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Abstract 
To tune and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest 
radiographs (CXRs) from different patient populations.

A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-
19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity 
(pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from 4 test sets, including 3 from the United States 
(patients hospitalized at an academic medical center (N = 154), patients hospitalized at a community hospital (N = 113), and 
outpatients (N = 108)) and 1 from Brazil (patients at an academic medical center emergency department (N = 303)). Radiologists 
from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores 
as a measure of model performance (Pearson R). The Uniform Manifold Approximation and Projection (UMAP) technique was 
used to visualize the neural network results.

Tuning the deep learning model with outpatient data showed high model performance in 2 United States hospitalized patient 
datasets (R = 0.88 and R = 0.90, compared to baseline R = 0.86). Model performance was similar, though slightly lower, when 
tested on the United States outpatient and Brazil emergency department datasets (R = 0.86 and R = 0.85, respectively). UMAP 
showed that the model learned disease severity information that generalized across test sets.

A deep learning model that extracts a COVID-19 severity score on CXRs showed generalizable performance across multiple 
populations from 2 continents, including outpatients and hospitalized patients.

Abbreviations: AP = anterior-posterior, CXR = chest radiograph, COVID-19 = coronavirus disease 2019, mRALE = modified 
radiographic assessment of lung edema, PXS = pulmonary X-ray severity, PA = posterior-anterior, UMAP = uniform manifold 
approximation and projection.
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1. Introduction
Chest radiographs (CXRs) are routinely obtained in symptomatic 
patients with suspected or confirmed coronavirus disease 2019 
(COVID-19) infection. While CXRs have limited sensitivity for 
the diagnosis of COVID-19,[1–3] the severity of radiographic lung 
findings has been associated with worse clinical outcomes.[4–6] 
Deep learning-based techniques have been used to automate the 
extraction of measures of lung disease severity from CXR image 
data, which correlate with manual scores of disease severity by 
radiologists and can be potentially used for patient risk stratifi-
cation.[7–12] These techniques are promising; however, the perfor-
mance of CXR deep learning models are known to show variable 
generalization on external data.[13] Thus, validation on data from 
different sources and patient populations is essential before such 
models can be deployed in clinical practice.

In this study, we aimed to test the generalizability of a previ-
ously published deep learning-based model for automated assess-
ment of COVID-19 pulmonary disease severity, the Pulmonary 
X-Ray Severity (PXS) score model.[7] A limitation of the original 
model was that it was trained and tested on CXRs from patients 
hospitalized with COVID-19, who tend to have more severe dis-
ease compared to the general population infected by COVID-19. 
In addition, portable anterior-posterior (AP) CXRs are overrep-
resented compared to standard posterior-anterior (PA) CXRs, 
which may be more common in outpatient settings. In this work, 
we tuned the PXS score model by training with primarily out-
patient CXRs. We tested the hypothesis that this the PXS score 
model would generalize to different patient populations model 
by assessing performance in comparison to manual radiologist 
annotations for lung disease severity in 4 different test sets with 
different technical and patient characteristics, including CXRs 
acquired from patients in 2 countries (United States and Brazil).

2. Methods
This retrospective study was reviewed and exempted by the 
Institutional Review Board of Massachusetts General Brigham 
(Boston, USA), with waiver of informed consent. The parts of the 

study involving data from Hospital Santa Paula were approved 
by the Institutional Review Board of the Universidade Federal de 
São Paulo (São Paulo, Brazil). The hospitals involved in this study 
include Massachusetts General Hospital (Hospital 1) (Boston, 
USA), Hospital Santa Paula(Hospital 2) (São Paulo, Brazil), and 
Newton Wellesley Hospital (Hospital 3) (Newton, USA), Hospitals 
1 and 2 are large academic medical centers, while Hospital 3 is a 
community hospital in the Boston metropolitan area.

