2.2. Texture Analysis

Texture represented a critical quality parameter in product evaluation. An instrumen-
tal texture profile analysis (TPA) provided objective physical parameters that correlated
with sensory perception, including hardness, springiness, cohesiveness, chewiness, and
adhesiveness. Hardness, springiness, and chewiness are quality parameters usually as-
sociated with sensory evaluation. Among them, hardness denotes the maximum force
value at first compression [36]. Springiness relates to the force with which a sample can
be recovered after the first compression [37]. Chewiness quantifies the mastication energy
required to transform steamed cake into a swallowable bolus [38].

The texture properties of steamed cake with or without CWF are shown in Table 2.
As the CWF content increased (0–12%), the hardness and chewiness of the steamed cakes
tended to decrease. There was a positive correlation between chewiness and hardness; the
trend of chewiness of steamed cake was consistent with hardness. The results indicated that
with the addition of CWF, the steamed cake formed a softer and chewier texture. Increasing
CWF resulted in a significant decrease in springiness and cohesiveness. This could be
attributed to the high dietary fiber content in CWF, which hindered the development of
the gluten network and reduced the elasticity and cohesion of the steamed cake [39]. The
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textural properties of steamed cakes were predominantly governed by the concurrent
processes of protein denaturation and starch gelatinization during thermal processing [40].

Table 2. Textural properties of steamed cakes with different levels of carrot whole flour.

Samples Hardness (g) Springiness Cohesiveness Chewiness (g) Adhesiveness

Control 7.50 ± 0.28 b 9.34 ± 0.15 d 0.72 ± 0.03 d 43.78 ± 1.83 d 5.23 ± 0.12 d

CWF4 7.38 ± 0.18 b 8.86 ± 0.08 c 0.65 ± 0.02 c 42.64 ± 1.06 d 4.81 ± 0.08 b

CWF8 7.25 ± 0.12 b 8.59 ± 0.08 b 0.61 ± 0.01 b 37.91 ± 1.19 b 3.97 ± 0.09 a

CWF12 6.50 ± 0.16 a 8.45 ± 0.09 b 0.61 ± 0.02 b 32.14 ± 1.18 a 3.91 ± 0.14 a

CWF16 8.75 ± 0.10 a 8.01 ± 0.18 a 0.57 ± 0.02 a 40.23 ± 0.97 c 5.02 ± 0.14 c

Note: CWF4, CWF8, CWF12, and CWF16 represent the steamed cakes with 4%, 8%, 12%, and 16%, respectively.
Different letters within a column denote significant differences (p < 0.05).

3.2.3. Color

The color of steamed bread influences consumer acceptability. With increasing CWF,
the lightness (L*), redness (a*), yellowness (b*), and ∆E values of the steamed bread varied
significantly (p < 0.05). It was obvious from Table 3 that the steamed bread L* decreased,
whereas a* and b* increased with the addition of CWF, indicating that with increasing CWF,
steamed breads were darker, reddish, and yellowish. The color variation of steamed cake
with 0%, 4%, 8%, 12%, and 16% is presented in Figure 2. The color of starchy foods comes
from the intrinsic color given by individual pigments and the color formed during the
cooking process. This color change in the steamed cake might be due to carotenoids in the
carrot. The ∆E value gradually increased, revealing that the overall color of the steamed
cake was increasingly different from that of the control group due to the increase in the
additional amount of CWF. The trend of color change (L*, a*, and b*) aligned with a study
reported by Kowalczewski et al. [41].

Table 3. Effect of carrot whole flour on color attributes of steamed cake.

Samples L* a* b* ∆E

Control 77.64 ± 0.21 e 0.41 ± 0.04 a 14.21 ± 0.04 a

CWF4 65.59 ± 0.76 d 11.40 ± 0.60 b 40.36 ± 0.38 b 31.20 ± 0.27 a

CWF8 63.96 ± 0.35 c 17.10 ± 0.26 c 48.64 ± 0.59 c 41.03 ± 0.50 b

CWF12 60.85 ± 0.33 b 18.14 ± 0.17 d 53.34 ± 0.33 d 46.49 ± 0.20 c

CWF16 58.76 ± 0.17 a 20.39 ± 0.23 e 55.80 ± 0.38 e 50.24 ± 0.38 d

Note: CWF4, CWF8, CWF12, and CWF16 represent steamed cakes with 4%, 8%, 12%, and 16%, respectively.
Different letters within a column denote significant differences (p < 0.05).

 

Figure 2. Color variation of steamed cake with 0%, 4%, 8%, 12%, and 16%.

