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Tigecycline serves as one of the last-resort antibiotics to treat severe infections caused by 
carbapenem-resistant Enterobacterales. Recently, a novel plasmid-mediated resistance-
nodulation-division (RND)-type efflux pump gene cluster, TmexCD1-ToprJ1, and its variants, 
TmexCD2-ToprJ2 and TmexCD3-ToprJ3, encoding tetracyclines and tigecycline resistance, 
were revealed. In this study, we reported three TmexCD2-ToprJ2-harboring Klebsiella species 
strains, collected from two teaching tertiary hospitals in China, including one K. quasipneumoniae, 
one K. variicola, and one K. michiganensis. The three strains were characterized by antimicrobial 
susceptibility testing (AST), conjugation assay, WGS, and bioinformatics analysis. AST showed 
that K. variicola and K. quasipneumoniae strains were resistant to tigecycline with MIC values 
of 4 μg/ml, whereas the K. michiganensis was susceptible to tigecycline with an MIC value of 
1 μg/ml. The TmexCD2-ToprJ2 clusters were located on three similar IncHI1B plasmids, of 
which two co-harbored the metallo-β-lactamase gene blaNDM-1. Conjugation experiments 
showed that all three plasmids were capable of self-transfer via conjugation. Our results 
showed, for the first time, that this novel plasmid-mediated tigecycline resistance mechanism 
TmexCD2-ToprJ2 has spread into different Klebsiella species, and clinical susceptibility testing 
may fail to detect. The co-occurrence of blaNDM-1 and TmexCD2-ToprJ2 in the same plasmid 
is of particular public health concern as the convergence of “mosaic” plasmids can confer 
both tigecycline and carbapenem resistance. Its further spread into other clinical high-risk 
Klebsiella clones will likely exacerbate the antimicrobial resistance crisis. A close monitoring 
of the dissemination of TmexCD-ToprJ encoding resistance should be considered.

Keywords: TmexCD2-ToprJ2, carbapenem resistance, blaNDM-1, blaNDM-5, Klebsiella variicola, Klebsiella 
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INTRODUCTION

Tigecycline is one of the last-resort antibiotics used to treat 
severe infections caused by carbapenem-resistant Enterobacterales 
(Cheng et  al., 2020). However, increasing studies reported the 
emergence of tigecycline resistance in clinical settings, which 
is frequently caused by the overexpression of non-specific active 
efflux pumps [tet(A) and tet(K)] or mutations within the drug-
binding site in the ribosome [tet(M); Grossman, 2016; Linkevicius 
et  al., 2016]. In Klebsiella pneumoniae, tigecycline resistance 
is also frequently associated with the overexpression of ramA, 
which can directly regulate multidrug resistance efflux pumps 
AcrAB and OqxAB (Ruzin et al., 2005, 2008). These tigecycline 
resistances are primarily mediated by chromosome-encoding 
mechanisms thus could not be  easily transferred horizontally. 
The newly emerging mobile tigecycline resistance mechanism 
is of particular public health concern (He et  al., 2019; Lv 
et al., 2020). The enzymatic modification gene variants [tet(X)] 
are highly transferable between species (Linkevicius et al., 2016; 
He et  al., 2019; Sun et  al., 2019).

Recently, a novel plasmid-mediated resistance-nodulation-
division (RND)-type efflux pump gene cluster, TmexCD1-ToprJ1, 
has been identified in K. pneumoniae (Lv et  al., 2020). This 
gene cluster was first identified in animal isolates but soon 
later was also found in clinical isolates (Sun et  al., 2020). 
TmexCD1-ToprJ1 was initially reported in China, but it has 
now been found in clinical K. pneumoniae isolates outside of 
China (Hirabayashi et  al., 2021), suggesting this resistance has 
started to spread into other global regions. Two homologous 
variants, TmexCD2-ToprJ2 (Wang et  al., 2021a) and TmexCD3-
ToprJ3 (Wang et  al., 2021b), have also been identified in 
Raoultella ornithinolytica and Proteus mirabilis, displaying similar 
tigecycline resistance profiles. Worrisomely, the mobile tigecycline 
gene clusters have also been found in clinical carbapenem-
resistant K. pneumoniae strains (Chiu et  al., 2017). Here, 
we  reported the identifications of three clinical TmexCD2-
ToprJ2-encoding Klebsiella strains, including two carbapenem-
resistant strains co-harboring blaVIM-8/NDM-5 or blaNDM-1.

