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Metabolic management of
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Glioblastoma (GBM), similar to most cancers, is dependent on fermentation

metabolism for the synthesis of biomass and energy (ATP) regardless of the

cellular or genetic heterogeneity seen within the tumor. The transition from

respiration to fermentation arises from the documented defects in the number,

the structure, and the function of mitochondria and mitochondrial-associated

membranes in GBM tissue. Glucose and glutamine are the major fermentable

fuels that drive GBM growth. The major waste products of GBM cell

fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the

microenvironment and are largely responsible for drug resistance, enhanced

invasion, immunosuppression, and metastasis. Besides surgical debulking,

therapies used for GBM management (radiation, chemotherapy, and steroids)

enhance microenvironment acidification and, although often providing a time-

limited disease control, will thus favor tumor recurrence and complications.

The simultaneous restriction of glucose and glutamine, while elevating non-

fermentable, anti-inflammatory ketone bodies, can help restore the pH balance

of the microenvironment while, at the same time, providing a non-toxic

therapeutic strategy for killing most of the neoplastic cells.

KEYWORDS

glutaminolysis, glycolysis, fermentation, succinate, lactate, glutamate, ketogenic diet,
ketogenic metabolic therapy
Abbreviations: PPP, pentose phosphate pathway; OxPhos, oxidative phosphorylation; mSLP,

mitochondrial substrate level phosphorylation; TMZ, temozolomide; D-b-OHB, D-b-hydroxybutyrate;

KD, ketogenic diet; KMT, Ketogenic metabolic therapy; ROS, reactive oxygen species.
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Introduction

Glioblastoma (GBM) has among the highest mortality rates

for primary brain tumors and remains largely unmanageable.

Despite the hype surrounding newer therapies, median life

expectancy following GBM diagnosis is only about 11-15

months with some large patient data bases reporting few

survivors beyond 30 months (1–7). The poor overall GBM

patient survival is also astonishingly consistent across many

surgical institutions Figure 1. Although remarkable advances in

science and technology have occurred over the last 100 years in

Western societies, no significant advances have been made over

this same period in improving survival for GBM patients (2, 7,

8). This abysmal lack of therapeutic progress can be due in large

part to the inability to recognize GBM as a metabolic disorder (7,

12). Acidification of the GBM microenvironment arises as a

consequence of the fermentation metabolism within the

neoplastic tumor cells and is largely responsible for therapy

failure. This review provides the evidence supporting

this statement.
Fermentation metabolism is
responsible for GBM growth

GBM, like most major cancers, is dependent on fermentation

metabolism for the synthesis of biomass and energy (ATP)

regardless of the cellular or the genetic heterogeneity observed

within the tumor (13, 14). A dependency on fermentation

metabolism is the consequence of the well-documented
Frontiers in Oncology 02
abnormalities in the number, the structure, and the function of

GBM mitochondria and mitochondrial associated membranes

(MAM) and shown in Figure 2, and as described previously in

detail (7, 14, 15, 17–25). In light of these structural and functional

abnormalities, it would not be possible for GBM mitochondria to

synthesize much if any ATP through OxPhos based on the

foundational principle in evolutionary biology that structure

determines function (14, 26, 27). The numerous reports

suggesting that OxPhos is either normal or not seriously

impaired in GBM cells is inconsistent with this foundational

principle (28–40). It is important to recognize that oxygen

consumption is not a reliable marker for OxPhos function in

cancer cells (see below). It is unlikely that ATP synthesis through

OxPhos could be normal in GBM cells that have documented

abnormalities in mitochondria ultrastructure and function.

Moreover, the large numbers of somatic mutations seen in GBM

and in many other cancers, for that matter, arise as down-stream

effects of OxPhos dysfunction with consequent ROS production

(12). The somatic mutations in tumor cells will prevent adaptive

versatility according to the evolutionary concepts of Darwin and

Potts, thus locking in a dependency on fermentation metabolism

for growth (41–44). It should be known, especially in the oncology

field, that nothing in either general biology or in cancer biology can

make sense except in the light of evolution (12, 45).