3.2.4. Sensory Evaluation

The sensory characteristics of steamed cake were analyzed using radargram, and
the specific volume, color, structure, odor, taste, and mouthfeel of steamed cake with
different levels were scored comprehensively, and the results are shown in Figure 3 and
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Supplementary Material Table S2. When the CWF addition was 12%, the steamed cake
had the largest area proportion in the radargram and the highest overall score. When
the CWF addition was higher than 12%, the scores of various aspects decreased, which
were manifested as rough texture, darker color, and other characteristics. The observed
alteration in color aligned with the results of the color change in Section 3.2.3. Similarly,
Wang et al. [42] reported that with increasing rose powder content, the steamed bread
darkened, which led to lower acceptability scores. Excessive CWF led to the hardening of
the steamed cake. Wu et al. [43] demonstrated that hardness in steamed bread exhibited a
significant negative correlation with consumer acceptability. From the sensory analysis,
the mouthfeel of the steamed cake increased and then decreased with the increase of CWF,
which was consistent with the change in hardness in the texture analysis (Section 3.2.2).
The adhesiveness showed a decreasing trend with higher CWF levels. This suggested that
the incorporation of CWF may contribute to a low adhesive texture, potentially affecting
the mouthfeel and sensory perception of the product. Based on the specific volume, texture,
and sensory attributes of the steamed cake, the optimum dose of CWF in the steamed cake
was 12%.

Figure 3. Sensory scores of steamed cake with 0%, 4%, 8%, 12%, and 16% carrot whole flour. Different
letters in the same filling pattern denoted significant differences among different samples (p < 0.05).

3.3. Gluten Properties
3.3.1. Free Sulfhydryl and Disulfide Bond Content

Gluten consists of glutenin and gliadin. The covalent crosslinking of high molecular
weight gluten subunits (HMW-GS) and low molecular weight gluten subunits (LMW-GS)
through intermolecular disulfide bonds formed “head-to-tail” bonds that constituted the
elastic backbone of gluten and created an amorphous three-dimensional network [44]. The
free sulfhydryl content served as an indicator of gluten network stability, while disulfide
bonds were essential for maintaining the structural integrity of the gluten network.

The effect of CWF, CDF, and CPs on the free sulfhydryl and disulfide bond of gluten is
shown in Figure 4. CDF increased the free sulfhydryl content and decreased the disulfide
bond content, whereas CPs decreased the free sulfhydryl content and increased the disulfide
bond content. CDF disrupted the development of the gluten network, and non-covalent
interaction between CDF and gluten induces the formation of hydrogen bonds, thus
interfering with the covalent cross-linking between gluten proteins [45]. Ding et al. [46]
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demonstrated that dietary fiber compromised the intermolecular interactions of gluten,
resulting in the disruption of disulfide bonds.

Figure 4. Effect of CWF, CDF, and CPs on the free sulfhydryl and disulfide bonds of gluten. CWF:
carrot whole flour; CDF: carrot dietary fiber; CPs: carrot polyphenols. Different letters in the same
filling pattern denote significant differences among different samples (p < 0.05).

However, it should be noted that CPs served as a source of antioxidants, promoting
the reduction of disulfide bonds (SS) to free sulfhydryl groups (-SH). The results suggest
that disulfide bond formation occurs primarily via intramolecular reactions, and this
effect is strongly outweighed by the antioxidant properties of CPs. Jia et al. [47] reported
esterification of phenolic acid-facilitated protein network formation via covalent and non-
covalent cross-linking in gluten systems. Manu et al. [48] showed a significant positive
correlation between disulfide bond content and wheat-based products hardness. CDF
reduced the disulfide bond and caused a decrease in the hardness of the steamed cake.

3.3.2. Intermolecular Interaction Force

Hydrogen bonds play a role in stabilizing the gluten network structure, and a hy-
drophobic interaction refers to the force formed on the hydrophobic side of the protein
to avoid water molecules. Protein molecules build the gluten network structure through
hydrogen bonds, hydrophobic interactions, and other forces, and the number of these
chemical bonds and the ratio of each play a decisive role in the gluten network [49].