MATERIALS AND METHODS

Bacterial Strains
Klebsiella variicola strain JNQH579 was recovered from a sputum 
sample of a 64-year male patient in intensive care units (ICUs) 
at a tertiary hospital in Jinan City, Shandong Province, in 
March 2021, who had been hospitalized for 17 days due to 
severe pneumoniae and renal failure. The patient had received 
tigecycline treatment for 7 days at a dosage of 100 mg (IV) 
q12h before the isolation of the strain. Based on the antibiotic 
susceptibility testing results, antibiotic therapy was switched 
to aztreonam 0.5 g (IV) q8h in combination with tigecycline. 
The respiratory symptoms improved after antibiotic treatment 
and the patient continued to be  hospitalized for 3 months due 
to cardiovascular and renal disease. Klebsiella quasipneumoniae 
strain JNQH473 was recovered from a urine sample of a 
1-month-old infant with sepsis at a tertiary hospital in Xiamen 

City, Fujian Province, in August 2019, who was hospitalized 
at the department of pediatrics for 7 days. During her 
hospitalization, the neonate received multiple antimicrobial 
treatments, including cefotaxime, vancomycin, and ceftazidime. 
The patient was fully recovered after antimicrobial and supportive 
treatment and was discharged on hospital day 13. Klebsiella 
michiganensis strain JNQH491 was recovered from a blood 
culture of a 48-year male patient at the department of oncology, 
who had received chemotherapy due to nasopharyngeal 
carcinoma in the same hospital as JNQH473. The patient was 
discharged home after a cycle of chemotherapy on hospital 
day 11. The overall strain features of the three strains are 
listed in Table 1. All the patients reported no recent travel abroad.

Antibiotic Susceptibility Testing
Antibiotic susceptibility testing (AST) was performed using 
the VITEK 2 (bioMérieux, Nürtingen, Germany) system. 
Minimum inhibitory concentrations (MICs) for tigecycline were 
performed by broth microdilution according to the Clinical 
and Laboratory Standards Institute (CLSI) guidelines. ATCC 
25922 (Escherichia coli) and ATCC 27853 (Pseudomonas 
aeruginosa) were used as quality control strains for susceptibility 
testing. All the tests were performed in duplicate in different 
days. The breakpoints were interpreted according to CLSI 
guidelines except for tigecycline, of which the EUCAST 
epidemiological cutoff value >2 μg/ml (for K. pneumoniae) 
was used.1

Whole-Genome Sequencing, Assembly, 
and Annotation
The combination Oxford Nanopore (MinION system) and 
Illumina sequencing (NovaSeq) were used to achieve a 
high-quality genome assembly. First, we  derived fastq read 

1 https://eucast.org/clinical_breakpoints/

TABLE 1 | Overall strain features of JNQH473, JNQH491, and JNQH579.

Characteristics JNQH473 JNQH491 JNQH579

Species
Klebsiella 
quasipneumoniae

Klebsiella 
michiganensis

Klebsiella variicola

Isolation location Xiamen Xiamen Jinan

Sector
Department of 
pediatrics

Department of 
oncology

Intensive care units

Host disease
Urinary infection, 
septic

Nasopharyngeal 
carcinoma

Pneumonia, renal 
failure

Isolation site Urine Blood Sputum
Antimicrobial 
treatment before 
isolation

Cefotaxime, 
vancomycin, 
ceftazidime

– Tigecycline

Collection time 2019.08 2020.08 2021.03
MLST ST571 ST109 ST2013
K locus KL64 ND ND
O locus O5 ND OL103