2.1. PXS score base model

For the base model for this study, we used a previously published 
convolutional Siamese neural network-based model that can 
extract a continuous measure of lung disease severity from CXRs 
in patients with COVID-19, the PXS score model.[7] In brief, a 
Siamese neural network is composed of twinned subnetworks 
with identical weights; paired images can be passed as inputs, 
each image passing to a subnetwork.[14] The Euclidean distance 
between the last fully connected layers of the subnetworks can 
serve as a continuous measure of disease severity similarity 
between the 2 input images.[15] In the original PXS score model, 
a Siamese neural network composed of twinned DenseNet121 
networks[16] was pretrained using ~160,000 anterior-posterior 
(AP) chest radiographs from the publicly available CheXpert 
dataset.[17] The model was then trained using 314 admission 
CXRs from hospitalized patients with COVID-19 at Hospital 1 
annotated by radiologists using a manual scoring system for lung 
disease severity.[7] During model inference, the image-of-interest 
was compared to a pool of normal CXRs from CheXpert, and 
the median of the Euclidean distances between the image-of-in-
terest and each normal CXR served as the PXS score. Please refer 
to the previously published work for the technical details of this 
implementation.[7] See Figure 1 for a study design schematic.

2.2. Chest radiograph data

We assembled 2 new CXR DICOM datasets for this study:
(1) Hospital 1 Outpatient Dataset. This dataset was com-

posed of 358 CXRs from 349 unique patients who presented 

Figure 1.  Schematic of study design. Previously published Siamese neural network-based model for extracting lung disease severity from CXRs[7] was tuned 
using new CXR data and evaluated in 4 test sets.
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for outpatient imaging at urgent care or respiratory illness clin-
ics associated with Hospital 1 and tested positive for COVID-19 
by nasopharyngeal swab RT-PCR obtained at their outpatient 
visit from March 15, 2020 to April 15, 2020. Raw DICOM 
data for the frontal view CXRs was extracted and anonymized 
directly from the institutional PACS. This dataset was composed 
of mostly CXRs acquired in the posterior-anterior (PA) position 
(342, 96%), with the remainder acquired in the anterior-poste-
rior (AP) position (16, 4%). Some radiographs in this data set 
overlapped with the original PXS score model training data set 
(22, 6%) because the outpatient CXR was used as the admission 
CXR in some patients.[7] Thus, in partitioning this outpatient 
CXR dataset, we included the overlapping radiographs in the 
planned training/validation partition and then randomly allo-
cated the remaining CXRs up to a 70:30 distribution (250 for 
training/validation and 108 for testing). The training/valida-
tion partition was then randomly partitioned 90:10 (225 for 
training, 25 for validation). Associated age and sex data were 
extracted from the electronic health record.

(2) Hospital 2 Emergency Test Set. This dataset was com-
posed of 303 CXRs from 242 unique patients who presented 
to the emergency department with suspected COVID-19 at 
Hospital 2. These CXRs were sampled from patients from 
February 1, 2020 to May 30, 2020 with at least 1 COVID-19 
RT-PCR result within ±3 days of the CXR. Sampling was strati-
fied on RT-PCR test results, so that 70% of CXRs in the dataset 
would have at least 1 positive associated test and 30% would 
have all negative tests. In addition, a subset of patients was per-
mitted to have multiple CXRs in the dataset (49 with 2 CXRs, 
6 with 3 CXRs). Raw DICOM data for the frontal view CXRs 
was extracted and anonymized from the institutional PACS. The 
AP vs PA view position was not available in the DICOM meta-
data for this data. Age and sex data were extracted from the 
electronic health record.

In addition to these 2 data sets that were created for this study, 
we also used previously published data sets for model testing, 
including 154 admission CXRs from 154 unique patients hos-
pitalized for COVID-19 at Hospital 1 (Hospital 1 Inpatient Test 
Set) and 113 admission CXRs from 113 unique patients hospi-
talized for COVID-19 at Hospital 3 (Hospital 3 Inpatient Test 
Set).[7] X-ray equipment manufacturer information from all 4 
test sets were extracted from the DICOM metadata tags.

The datasets generated during and/or analyzed during the 
current study are not publicly available as the datasets are not 
entirely anonymized of protected health information, but are 
available from the corresponding authors on reasonable request.