The effect of CWF, CDF, and CPs on the intermolecular interaction of gluten is shown in
Figure 5. It is shown that ionic bonds contribute little to the formation of wheat gluten [50].
Shewry et al. [51] showed that protein peptide chains were mainly maintained by hydrogen
bonds, and when the hydrogen bond was exposed, the peptide chains were randomly
arranged and aggregated with each other, and the hydrogen bond made the peptide chains
form a stable structure. The hydrogen bond content of CWF, CDF, and CPs in gluten were
higher than in the control. The increase in hydrogen bonds indicated that CWF significantly
promoted hydrogen bond cross-linking between CPs and gluten molecules in the system.
Qin et al. [52] reported that the addition of tea polyphenols increased the internal hydrogen
bond of gluten. Nawrocka et al. [53] demonstrated that dietary fiber enhanced the hydrogen
bond interactions of gluten. CWF reduced the hydrophobic interactions of gluten compared
to the control. CDF and CPs also inhibited the hydrophobicity of gluten. In accordance
with a study reported by Yang et al. [54], insoluble dietary fiber from apples exerted an
inhibitory effect on hydrophobic interactions to strengthen the structure of the gluten
network. CPs caused gluten to form more hydrogen bonds, which replaced hydrophobic
bonds, resulting in fewer hydrophobic interactions [55]. In conclusion, CWF increased the
hydrogen bond and decreased the hydrophobic interaction of gluten under the combined



Foods 2025, 14, 1964 10 of 18

influence of CDF and CPs, and CPs contributed more than CDF. CPs stabilized the gluten
structure by strengthening the hydrogen bond, causing an enhancement in the specific
volume of steamed cake [56].

Figure 5. Effect of CWF, CDF, and CPs on the noncovalent bond of gluten. CWF: carrot whole flour;
CDF: carrot dietary fiber; CPs: carrot polyphenols. Different letters on the same fill pattern denoted
significant differences among different samples (p < 0.05).

3.3.3. Secondary Structure

The secondary structure of proteins is intricately linked to the structure and strength
of their networks. The region of amide I, ranging from 1700 to 1600 cm−1, was used to
quantify the proportion of the protein’s secondary structure. The regions at 1600–1644 and
1685–1700 cm−1 correspond to the β-sheet, followed by 1652–1660 cm−1 to the α-helix,
1660–1685 cm−1 to the β-turn, and 1644–1652 cm−1 to the random coil [57,58].

The effect of CWF, CDF, and CPs on the gluten secondary structure is shown in
Figure 6. It has been demonstrated that protein stability is correlated with the β-sheet
content, and the random coil is thought to be a disordered structure [59,60]. CWF, CDF,
and CPs decreased β-sheet content, and CWF, CDF, and CPs increased random coil con-
tent. CWF interfered with the development of gluten, leading to a shift from a stable
protein structure to a more unstable one. The wheat product was fortified with various
components such as dietary fiber, polyphenols, polysaccharides, and other bioactive phy-
tochemicals [61]. Previous studies had shown that these components could have a direct
or indirect impact on the secondary structure of gluten [62]. Gluten competed with CDF
for water absorption, diminishing the water utilization efficiency of gluten during the
formation process, promoting gluten aggregation [63,64]. The reduction in β-sheet con-
tent was correlated with the degree of protein aggregation [65]. Chlorogenic acid (CA) is
the major phenolic acid in carrots. Zhang et al. [66] reported that CA caused glutenin to
change from an organized structure to a disorganized structure. CA was placed inside
the hydrophobic space of gliadin, which elongated the structure of gliadin and made the
arrangement more disordered. As shown in Figure 6B, we can conclude that CDF and CPs
together influenced the secondary structure of gluten, but CDF exerted a greater influence
on the secondary structure of gluten than CPs. CDF resulted in a reduction in β-sheet
content, which subsequently influenced the quality characteristics of steamed cake and led
to a decrease in steamed cake hardness [67]. Results of the secondary structure confirmed
the consistency of previous covalent interaction results (Section 3.3.1). CWF disrupted
the disulfide bonds and unfolded the gluten network, resulting in fewer extended chains,
which led to a decrease in β-sheet content [68].
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Figure 6. (A) Effect of CWF, CDF, and CPs on the FTIR spectra of gluten. (B) Effect of CWF, CDF,
and CPs on the protein secondary structure. CWF: carrot whole flour; CDF: carrot dietary fiber; CPs:
carrot polyphenols. Different letters in the same filling pattern denoted significant differences among
different samples (p < 0.05).

3.4. Starch Properties
3.4.1. Pasting Properties

The pasting characteristics of starch are closely linked to the quality of starchy foods
and are a crucial parameter for assessing the cooking quality of starchy foods. Figure 7
represents the pasting profiles of starch. Table 4 presents the related pasting parameters of
the samples. The peak viscosity and final viscosity of CPs and CDF starch were less than
CK. CWF starch exhibited a significantly higher peak and final viscosity than the control.
The hydrophilic groups in CDF and CPs competed with starch for water absorption in the
mixed system, leading to a reduction in starch viscosity. The viscosity of CWF starch was
not affected by CDF and CPs and might be dominated by other components. Chen et al. [69]
observed that pectin can increase the viscosity of starch. CWF contained pectin [70], which
might enhance the viscosity of CWF starch.