MLST, multilocus sequence typing; K locus, Klebsiella pneumoniae species complex 
capsule locus; O locus, K. pneumoniae species complex LPS locus; ND, not 
determined.
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sequences from MinION raw electric signal fast5 files using 
guppy 3.2.2 with the high accuracy flip-flop algorithm. Adapters 
were trimmed out with Porechop.2 Low-quality reads were 
filtered out using trimmomatic 0.38 (Bolger et  al., 2014). The 
filtered nanopore reads were de novo assembled with Flye 2.8.3 
(Kolmogorov et  al., 2019). Then, the obtained assemblies were 
polished using Nanopore reads by Racon 1.4.3 (1–4 iterations; 
Vaser et al., 2017). Next, the polished sequences were additionally 
corrected using Illumina reads by Pilon 1.23 until no changes 
occur (Walker et al., 2014). The whole-genome sequences were 
annotated by Prokka (Seemann, 2014) and RAST (Brettin et al., 2015),  
followed by manually curations.

Genomic Analysis
The in silico multilocus sequence typing (MLST) was carried 
out using MLST v. 2.19.0,3 and antibiotic resistance/plasmid 
replicon gene detections were carried out using ABRicate v. 
0.9.94 using CARD (Jia et al., 2017) and PlasmidFinder (Carattoli 
et  al., 2014) database, respectively. The intrinsic variants of 
oqxAB, chromosomal ampH and fosA, which confer resistance 
to quinolones, β-lactams and fosfomycin, respectively, in 
Enterobacterales rather than Klebsiella species, are therefore 
not reported (Henderson et al., 1997; Lam et al., 2021). Kleborate 
v. 1.0.0 (Lam et  al., 2021) was used for Klebsiella K locus and 
O locus typing. The comparative analysis of TmexCD2-ToprJ2 
harboring plasmids was done by BLASTn and illustrated using 
CGView Server (Grant and Stothard, 2008). Easyfig (Sullivan 
et al., 2011) was used to visualize the genetic context comparisons. 
Selected plasmids were compared with Mauve 2.3.1 (Darling 
et  al., 2010), followed by visualization using genoPlotR (Guy 
et  al., 2010). Plasmid distance trees were generated using 
Mashtree (Katz et al., 2019). Alignment between three TmexCD-
ToprJ variants was done by Clustal Omega (Madeira et  al., 
2019). ISFinder5 was used to identify ISs. Tn number was 
identified using Tn Number Registry (Roberts et  al., 2008). 
In order to examine the distribution and relationships of 
TmexCD2-ToprJ2 and its variants (TmexCD1-ToprJ1, TmexCD2-
ToprJ2), plasmid sequences were downloaded from NCBI6 
and compared.

Conjugation Experiment
Conjugation experiments were performed by plate mating using 
E. coli J53 (AziR) as the recipient as described in our previous 
study (Hao et al., 2021). Briefly, overnight cultures of the donor 
strains and the recipient strain E. coli J53 were mixed (1:1) 
and applied onto an LB agar plate, followed by overnight 
culture at 37°C. Transconjugants were selected on Mueller-
Hinton (MH) agar containing sodium azide (200 μg/ml) and 
tigecycline (0.5 μg/ml). The presence of TmexCD2-ToprJ2 and 
IncHI1B replicons, as well as blaNDM-1 and sul1 resistance genes 
in transconjugants, was confirmed by PCR 

2 https://github.com/rrwick/Porechop
3 https://github.com/tseemann/mlst
4 https://github.com/tseemann/abricate
5 https://isfinder.biotoul.fr/
6 https://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid, latest update on July 15, 2021.

(Supplementary Table S1). Conjugation frequency was calculated 
by dividing the number of transconjugants by the number of 
recipient cells. AST of the E. coli J53 transconjugants was 
performed as described above.