Raw pixel data from the CXR DICOMs used in training, val-
idation, and testing were preprocessed using the same steps as 
used in the baseline PXS score model,[7] including conversion to 
8-bit, correction of photometric inversion, histogram equaliza-
tion, and conversion to a JPEG file.

2.3. Radiologist annotations for lung disease severity

We used a manual scoring system for COVID-19 lung dis-
ease severity on CXRs previously used for training of the PXS 
score model, which is a modified version of the Radiographic 
Assessment of Lung Edema scoring system (mRALE).[7,18] In 
brief, from the frontal view of the CXR, each lung is assigned 
a score from 0 to 4 for extent of consolidation or ground glass/
hazy opacities (up to 0%, 25%, 50%, 75%, 100%) and a score 
from 1 to 3 for overall density (hazy, moderate, dense). The sum 
of the products of the extent and density scores for each lung is 
the mRALE score (range from 0 to 24). Higher mRALE scores 
have been associated with worse clinical outcomes in COVID-
19.[5] Two diagnostic radiologists with thoracic subspecialty 
expertise (B.P.L., D.P.M.) from Hospital 1 independently anno-
tated the 358 CXRs from the Hospital 1 Outpatient Dataset for 
mRALE, viewing the images on a diagnostic PACS viewer. Three 

diagnostic radiologists with nonthoracic subspecialty training 
(G.C.A.C., M.S.T., S.F.F.) from Hospital 2 independently anno-
tated the 303 CXRs from the Hospital 2 Emergency Test Set 
for mRALE, viewing the images using the MD.ai annotation 
platform (New York, United States). The average of the rater 
mRALE scores served as the mRALE score for each CXR. All 
raters had previously rated 10 CXRs using mRALE with feed-
back on their scores, though the Hospital 1 raters had more 
experience, previously rating ~300 studies independently.

To assess the correlation between the radiologists from both 
hospitals in applying the mRALE score, the 2 thoracic radiol-
ogists from Hospital 1 rated a subset of 69 studies from the 
Hospital 2 dataset in PACS viewers. This subset was composed 
of studies with mRALE ≥ 3.0 assigned by the Hospital 3 raters, 
in order to focus reassessment on abnormal lungs, rather than 
normal/ near-normal lungs.

2.4. PXS score model retraining

The base PXS score Siamese neural network model was retrained 
(“tuned”) using the 250 CXR training/validation partition of the 
Hospital 1 Outpatient Dataset, using the same training strategy 
with mean square error (MSE) loss as previously reported.[7] In 
brief, random CXR image pairs were fed to the Siamese neural 
network. The difference between the Euclidean distance between 
the final fully connected layers of the network and the absolute 
difference in mRALE scores between the 2 input images served 
as the “error” for the MSE loss function. During model training 
and validation, 1600 and 200 input image pairs were randomly 
sampled per epoch, respectively. For training, input images were 
randomly rotated ±5° and then randomly cropped to a scale 
of 0.8-1 and resized to 320 x 320 pixels. For validation, input 
images were resized to 336 x 336 pixels and center cropped 
to 320 x 320 pixels. The model training was implemented in 
Python (version 3.6.9) with the Pytorch package (version 1.5.0), 
using the Adam optimizer[19] (initial learning rate = 0.00002, β1 
= 0.9, β2 = 0.999). Training/validation batch sizes of 8 and early 
stopping at 7 epochs without improvement in validation loss 
were set. The lowest validation loss model was saved for eval-
uation. The code used for model training is available at https://
github.com/QTIM-Lab/PXS-score.

2.5. PXS score model inference

The PXS score for an image-of-interest is the median of 
Euclidean distances calculated from paired image inputs passed 
through the Siamese neural network, where each paired image 
input consists of the image-of-interest and an image from a pool 
of N normal CXRs. In this study, we created a set of 15 manu-
ally curated normal chest x-rays with varying body habitus and 
field-of-view from CXRs from Hospital 1 to serve the pool of 
normal CXRs (age range 18–72 years, 7 women and 8 men).

In some CXR images, primarily in the Hospital 3 dataset, 
large black borders may surround the actual CXR. Immediately 
before the histogram normalization step described in the pre-
processing step described above, a Python script for automated 
rectangular cropping for black borders was applied to the image 
(i.e. border pixels with normalized values <2 were cropped). 
Code used for model inference and this cropping step is also 
available at the GitHub link above.