It is important to emphasize that a reduction in OxPhos

of ~50% would dissipate the protonmotive force causing a

reversal of the Fo-F1 ATP synthase (7). The Fo-F1 ATP synthase

generally operates in forward mode (i.e., synthesizing ATP) only

when the mitochondria are sufficiently polarized. The Fo-F1 ATP

synthase would be unable to generate ATP under a loss of electron

transport chain operation on the order of 45-50% (7). This degree

of loss would cause ATP hydrolysis, thus pumping protons out of

thematrix. Reversal of the ATP synthase is what affords glutamine-

driven mitochondrial substrate phosphorylation (mSLP) the

critical role of providing ATP directly within the matrix when

OxPhos becomes inhibited or impaired (7, 12). An inverse

relationship between OxPhos efficiency and tumor aggression has

been reported (46). A similar phenomenon has also been described

with respect to the degree of fermentation and tumor growth, i.e.,

the greater is the fermentation, the more aggressive is the cancer

(14, 47–49). GBM cells, regardless of their cellular origin or genetic

heterogeneity, are dependent on fermentation for survival due to

abnormalities in mitochondrial structure and function.

A large part of the confusion on mitochondrial dysfunction in

cancer comes from the incorrect assumption that oxygen

consumption observed in cancer cells is linked to ATP synthesis

through OxPhos (14, 28, 29, 40, 50–53). Many cancers, including

GBM, can survive in hypoxia (0.1% oxygen) or in a solution of

potassium cyanide, a Complex IV inhibitor, findings that would

exclude normal OxPhos as a source of ATP synthesis (54–57). Cells

with normal OxPhos function cannot survive for very long in

cyanide or in hypoxia. While oxygen is necessary for cholesterol

synthesis, GBM cells can obtain cholesterol from the
FIGURE 1

Kaplan-Meier plots for overall survival of GBM patients across
five (1–5), Canadian surgical institutions. Each line represents
patient survival for a particular institution as described (8). The
GBM survival statistics recorded for these Canadian institutions
are similar to those recorded in surgical institutions of other
countries (2, 9, 10). These findings support the view of no major
improvement of GBM patient survival in almost 100 years (8, 11).
Image reproduced under a Creative Commons license from (8).
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microenvironment under hypoxic conditions (54, 58). Many

normal cells and tumor cells will consume oxygen and ferment

lactic acid when grown in vitro, but only tumor cells continue to

ferment when grown in vivo (14, 47, 48).

The oxygen consumption in tumor cells is uncoupled and is

used more for ROS production than for ATP synthesis through

OxPhos (14, 23, 59–61). High-resolution oxygen consumption

measurements and extracellular flux analysis, such as produced

by Seahorse XF technology, cannot accurately measure OxPhos-

driven ATP synthesis (53). Moreover, these measurements are

highly variable in inter-laboratory settings (cell lines with exactly

the same genetic background can display opposite metabolic

profiles), are extrapolated using general, non-cancer specific

ATP/O stoichiometries, and are limited by non-physiological

and artefactual cell culture conditions (53, 62). It is not clear if

most investigators using general purpose respirometry are aware

of these facts.

Also contributing to misinformation on oxygen consumption

and ATP synthesis is the failure to recognize glutamine-driven

mSLP as a major source of energy for GBM cells (7, 14). Warburg
Frontiers in Oncology 03
was also unaware of this linkage, as he assumed that oxygen

consumptionwas linked toOxPhos in his cancer cell preparations

(7, 47, 48). Viewed collectively, these findings indicate that oxygen

consumption alone cannot be used as a measure of OxPhos-

derived ATP synthesis in most tumor cells including GBM.
Mitochondrial substrate level
phosphorylation drives ATP
synthesis and microenvironment
acidification in GBM