RESULTS

Susceptibility of Three Klebsiella Isolates
The MICs for JNQH473, JNQH491, and JNQH579 were shown 
in Table 2. The MICs of tigecycline in JNQH473 and JNQH579 
were both 4 μg/ml. However, JNQH491 was susceptible to 
tigecycline with a MIC value of 1 μg/ml. These strains were 
resistant to almost all tested β-lactam antibiotics except that 
JNQH491 and JNQH579 were susceptible to aztreonam. All 
the strains were susceptible to amikacin with an MIC value 
of less than 2 μg/ml.

Characterization of Carbapenem-Resistant 
Klebsiella variicola Isolate JNQH473
Strain JNQH473 was classified as sequence type 571 (ST571) 
based on the in silico MLST, and it belonged to KL64 capsule 
and O5 lipopolysaccharide serotypes (Table  1). It harbored 
a 5.39-Mb chromosome and four plasmids, designated 
pJNQH473-1 (229.2-Kb), pJNQH473-2 (70.9-Kb), pJNQH473-3 
(297.9-Kb), and pJNQH473-4 (46.1-Kb), respectively (Table 3). 
Two metallo-β-lactamase (blaMBL) genes, blaIMP-8 and blaNDM-5, 
were located on incompatible FIB type plasmid pJNQH473-1 
and IncX3 type plasmid pJNQH473-4, respectively. blaIMP-8 
was located in class 1 integron In655 carrying the gene cassette 
of blaIMP-8-aacA4 (Jiang et  al., 2017), and blaNDM-5 was located 
in an ΔTn125-like region containing bleMBL and IS26 genes 
downstream and IS3000, IS30, and IS5 family transposase 
genes upstream. The TmexCD2-ToprJ2 gene cluster was located 
on an IncHI1B type plasmid, pJNQH473-3. In addition to 
TmexCD2-ToprJ2 genes, nine antimicrobial resistance genes 
were found on the same plasmid, including two copies of 
sulfonamide resistance gene sul1 and single copy of 
aminoglycoside resistance gene aac(3)-IId and aadA16, 
quinolone-resistant gene qnrS1, macrolides resistance gene 
mphA, trimethoprim resistance gene dfrA27, the β-lactamase 
gene blaTEM-1D, and rifampicin resistance ribosyltransferase 
gene arr-3.

Characterization of Carbapenem-Resistant 
Klebsiella michiganensis Isolate JNQH491
Strain JNQH491 belonged to ST109 type (Table  1). The K 
and O locus could not be  classified according to the currently 
available K and O loci database. The genome contained a 
6.04-Mb chromosome and two plasmids, pJNQH491-1 (205.5-
Kb) and pJNQH491-2 (307.4-Kb; Table 3). The TmexCD2-ToprJ2 
gene cluster was located on pJNQH491-2, which is an IncHI1B 
type plasmid, co-harboring multiple resistant genes, including 
the blaMBL and blaNDM-1 (Figure  1). The pJNQH491-1 plasmid 
had an IncFIB replicon and did not carry any known 
resistance genes.
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Characterization of Carbapenem-Resistant 
Klebsiella quasipneumoniae Isolate 
JNQH579
Strain JNQH579 belonged to ST2013 and harbored an OL103 
serotype (Table 1). The genome included a 5.58-Mb chromosome 
and two plasmids, designated pJNQH579-1 (197.4-Kb) and 
pJNQH579-2 (369.3-Kb), respectively (Table 3). The TmexCD2-
ToprJ2 gene cluster was carried by a 34,827 bp mobile region, 
which was located on pJNQH579-2 plasmid (Figure  2). 
pJNQH579-2 is also an IncHI1B type plasmid, co-harboring 
multiple resistance genes [aac(6′)-Ib, aadA16, qnrS1, mphE, 
msrE, catB3, catII.2, arr-3, sul1, dfrA27, blaOXA-1, and blaNDM-1; 
Table  3]. Notably, the blaNDM-1 carbapenem-resistant gene was 
co-existed with TmexCD2-ToprJ2 in pJNQH579-2 plasmid. 
blaNDM-1 was found within a truncated transposon Tn125 
(Figure  3), with the structure of “ΔISAba125-blaNDM-1-bleMBL-
tat-dvt-groESL- tnpAISCR21” (Poirel et  al., 2012). The 
pJNQH579-1 plasmid had an IncFIB replicon but did not carry 
any known resistance genes.