2.6. Statistics/data visualization

To evaluate differences in sex between the datasets, we used the 
Chi-square test. To evaluate differences in age and mRALE scores 
(treated as a continuous variable from 0 to 24), we used the 
Kruskal-Wallis test and post hoc Mann-Whitney tests (2-sided). 
Interrater correlations for mRALE labeling and correlations 

https://github.com/QTIM-Lab/PXS-score
https://github.com/QTIM-Lab/PXS-score
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between PXS score and mRALE were assessed using Pearson 
correlations (R). Statistical tests were performed using the scipy 
Python package (version 1.1.0), with an a priori threshold for 
statistical significance set at P < 0.05.

The Seaborn Python package (version 0.10.0) was used 
for scatterplot data visualizations. To perform dimensionality 
reduction for visualizing the neural network results, we used 
the Python implementation of UMAP (Uniform Manifold 
Approximation and Projection) (version 0.4.2) (number of 
neighbors = 20, minimum distance = 0.6, metric = correla-
tion).[20,21] Each test set image was passed through a single 
subnetwork of the Siamese neural network and the last fully 
connected layer (1000 nodes in DenseNet121) from each image 
was used as an input for UMAP.

3. Results

3.1. Chest radiograph dataset characteristics

The Hospital 1 Outpatient Dataset (including training/val-
idation and test partitions) and Hospital 2 Emergency Test 
Set characteristics are summarized in Table 1. The Hospital 1 
Inpatient Test Set and Hospital 3 Inpatient Test Set characteris-
tics were previously published.[7] There were significantly differ-
ent age distributions between the test sets (P = 0.003) (Fig. 2A).

The Hospital 1 Outpatient Test Set patient ages were signifi-
cantly lower compared to the Hospital 1 and 3 Inpatient Test 
Sets (median 53 vs 59 years, P = 0.003, and median 53 vs 74 
years, P < 0.001, respectively). The Hospital 2 Emergency Test 
Set ages were significantly lower than the Hospital 1 Outpatient 
Test Set ages (median 41 vs 53 years, P < 0.001). There was 
a significantly higher proportion of CXRs from women in the 
dataset from Brazil compared to the combined datasets from the 
United States (58% vs 45%, P = 0.001). The X-ray equipment 
used to obtain these CXRs came from a variety of manufactur-
ers that differed by dataset (Table 2).

3.2. Radiologist annotations of COVID-19 lung disease severity

The correlation between the 2 raters at Hospital 1 for assign-
ing mRALE scores to the 358-CXR Hospital 1 Outpatient 
Dataset was high (R = 0.89, P < 0.001). The correlation 
between the 3 raters at Hospital 2 for assigning mRALE 
scores to the 303-CXR Hospital 2 Emergency Test Set was 
lower (R=0.85, 0.81, and 0.84, for each pairwise compari-
son; P<0.001 in all comparisons). In the 69-CXR subset of 
the Hospital 2 Emergency Test Set that the Hospital 1 raters 
also evaluated, the correlation between the average Hospital 
1 and average Hospital 2 rater mRALE scores was 0.86 (P 
< 0.001). However, the individual Hospital 2 rater mRALE 

Table 1.

Summary of dataset characteristics and radiologist mRALE scores.

 

Hospital 1 Outpatient Dataset (United States) Patients presenting for 
outpatient imaging who tested positive by COVID-19 RT-PCR

Hospital 2 Emergency Test Set (Brazil) Patients presenting to 
emergency department with suspected COVID-19

All Training/validation set Outpatient test set P-value* All RT-PCR positive RT-PCR negative P-value† 