Figure 7. Effect of CWF, CDF, and CPs on the pasting profiles of starch. CWF: carrot whole flour;
CDF: carrot dietary fiber; CPs: carrot polyphenols.

The breakdown indicated the structural integrity of starch granules during the pasting
process; the lower the breakdown, the more stable the starch granules [71]. CDF signif-
icantly resulted in an increase in the breakdown value, and CPs slightly increased the
breakdown value compared with the control. The research revealed that CDF exerted a
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greater impact on the breakdown value than CPs, suggesting that CDF had a greater role in
the breakdown value of CWF starch.

Table 4. Effect of CWF, CDF, and CPs on the pasting characteristics of starch.

Samples PV (mPa·s) BD (mPa·s) FV (mPa·s) SB (mPa·s) PT (◦C)

Control 4287.50 ± 28.99 c 583.00 ± 50.91 a 5532.50 ± 14.85 c 1878.00 ± 24.04 c 77.85 ± 0.57 b

CWF 4593.50 ± 26.16 d 892.00 ± 59.40 b 5814.00 ± 5.66 d 2062.50 ± 9.19 d 77.50 ± 0.07 b

CDF 2507.00 ± 8.49 a 2206.00 ± 21.21 c 448.00 ± 9.90 a 147.00 ± 22.63 a 69.43 ± 0.04 a

CPs 4098.50 ± 33.23 b 610.50 ± 10.61 a 5140.00 ± 26.87 b 1652.00 ± 16.97 b 81.45 ± 0.00 c

Note: PV: peak viscosity; FV: final viscosity; BD: breakdown viscosity; SB: setback viscosity; and PT: pasting
temperature. CWF: carrot whole flour; CDF: carrot dietary fiber; CPs: carrot polyphenols. Distinct letters within a
column denote significant differences (p < 0.05).

The setback value is an index to measure the short-term retrogradation of the starch
system. CWF increased the setback value compared to the control. Starch systems with
CDF and CPs showed lower setback values, which were similar to the results of Li et al. [72].
CDF and CPs acted as a physical barrier among the starch chains, and they hindered the
arrangement of starch chains during cooling. CDF and CPs had no influence on the setback
value of CWF starch, and might be dominated by other components.

The thermal stability of starch was affected by the increase or decrease in pasting
temperature [73]. CDF decreased the pasting temperature of starch, indicating that CDF
disrupted the thermal stability of starch, while CPs increased the pasting temperature of
starch, which increased the thermal stability of wheat starch.

In conclusion, in terms of pasting characteristics, the contribution of CDF was greater
than that of CPs, and CDF destabilized the starch granules, which had a negative effect on
the stability of the wheat product.

3.4.2. Short-Range Ordered Analysis

The FT-IR spectra of samples are presented in Figure 8A. All samples had similar char-
acteristic peaks at 3600–3000 cm−1. This characteristic peak usually indicated the formation
of O-H bonds between and within molecules [74]. The absorption peaks near 2930 cm−1

and 1647 cm−1 are characteristic of the antisymmetric stretching vibration of CH2 and aro-
matic C=C stretching, respectively [75,76]. The observed spectral alterations imply that the
formation of CWF-starch complexes potentially entails synergistic interactions modulating
both hydrogen-bonding architectures and bioactive polysaccharide constituents.

Figure 8. Effect of CWF, CDF, and CPs on the FTIR spectra of starch. (A) Effect of CWF, CDF,
and CPs on the XRD spectra of starch (B). CWF: carrot whole flour; CDF: carrot dietary fiber; CPs:
carrot polyphenols.

The absorption peak at 1047 cm−1 corresponded to the crystalline region, the ab-
sorption peak at 1022 cm−1 corresponded to the amorphous region, and the degree of



Foods 2025, 14, 1964 13 of 18

starch order was reflected by the ratio of the intensities of the two peaks [77]. The starch’s
organized structure was also related to the value of R995/1022, which indicated that some
degree of double helix formation occurred [78]. As shown in Table 5, CWF, CDF, and
CPs reduced the short-range order of starch. CDF decreased the width of the absorption
peak at 3600–3000 cm−1 of starch, indicating hydrogen bond breaking [79]. The hydroxyl
structure of CDF cannot be well aggregated with free starch chains through the hydrogen
bond, disrupting the double helix structure of starch [80]. Liang et al. [81] revealed that the
incorporation of insoluble dietary fiber decreased the R1047/1022 values of the gel system,
indicating that the incorporation of insoluble dietary fiber decreased the stability of the gel
structure. CPs decreased the R1047/1022 and R995/1022 ratio, which suggests that CPs
inhibited the formation of short-chain self-assembly and stabilization of helical conforma-
tions [82]. Similarly, Li et al. [83] reported that CA interacted with starch and disrupted
the ordered structure of starch. In summary, CDF and CPs had a negative effect on starch
structure, characterized by a decrease in short-range order. CDF and CPs disrupted the
short-range order of starch and its thermal stability, bringing about a reduction in steamed
cake springiness and cohesiveness, respectively [84].