Comparative Genomic Analysis of HI1B 
Plasmids Carrying TmexCD2-ToprJ2
The TmexCD2-ToprJ2 cluster in the three strains had almost 
100% nucleotide identities to the cluster of the originally 
reported TmexCD2-ToprJ2 (Wang et al., 2021a). Plasmid sequence 
comparison demonstrated that pJNQH473-3 and pJNQH491-2 
had highly conserved plasmid synteny and structure, with over 
99.9% nucleotide identities (Figure  3). pJNQH491-2 had a 
blast query coverage of 74% and over 99% nucleotide identities 
with pJNQH579-2. Further plasmid BLAST query against 
GenBank database showed that pJNQH473-3 and pJNQH491-2 
were closely related to plasmid pKOX-R1 (NC018107), isolated 
from Taiwan in K. michiganensis E718 (Figure 3). In comparison 
with pKOX-R1, a 16,846 bp region, containing the TmexCD2-
ToprJ2, was inserted into the umuC gene of pJNQH473-3, 
generated a 3 bp (CAT) direct repeats (Figure  2). The three 
pJNQH plasmids contain the same TmexCD2-ToprJ2 structure 
of “hp1-hp2-tnpA-tnfxB2-IS881-TmexCD2-ToprJ2,” with an 
average GC content of 42.3%. pJNQH579-2 was found to 
be closely related to plasmid pC2315-2-NDM (CP039829). The 
putative “hp1-hp2-tnpA-tnfxB2-IS881-TmexCD2-ToprJ2” 
transposon was surrounded by XerC, XerD, and additional 
hypothetical genes. This region was also inserted into the umuC 
gene therefore constituted a putative larger transposon unit of 
34,827 bp (Figure  2).

Sequence Comparison of Three  
TmexCD-ToprJ Gene Clusters
TmexCD2-ToprJ2 cluster shares a high similarity to TmexCD1-
ToprJ1, of which the variants of TmexC, TmexD, and ToprJ 
genes had 98.02, 96.75, and 99.93% nucleotide identities and 
97.67, 97.61, and 99.79% amino acid identities between each 
other. Compared with TmexCD3-ToprJ3, the variants of TmexC, 
TmexD, and ToprJ genes shared 94, 96.72, and 99.86% nucleotide 
identities and 97.12, 98.08, and 99.79% amino acid identities. 
ToprJ gene shares the highest similarity at the amino acid TA
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level among the three variants, of which ToprJ2 differs from 
ToprJ1 and ToprJ3 by a single amino acid substitution (Ala47Thr; 
Supplementary Figure  S1).

Genomic Analysis of Plasmids Harboring 
TmexCD-ToprJ Variants
The analysis of plasmid database revealed that a total of 43 
plasmids carried TMexCD1-ToprJ1 (n = 23), TmexCD2-ToprJ2 
(n = 8), and TmexCD3-ToprJ3 (n = 12) gene clusters (with 100% 
gene coverage and over 99.97% identity), which were distributed 
mainly in Enterobacteriaceae and P. aeruginosa (Figure  4). 
TmexCD1-ToprJ1 and TmexCD2-ToprJ2 were mostly identified 
in K. pneumoniae, whereas TmexCD3-ToprJ3 was more 
frequently found in P. aeruginosa. In addition to Klebsiella, 
the TmexCD2-ToprJ2 harboring plasmids were also found in 
R. ornithinolytica (n = 1), Citrobacter freundii (n = 1). Most 
TmexCD2-toprJ2 gene clusters were associated with IncFII 
(n = 3), IncHI1B (n = 3), and IncQ (n = 2) plasmids. Of note, 
six TmexCD2-ToprJ2 harboring plasmids also co-harbored 
carbapenem-resistant genes, including four blaNDM-1 and two 
blaKPC-1 genes.