CXRs, N 358 250 108  303 203 100  
Unique Patients, N 349 248 106  242 167 75  
Age (years),median (Q1–Q3) 53 (41–64) 52 (41–65) 53 (41–63) 0.9 41 (33–52) 40 (33–50) 44 (33–52) 0.2
Sex, N women (%) 186 (52%) 132 (53%) 54 (50%) 0.7 175 (58%) 113 (56%) 62 (62%) 0.4
mRALE, median (Q1–Q3) 1.0 (0–3.5) 1.0 (0–3.0) 1.0 (0–4.5) 0.2 0.3 (0–2.7) 0.3 (0–2.8) 0.3 (0–1.8) 0.6
mRALE, N (%)         
 � mRALE = 0 123 (34%) 88 (35%) 35 (32%)  122 (40%) 84 (41%) 38 (38%)  
 � 0 < mRALE ≤ 4 164 (46%) 122 (49%) 42 (39%)  126 (42%) 78 (38%) 48 (48%)  
 � 4 < mRALE ≤ 10 58 (16%) 30 (12%) 28 (26%)  29 (10%) 22 (11%) 7 (7%)  
 � mRALE > 10 13 (4%) 10 (4%) 3 (3%)  26 (9%) 19 (9%) 7 (7%)  

*P-value for comparison of internal test set with training/validation set; 
†p-value for comparison of patients who tested positive vs negative by COVID-19 RT-PCR.
mRALE, Modified Radiographic Assessment of Lung Edema, N, Number, Q1–Q3, Quartile 1 to Quartile 3 (i.e. interquartile range).

Figure 2.  Boxplots show variable distributions in patient age (A) and lung disease severity by mRALE score (B) in the different CXR test sets. Boxplots show 
the median and interquartile range (IQR), where the whiskers extend up to 1.5 x IQR.



5

Li et al.  •  Medicine (2022) 101:29� www.md-journal.com

scores showed variable correlation with the average Hospital 
1 raters (R = 0.65, 0.75, 0.86).

There were significantly different mRALE distributions 
between the test sets (P=0.011) (Fig. 2B). The mRALE scores 
were significantly lower in the Hospital 1 Outpatient Dataset 
compared to the Hospital 1 and 3 Inpatient Test Sets (median 
1.0 vs 4.0, P<0.001, and median 1.0 vs 3.3, P<0.001). The 
mRALE scores in the Hospital 2 Emergency Test Set were sig-
nificantly lower compared to each of the other test sets (all 
P<0.001).

3.3. Deep learning model performance and testing of 
generalizability

The PXS score model tuned using the Hospital 1 Outpatient 
Training/Validation Set showed similar correlation between 
the model output (PXS score) and radiologist-determined 
mRALE scores in the Hospital 1 Inpatient and Hospital 
3 Inpatient Test Sets (R = 0.88 and R = 0.90, respectively,  
P < 0.001; compared to R = 0.86 and R = 0.86 using the base-
line model) (Fig. 3A, 3D)

Table 2.

Summary of x-ray equipment manufacturers extracted from DICOM metadata.

Dataset Manufacturer (headquarters) Number of CXRs 

Hospital 1 inpatient test set (United States) Agfa (Mortsel, Belgium) 136
GE Healthcare (Chicago, USA) 1
Varian (Palo Alto, USA) 4
Not available 13

Hospital 1 outpatient test set (United States) Agfa (Mortsel, Belgium) 108
Hospital 2 emergency test set (Brazil) Fujifilm Corporation (Tokyo, Japan) 303
Hospital 3 inpatient test set (United States) Agfa (Mortsel, Belgium) 33

Caresteam (Rochester, USA) 72
Kodak (Rochester, USA) 2
Philips (Amsterdam, Netherlands) 2
Siemens (Munich, Germany) 2

Figure 3.  Scatterplots show the correlation between radiologist-determined mRALE score and the deep learning-based PXS score in the Hospital 1 Inpatient 
Test Set (R = 0.88) (A), Hospital 1 Outpatient Test Set (R = 0.86) (B), Hospital 2 Emergency Test Set (R = 0.85) (C), and Hospital 3 Inpatient Test Set (R = 0.90) 
(A). Linear regression 95% confidence intervals are shown in each scatterplot.
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We further tested this tuned PXS score model on the Hospital 
1 Outpatient and Hospital 2 Emergency Test Sets, which showed 
that the model could generalize to these additional datasets (R = 
0.86 and R = 0.85 respectively, P < 0.001) (Fig. 3B, C). However, 
there was a steeper slope for the regression on the Hospital 2 
Emergency Test Set data (slope = 2.3) vs the slope of the other 
test sets (in aggregate, slope = 0.6). While the model learned a 
measure of disease severity as evidenced by the significant cor-
relation between mRALE and PXS scores, for this specific test set, 
the relationship between mRALE and PXS was scaled differently.