Recent studies have described how mSLP at the succinyl CoA

synthetase reaction in the glutaminolysis pathway can provision

ATP synthesis in GBM (7, 14, 53, 63, 64). The glutamine nitrogen

produced from glutaminolysis is essential for the synthesis of

nucleotides and amino acids. The waste products of

glutaminolysis (primarily glutamic acid and succinic acid) would

also contribute to acidification of the GBM microenvironment (7,
B

C D

A

FIGURE 2

Morphological abnormalities seen in GBM mitochondria from the work of Deighton et al. (15). The morphology of 150 mitochondria was
assessed in six GBM samples and in seven peri-tumoral control samples using Electron Microscopy (EM). (A) Percentage of normal mitochondria
where cristae were visible throughout the mitochondria in peri-tumoral control and GBM samples (each bar represents one sample; *** p-value
= 0.0001); (B) Percentage of abnormal mitochondria where cristae were sparse and abnormal in peri-tumoral control and GBM samples;
*** p-value = 0.0001). (C, D) Representative EM images of normal and abnormal mitochondria, respectively. Cristolysis was significantly greater
in mitochondria from GBM tissue than in mitochondria from normal surrounding brain tissue. The scale bars represent 0.5 um. The authors
reported 117 mitochondrial proteins altered in GBM in association with ultrastructural mitochondrial abnormalities, similar to those described
previously by Arismendi-Morillo et al. (16). ATP synthesis through OxPhos cannot be normal in tumor cells with these abnormalities. Image
reproduced under a Creative Commons license from Deighton et al. (15).
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14, 65, 66). The catabolism of glutamine towards succinate will

generate CO2 from the oxidative decarboxylation of the alpha-

ketoglutarate dehydrogenation complex thus further acidifying the

microenvironment. Additionally, succinate can stimulate NF-kB-
driven inflammation and facilitate Hif-1a-driven glycolysis (7, 65,

67, 68). While the energetic competence of mitochondria in GBM

andmost other cancers is compromised in producingATP through

OxPhos, these mitochondria remain functional for other

biosynthetic roles and in producing sufficient ATP through

mSLP. Unlike OxPhos, however, that produces water and CO2 as

waste products, mSLP produces glutamic acid and succinate acid as

waste products that contribute to microenvironment acidification.
Fermentation metabolites acidify the
GBM microenvironment

The metabolic waste products of glucose and glutamine

fermentation (lactic acid, glutamic acid, and succinic acid) will

together acidify the GBM microenvironment. This acidification is

ultimately responsible for drug resistance, enhanced invasion,

immunosuppression, and metastasis (7, 14, 53, 69). Glucose

carbons are essential for biomass synthesis through the glycolysis

and the pentose phosphate pathways, with lactic acid and nucleic

acid precursors produced as major end products (14, 70, 71). The

pyruvate kinase M2 (PKM2) isoform, which is abundantly

expressed in most malignant cancers, produces pyruvate-derived

lactic acid withminimal ATP synthesis (14, 72–75). In other words,

most of the glucose-derived lactic acid coming from the tumor cells

is produced with little ATP synthesis through glycolysis. Some of

the lactate acid produced in cancer cells can be returned to the

tumor as glucose through the Cori cycle thus maintaining a

constant supply of glucose to the tumor (76).

Calorie restriction, which lowers blood glucose and elevates

blood D-b-OHB, reduces nuclear expression of phosphorylated

NF-kB (p65), cytosolic expression of phosphorylated IkB, total IkB,
and DNA promoter binding activity of activated NF-kB in the CT-

2A astrocytoma (77). NF-kB is a major driver of inflammation in

the GBM microenvironment. Figure 3A shows how the waste

products of glucose and glutamine fermentation are largely

responsible for the inflammation and acidification in the GBM

microenvironment. Hence, therapies that can lower blood glucose

while elevating D-b-OHB will mitigate microenvironment

inflammation and acidification through multiple mechanisms.
Current therapies could enhance
microenvironment acidity and
recurrence of GBM