Transfer of TmexCD2-ToprJ2 Harboring 
Plasmids via Conjugation
The TmexCD2-ToprJ2 harboring IncHI1B plasmids were 
successfully transferred into E. coli J53 from three JNQH 
strains. Further PCRs confirmed that other plasmids in the 
donor strains were not co-transferred along with the TmexCD2-
ToprJ2 harboring IncHI1B plasmids into the recipient E. 
coli J53 strain (Supplementary Figure  S2). The conjugation 
frequency was 10−6, 10−6, and 10−5 for JNQH473, JNQH491, 
and JNQH579 per recipient cell, respectively. The MICs for 
the E.coli J53 transconjugants are shown in Table  2. The 
MICs of tigecycline against E. coli J53 transconjugants were 
1 μg/ml, which were 8-fold higher than that of the E. coli 
J53 itself. In addition, the transfer of blaNDM-1 together with 
the TmexCD2-ToprJ2 genes for JNQH491 and JNQH579  in 
the E. coli J53 transconjugants conferred resistance to all 

tested β-lactams (ampicillin, amoxicillin-clavulanate, 
piperacillin/tazobactam, cefoxitin, ceftriaxone, cefepime, 
imipenem, and ertapenem) except for aztreonam. All 
transconjugants exhibited resistance to quinolones 
(ciprofloxacin and levofloxacin, ≥4 μg/ml), which was likely 
due to the combinational effects of both quinolone resistance 
determinant qnrS1 and the TmexCD2-ToprJ2. Further, E.coli 
J53 transconjugants for JNQH491 and JNQH579 exhibited 
resistance to gentamycin, while it was susceptible for JNQH473. 
Aac(3)-IId is likely the main source of the disparity on the 
basis that aac(3)-IId was co-harbored with TmexCD2-ToprJ2 
in the same plasmids for JNQH473 and JNQH491 strains, 
while it was absent on the pJNQH579-2 plasmid.

DISCUSSION

TmexCD1-ToprJ1 is the first reported plasmid-encoded RND 
efflux pump, conferring resistance to multiple drugs including 
tigecycline (Lv et  al., 2020). More recently, a variant of 
TmexCD2-ToprJ2 was identified in a clinical R. ornithinolytica 
strain NC189, which demonstrated similar tigecycline resistance 
as the TmexCD1-ToprJ1 (Wang et  al., 2021a). In comparison 
with TmexCD1-ToprJ1, most of which were detected in K. 
pneumoniae (Figure 2), TmexCD2-ToprJ2 was identified among 
a variety of Enterobacteriaceae species, including R. 
ornithinolytica, C. freundii, Aeromonas hydrophila, and K. 
pneumoniae (Wang et  al., 2021a). Our study demonstrated 
that the TmexCD2-ToprJ2 had spread into carbapenem-resistant 
K. pneumoniae species complex (KpSC), which is an emerging 
pathogenic species and frequently detected clinically (Wyres 
et  al., 2020). The highly conserved synteny and structure of 
the TmexCD2-ToprJ2 harboring plasmids suggested the 
likelihood of horizontal transfer of a highly similar plasmid 
between different Klebsiella species. We  also found the 
co-existence of TmexCD2-ToprJ2 and blaNDM-1 genes in 
pJNQH491-2 and pJNQH579-2, confirmed by the resistance 
profile of the transconjugants. The co-transfer of blaNDM-1 with 
TmexCD2-ToprJ2 for JNQH491 and JNQH579  in the E. coli 

TABLE 3 | Chromosome and plasmid features of strains in this study.