3.4. Visualizing test set relationships using dimensionality 
reduction

When CXRs from all 4 test sets were analyzed in aggregate 
(total N = 678), UMAP showed that the CXRs appear to clus-
ter principally in relation to similar disease severity (PXS and 
mRALE scores) (Fig. 4A, B). Contrastingly, there was substan-
tial overlap between the CXRs from different test sets (Fig. 4C). 
These findings support the finding that the PXS score model 
learned a generalizable representation of lung disease severity. 
However, the normal or near-normal severity CXRs appear to 
have a larger cluster in the Hospital 2 Emergency Test Set com-
pared to the other test sets (Fig. 4C). We visually inspected these 
images and did not find a systematic perceptible difference in 
view position, body habitus, heart size, or x-ray exposure.

4. Discussion
We demonstrated the generalizability of a deep learning-based 
PXS score model for assessment of a quantitative measure of 
COVID-19 lung disease severity on CXRs on 4 test sets reflec-
tive of different populations from the United States and Brazil. 
The PXS model was originally trained using admission CXRs 
from hospitalized COVID-19 patients.[7] In this study, we found 
that tuning the deep learning model using CXR data from out-
patients showed similar performance on the test sets from hos-
pitalized patients. Based on the correlation of the model results 
with manual radiologist annotations for lung disease severity in 
multiple test sets, the PXS score model does appear to generalize 
to different patient cohorts. This may be because the model was 
able to learn from different distributions of data, including both 
inpatients as in the original model and outpatients. Further sup-
porting this conclusion, a dimensionality reduction technique 
showed that the CXRs from different test sets cluster primarily 
by lung disease severity, as opposed to by test set source.

While the correlation between the radiologist-determined 
severity score (mRALE) and the deep learning-based PXS score 
was generalizable between test sets, there was a difference in the 
mRALE/PXS slope between the test sets from the United States 
and Brazil. Thus, differences in calibration between mRALE 
and PXS scores may occur for CXRs coming from different 
sources and this needs to be considered before the use of such a 
model clinically. This phenomenon could be due to systematic 
differences in x-ray equipment manufacturers and acquisition 
technique (including parameters like x-ray tube voltage and cur-
rent), which can alter the properties of tissue contrast in the 
image. Subjectively, our radiologist raters found a perceptible 
difference in exposure/contrast in the images from Brazil vs the 
United States. The PXS score model attempts to address this 
issue using histogram normalization, but this transformation 
may not eliminate all systematic differences. Model training on 
data from an increased variety of vendors could help address 
this calibration issue and is a direction of future research.

Despite the calibration issue, the finding that the PXS score 
model was able to correlate with manual radiologist annota-
tions at multiple test sites has potential clinical application for 
the reproducible assessment of COVID-19 lung disease sever-
ity at different sites. This reproducible assessment is important 

because CXR findings have been associated with worse clin-
ical outcomes in patients with COVID-19,[4–6] which may be 
useful for clinical risk stratification, and there is interrater 
variation between radiologist assessments (which will be more 
pronounced in the “real world” where radiologists are not uni-
formly trained on the use of a scoring system). Another possi-
ble application is for radiologist worklist prioritization, which 
could help the expedite identification of the sickest patients.[22]

Previous work on developing deep-learning based models to 
assess COVID-19 lung disease severity on CXRs have shown 
correlations between various systems of manual radiologist 