Table 5. Effect of CWF, CDF, and CPs on the relative crystallinity and IR ratio of starch.

Samples R1047/1022 R995/1022 Relative Crystallinity

Control 0.978 ± 0.017 c 0.989 ± 0.010 c 29.64 ± 0.38 a

CWF 0.918 ± 0.008 b 0.948 ± 0.006 b 31.48 ± 0.06 b

CDF 0.895 ± 0.009 ab 0.892 ± 0.002 a 32.29 ± 0.97 b

CPs 0.880 ± 0.002 a 0.898 ± 0.008 a 32.72 ± 0.79 b

Note: CWF: carrot whole flour; CDF: carrot dietary fiber; CPs: carrot polyphenols. Distinct letters within a column
denote significant differences (p < 0.05).

3.4.3. X-Ray Diffraction

The interior of the starch granule consisted of crystalline and amorphous regions
and was usually considered a semi-crystalline or partially crystalline polymer. The crys-
talline nature of starch gives it a distinctive X-ray diffraction pattern, which is generally
classified as A-type, B-type, and C-type [85]. Figure 8B presents the XRD patterns for the
starch samples.

All the starches had characteristic diffraction peaks at approximately 2θ of 15, 17, 18,
and 23◦, which suggests that these starches all belong to the A-type crystal structure [86].
Another prominent peak was approximately located at a 2θ value of 20◦ and identified
as V-type crystallinity [87]. CWF-, CDF-, and CP-fortified starches exhibited higher peak
intensities at 2θ of 14.8, 16.9, 17.8, and 19.8◦ compared to CK, indicating that CWF facilitated
the recrystallization of starch [30]. Relative crystallinity results are presented in Table 5.
CWF starch, CDF starch, and CP starch had higher crystallinity than CK. The competition
between the hydrophilic groups of CDF and water molecules leads to weakened binding be-
tween starch and water and increased interactions between starch chains [88]. Liu et al. [89]
showed that insoluble dietary fiber from rice bran altered the diffraction peak values of
the crystalline structure of starch and significantly increased the relative crystallinity. CPs
could bind to the starch chains and cause the rearrangement of the starch chains [90]. As
shown in Table 5, CDF and CPs together influenced starch crystallinity. The addition of
CWF increased the crystallinity of the starch, indicating that the presence of CWF made
the steamed cake susceptible to staling. CDF and CPs caused an elevation in crystallinity,
leading to a loss of steamed cake springiness [91].

4. Conclusions
This study aimed to analyze the effect of carrot flour on the quality of steamed cake.

The results showed that the quality of the steamed cake was better at an additional level of
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12%. The interaction between CWF and protein–starch is crucial for making carrot steamed
cake. The effects of CWF and its active ingredients (CDF and CPs) on gluten properties
and starch properties were studied. In terms of gluten properties, CWF induced a 35.16%
reduction in the disulfide bond and converted the β-sheet to a random coil mainly due to
CDF, concomitantly lowering the hardness of steamed cake by 13.3%. CWF caused gluten to
form more hydrogen bonds (from 0.335 to 0.566 µmol/g) (p < 0.05), consequently increasing
the specific volume (from 2.29 to 2.38 mL/g) (p < 0.05). Moreover, CPs contributed more
than CDF. In terms of starch properties, due to the combined effects of CDF and CPs, CWF
reduced the starch short-range order by 6.13% and increased the breakdown value by
53%, decreasing the elasticity and cohesiveness. CDF and CPs caused starch molecules
to rearrange, leading to an increase in crystallinity by 6.2% and reducing the springiness
of the steamed cake. In the future, we can mitigate the adverse effects of CWF on gluten
and starch by using enzymes to obtain wheat carrot products that combine high taste
quality and health. This study establishes a theoretical foundation for the development of
functional wheat-carrot-based products and contributes to dietary intervention strategies
for chronic disease prevention.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods14111964/s1, Table S1: Sensory evaluation standard of
steamed cake, Table S2: Sensory properties of steamed cakes with different levels of carrot whole flour.
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