Strains Chromosome or plasmid Size (bp) Plasmid type Acquired AMR genes

K. quasipneumoniae

  

JNQH473

Chromosome 5,390,886 – blaOKP-A-3

pJNQH473-1 229,265 IncFIB aac(6')-Ib4,blaCTX-M-14,blaIMP-8

pJNQH473-2 70,940 FII(pBK30683) –

pJNQH473-3* 297,981 IncHI1B
aac(3)-IId;aadA16,qnrS1,mphA,arr-3,sul1,tmexCD2-
toprJ2,dfrA27,blaTEM-1D

pJNQH473-4 46,166 IncX3_1 blaNDM-5

K. michiganensis

  

JNQH491

Chromosome 6,039,729 – blaOXY-1-3

pJNQH491-1 205,582 IncFIB –

pJNQH491-2* 307,464 IncHI1B
aac(3)-Iid,qnrS1,mphA,sul1,tmexCD2-toprJ2,dfrB4,blaTEM-1D, 
blaNDM-1

K. variicola

  

JNQH579

Chromosome 5,583,188 – blaOXY-1-3

pJNQH579-1 197,434 IncFIB –

pJNQH579-2* 369,339 IncHI1B
aac(6')-Ib,aadA16,qnrS1,mphE,msrE,catB3,catII.2,arr-
3,sul1,tmexCD2-toprJ2,dfrA27,blaOXA-1,blaNDM-1

*TmexCD2-ToprJ2 harboring plasmid.
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J53 conjugants conferred resistance to tigecycline and all 
tested β-lactams except aztreonam. In addition, analysis of 
plasmids from the database from NCBI revealed frequent 
co-occurrence of TmexCD2-ToprJ2 and carbapenem-resistant 
genes in the same plasmid. Our finding is of particular public 
health concern as the convergence of “mosaic” plasmids can 
confer both tigecycline and carbapenem resistance, thus leading 
to a serious challenge to the treatment of bacterial infections.

It has been demonstrated in a previous study that TmexCD2-
ToprJ2 functions as an efflux pump system by the efflux inhibition 
experiments (Wang et  al., 2021a). TmexCD2-ToprJ2 exhibits a 
broad substrate spectrum toward tetracyclines, eravacycline, 
tigecycline (8-fold MIC increase), ciprofloxacin (4-fold MIC 

increase), and slightly decreased susceptibility (2-fold MIC 
increase) to cefotaxime and cefepime (Wang et  al., 2021a). 
Our finding is consistent with previous study that TmexCD2-
ToprJ2 gene cluster caused 8-fold increase in the tigecycline 
MICs in the E. coli transconjugants (Wang et  al., 2021a). 
However, strain K. michiganensis JNQH491 was susceptible to 
tigecycline with a MIC value of 1 μg/ml irrespective of the 
presence of TmexCD2-ToprJ2 gene. We  speculated that the 
differences in plasmid copy numbers or transcription of promoter 
sequence in this K. michiganensis strain might contribute to 
the different susceptibility profiles observed in strains from 
this study (Shaheen et  al., 2011). Further studies are needed 
to evaluate how much TmexCD2-ToprJ2 will affect the therapeutic 

FIGURE 1 | Comparative structural analysis of pJNQH473-3, pJNQH491-2, pJNQH579-2, and two TmexCD2-ToprJ2 harboring plasmids NZ_CP063149.1 and 
NZ_CP063748.1. Open reading frames (ORFs) of pJNQH579-2 are shown as the outermost ring, with plasmid replicons, insertion sequences (IS), and antimicrobial 
resistance genes highlighted.
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effects of tigecycline in vivo, including clinical isolates with 
low MIC values.

An increasing number of studies have supported that the 
TmexCD-ToprJ-like efflux pump system may originate from 

the chromosome of Pseudomonas species, as their structures 
are closely related to the chromosomal MexCD-OprJ system 
in P. aeruginosa (Lv et  al., 2020; Sun et  al., 2020; Wang et  al., 
2021a,b). These findings suggested TmexCD-ToprJ-like clusters 