Figure 4.  Dimensionality reduction using UMAP shows the relationships 
between CXR data passed through the deep learning-based PXS score 
model from all 4 test sets (total N = 678), color coded for PXS score (A), 
mRALE score (B), and test set (C). For the legend in (C), H indicates Hospital. 
Across the different test sets, a representation of lung disease severity is 
learned by the PXS score model.
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assessments and deep learning outputs, though often without 
external testing. For example, Cohen et al split their 94 PA CXR 
dataset 50:50 for training and testing,[12] Zhu et al split their 
131 portable CXR dataset 80:20 for training and testing,[8] and 
Blain et al reported performance on a 65 CXR dataset using 
5-fold cross validation.[10] On the other hand, work from Amer 
et al and Signoroni et al[9,11] does include external testing of 
their deep learning models on CXRs from the Cohen et al data-
set,[12] and Barbosa et al also perform external testing on an 86 
CXR dataset.[23] Future work in this field should continue to 
include assessment of model performance across multiple sites, 
to characterize generalizability for different x-ray acquisition 
techniques and patient populations before these artificial intel-
ligence-based tools can be deployed for possible clinical use. In 
particular, training and testing using heterogeneous patient pop-
ulations will be critical for ensuring that such models benefit 
diverse patients and avoid the worsening of health disparities.[24]

There are limitations to this study. First, the reference stan-
dard label used for disease severity assessment on CXRs is 
determined by radiologists, which has inherent variability. 
Furthermore, the United States CXRs were annotated by tho-
racic subspecialist radiologists, while the Brazilian CXRs 
were annotated by nonthoracic subspecialty training, leading 
to a potential systematic difference in the reference standard 
between these datasets. We used the average of multiple radiol-
ogist raters for the reference standard to decrease the variabil-
ity in this study. However, other reference standards such as 
CT-derived scores may be promising, as has been found using 
digitally reconstructed radiographs from CT.[23] Second, while 
studying the technical properties of deep learning-based models 
like PXS score is necessary, making such CXR-based severity 
scores clinically useful in addressing the COVID-19 pandemic 
is a different avenue of important research. Future work into 
how radiologists and other clinicians can use the PXS score (and 
other developed lung disease severity scores) to guide patient 
management or workflows will be essential to deliver value.

In this work, we show that the performance of a deep learn-
ing model that extracts a COVID-19 severity score on CXRs 
can generalize across multiple populations from 2 continents, 
including outpatients and hospitalized patients.

Acknowledgment
We thank members of the QTIM Lab at Massachusetts General 
Hospital, and the MGH and BWH Center for Clinical Data 
Science for their support in this work.

Author contributions
Study concepts/study design, M.D.L., F.C.K., J.K.C.; data acqui-
sition and data analysis/interpretation, all authors; manuscript 
drafting or manuscript revision for important intellectual con-
tent, all authors; approval of final version of submitted manu-
script, all authors.

References
	 [1]	 Wong HYF, Lam HYS, Fong AH-T, et al. Frequency and Distribution 

of Chest Radiographic Findings in Patients Positive for COVID-19. 
Radiology. 2019;296:E72–8.

	 [2]	 Smith DL, Grenier J-P, Batte C, et al. A characteristic chest radiographic 
pattern in the setting of COVID-19 pandemic. Radiol Cardiothorac 
Imaging. 2020;2:e200280.

	 [3]	 Cozzi D, Albanesi M, Cavigli E, et al. Chest X-ray in new coronavirus 
disease 2019 (COVID-19) infection: findings and correlation with clin-
ical outcome. Radiol Medica. 2020;125:730–7.

	 [4]	 Toussie D, Voutsinas N, Finkelstein M, et al. Clinical and chest radiog-
raphy features determine patient outcomes in young and middle-aged 
adults with COVID-19. Radiology. 2020;297:E197–206.

	 [5]	 Joseph NP, Reid NJ, Som A, et al. Racial and ethnic disparities in dis-
ease severity on admission chest radiographs among patients admitted 
with confirmed coronavirus disease 2019: a retrospective cohort study. 
Radiology. 2020;297:E303–12.

	 [6]	 Kim HW, Capaccione KM, Li G, et al. The role of initial chest X-ray 
in triaging patients with suspected COVID-19 during the pandemic. 
Emerg Radiol. 2020;27:617–21.

	 [7]	 Li MD, Arun NT, Gidwani M, et al. Automated assessment and track-
ing of COVID-19 pulmonary disease severity on chest radiographs 
using convolutional siamese neural networks. Radiol Artif Intell. 
2020;2:e200079.