FIGURE 2 | Linear comparisons of TmexCD2-ToprJ2-bearing genetic contexts in pJNQH473-3 and that in pJNQH579-2, pC2315-2-NDM, and plasmid pKOX_
R1(NC018107.1). Light blue shading indicates shared regions of homology, while green shading indicates inversely displayed regions of homology. Colored arrows 
indicate ORFs. The red arrows indicate the antibiotic resistance genes. The yellow arrows indicate IS. The nucleotide sequence of the umuC gene (green arrow) 
representing the insertion site is shown above the gene. The 16,846 bp putative “hp1-hp2-tnpA-tnfxB2-IS881-TmexCD2-ToprJ2” transposon located on 
pJNQH473-3 and 34,827 bp larger putative transposon on pJNQH579-2 are marked with bilateral black arrows.
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might be  originated from chromosomal genes in Pseudomonas 
species, through horizontal transfer into Enterobacteriaceae 
species. The MexCD-OprJ family proteins act as efflux pumps, 
conferring intrinsic resistance to tetracycline, chloramphenicol, 
and norfloxacin in P. aeruginosa (Poole et  al., 1993). The rapid 
expansion of the TmexCD-ToprJ cluster has been attributed to 
various mobile genetic elements, such as ICEs, transposons 
(e.g., Tn5393), or IS element (e.g., IS26; Sun et  al., 2020; Wan 
et  al., 2020; Wang et  al., 2021b; Yang et  al., 2021). In our 
study, a genetic structure (hp1-hp2-tnpA-tnfxB2-IS881-TmexCD2-
ToprJ2) constitutes a putative transposon system. Further, a 
larger putative transposon comprised of 34,827 bp harboring 
TmexCD2-ToprJ2 was also inserted into the umuC-like gene 
of pJNQH579-2. As such, the umuC gene appears to be  a 
“hotspot” for TmexCD2-ToprJ2 integration in IncHIB plasmids, 

while the molecular mechanism underlying the site-specific 
integration deserves further studies.

CONCLUSION

Overall, we  report the first time of three IncHI1B type 
plasmids encoding efflux pump TmexCD2-ToprJ2 in 
carbapenem-resistant K. variicola, K. michiganensis, and K. 
quasipneumoniae species. The sequence analysis identified 
a putative transposon element for TmexCD2-ToprJ2 
transmission, with the genetic structure of “hp1-hp2-tnpA-
tnfxB2-IS881-TmexCD2-ToprJ2.” Of note, the co-existence of 
blaNDM-1 and TmexCD2-ToprJ2 is of particular public health 
concern. The emergence of such Klebsiella strains underscores 

FIGURE 3 | Comparison of linear plasmid maps of four TmexCD2-ToprJ2-bearing plasmids and the related plasmid pKOX-R1. The genomes were compared with 
Mauve and the elements were designated as Mauve blocks. Red shaded regions between plasmids indicates shared regions of homology, while blue shading 
indicates inversely displayed regions of homology. The tree was created using Mashtree.
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the importance of clinical awareness of this pathotype and 
the need for continued monitoring of TmexCD-ToprJ family 
resistance genes in China and around the world.
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FIGURE 4 | TMexCD-toprJ-harboring plasmids. The heatmap shows the distribution of plasmid replicons (dark blue boxes) and antibiotic resistance genes (red 
boxes) detected within 51 TMexCD-toprJ-harboring plasmids. The variants of TMexCD-toprJ resistance genes are indicated in green (TMexCD1-toprJ1), pink 
(TMexCD2-toprJ2), and light blue (TMexCD3-toprJ3) boxes. GenBank accession numbers and species are listed on the right-hand side. Kpn, Klebsiella 
pneumoniae; K. quasip, Klebsiella quasipneumoniae; Pae, Pseudomonas aeruginosa; P. putida, Pseudomonas putida; A. salmonicida, Aeromonas salmonicida;  
A. media, Aeromonas media; K. variicola, Klebsiella variicola; P. fulva, Pseudomonas fulva; P. sp., Pseudomonas species; R. ornithinolytica, Raoultella ornithinolytica; 
C. freundii, Citrobacter freundii.
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Supplementary Figure S1 | Multiple sequence alignment of amino acids of 
TmexCD1-ToprJ1, TmexCD2-ToprJ2, and TmexCD3-ToprJ3. Conserved residues were 
displayed in dark blue background and mutants were highlighted in white background.

Supplementary Figure S2 | PCR amplification of plasmid replicons and resistance 
genes of JNQH473, 491, 579, and their E. coli J53 transconjugants.
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