	 [8]	 Zhu J, Shen B, Abbasi A, et al. Deep transfer learning artificial intelli-
gence accurately stages COVID-19 lung disease severity on portable 
chest radiographs. PLoS One. 2020;15:e0236621.

	 [9]	 Signoroni A, Savardi M, Benini S, et al. End-to-end learning for semi-
quantitative rating of COVID-19 severity on chest X-rays. 2020. 
Available at: http://arxiv.org/abs/2006.04603 [accessed September 8, 
2020].

	[10]	 Blain M, Kassin MT, Varble N, et al. Determination of disease severity 
in COVID-19 patients using deep learning in chest X-ray images. Diagn 
Interv Radiol. 2020;27:20–7.

	[11]	 Amer R, Frid-Adar M, Gozes O, et al. COVID-19 in CXR: from detec-
tion and severity scoring to patient disease monitoring. 2020. Available 
at: http://arxiv.org/abs/2008.02150 [accessed September 11, 2020].

	[12]	 Cohen JP, Dao L, Roth K, et al. Predicting COVID-19 Pneumonia 
Severity on Chest X-ray with deep learning. Cureus. 2020;12:e9448.

	[13]	 Zech JR, Badgeley MA, Liu M, et al. Variable generalization perfor-
mance of a deep learning model to detect pneumonia in chest radio-
graphs: a cross-sectional study. PLoS Med. 2018;15:e1002683.

	[14]	 Bromley J, Bentz JW, Bottou L, et al. Signature verification using a 
“Siamese” time delay neural network. Int J Pattern Recognit Artif 
Intell. 1993;07:669–88.

	[15]	 Li MD, Chang K, Bearce B, et al. Siamese neural networks for continu-
ous disease severity evaluation and change detection in medical imag-
ing. NPJ Digit Med. 2020;3:1–9.

	[16]	 Huang G, Liu Z, van der Maaten L, et al. Densely connected con-
volutional networks. Proc - 30th IEEE Conf Comput Vis Pattern 
Recognition, CVPR 2017. 2016:2261–2269. Available at: http://arxiv.
org/abs/1608.06993 [accessed March 29, 2020].

	[17]	 Irvin J, Rajpurkar P, Ko M, et al. CheXpert: a large chest radiograph 
dataset with uncertainty labels and expert comparison. 2019. Available 
at: http://arxiv.org/abs/1901.07031 [accessed January 4, 2020].

	[18]	 Warren MA, Zhao Z, Koyama T, et al. Severity scoring of lung oedema 
on the chest radiograph is associated with clinical outcomes in ARDS. 
Thorax. 2018;73:840–6.

	[19]	 Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. 
Available at: http://arxiv.org/abs/1412.6980 [accessed June 16, 
2019].

	[20]	 McInnes L, Healy J, Saul N, et al. UMAP: uniform manifold approxi-
mation and projection. J Open Source Softw. 2018;3:861.

	[21]	 McInnes L, Healy J, Melville J. UMAP: uniform manifold approxima-
tion and projection for dimension reduction. 2018. Available at: http://
arxiv.org/abs/1802.03426 [accessed June 11, 2019].

	[22]	 Richardson ML, Garwood ER, Lee Y, et al. Noninterpretive uses of 
artificial intelligence in radiology. Acad Radiol. 2021;28:1225–35.

	[23]	 Barbosa EM, Gefter WB, Yang R, et al. Automated detection and quan-
tification of COVID-19 airspace disease on chest radiographs: a novel 
approach achieving radiologist-level performance using a CNN trained 
on digital reconstructed radiographs (DRRs) from CT-based ground-
truth. 2020. Available at: http://arxiv.org/abs/2008.06330 [accessed 
September 11, 2020].

	[24]	 Zou J, Schiebinger L. Ensuring that biomedical AI benefits diverse pop-
ulations. EBioMedicine. 2021;6:7.

http://arxiv.org/abs/2006.04603
http://arxiv.org/abs/2008.02150
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1901.07031
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/2008.06330