The current treatment for GBM management involves

debulking surgery, radiotherapy, and temozolomide
Frontiers in Oncology 04
chemotherapy (TMZ) (1, 8, 9, 87). While the waste products of

glucose and glutamine fermentation will contribute to

microenvironment acidification and the rapid growth of

untreated GBM, the current treatments used for GBM

management could also accelerate these processes after a growth

delay following surgical debulking (1, 88, 89). It is documented

that radiotherapy produces significant necrosis and hypoxia in the

tumor microenvironment (1, 90–92). Radiotherapy disrupts the

tightly regulated glutamine-glutamate cycle in the neural

parenchyma thus increasing the levels of glutamine and

glutamic acid as described further in Figure 3A.

Glutamic acid is an excitotoxic amino acid that enhances

GBM invasion (1, 80, 81, 86, 93–96). Radiotherapy also damages

the brain microenvironment, which increases glucose and

glutamine availability to the tumor cells thus driving tumor

growth through hyperglycolysis, necrosis, and acidification.

While chemo-radiotherapy might have a role in the treatment

of low-grade non-neural tumors, these confounding variables

are ultimately responsible for GBM therapy resistance (1, 90,

97–99).
Blood glucose is linked to rapid
GBM growth

Linear regression analysis showed that blood glucose could

predict the growth rate of the CT-2A malignant mouse

astrocytoma, a stem-cell tumor (100, 101) (Figures 4A–C).

Evidence also shows that survival is lower in GBM patients

with higher blood glucose levels than in GBM patients with

lower glucose levels (1, 103–111). Although the dexamethasone

steroid is often prescribed along with standard treatments to

reduce vasogenic edema, steroids will elevate blood glucose levels

thus contributing indirectly to tumor growth (1, 112–114).

Alternatives to dexamethasone for reducing vasogenic edema

should receive consideration (115). Radiotherapy also increases

blood glucose levels and facilitates hybridizations between tumor

cells and macrophage/microglia thus producing highly invasive

metastatic cells (1, 82, 108, 116–118). As glucose-derived lactic

acid is the end product of glycolysis, GBM treatments that would

elevate blood glucose levels will contribute to elevated lactic acid,

microenvironment acidification, and tumor recurrence.

Conversely, therapeutic strategies that would reduce glucose

levels will lower lactic acid production, microenvironment

acidification, and tumor recurrence (Figure 3B). It is clear

from Figure 5 that calorie restriction, which lowers blood

glucose while elevating ketone bodies, reduces microvessel

density (angiogenesis) and increases tumor cell apoptosis in

the CT-2Amalignant astrocytoma. Hence, the dietary restriction

of blood glucose can reduce microenvironment acidification

through therapeutic effects on inflammation, angiogenesis

and apoptosis.
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B

A

FIGURE 3

Origin and management of microenvironment acidity in GBM. (A) Glucose and glutamine are the primary energy metabolites necessary for
driving rapid GBM growth. Glucose is the metabolic fuel necessary for nearly all brain functions under normal physiological conditions and is the
major source of carbons for biomass synthesis through the glycolytic and pentose phosphate pathways in tumor cells. Tumor cells metabolize
glutamine to glutamate, which is then metabolized to alpha-ketoglutarate. Significant energy is generated from the succinyl CoA ligase reaction
(substrate level phosphorylation) in the glutaminolysis pathway using alpha-ketoglutarate-derived succinyl CoA as substrate (see Figure 7). In
contrast to extracranial tissues, where glutamine is the most available amino acid, glutamine is tightly regulated in the brain through its
involvement in the glutamate-glutamine cycle of neurotransmission (1, 78, 79). Glutamate is a major excitatory neurotransmitter that must be
cleared rapidly following synaptic release in order to prevent excitotoxic damage to neurons (1, 79–81). Glial cells possess transporters for the
clearance of extracellular glutamate, which is then metabolized to glutamine for delivery back to neurons. Neurons metabolize the glutamine to
glutamate, which is then repackaged into synaptic vesicles for synaptic release (1). This cycle maintains low extracellular levels of both glutamate
and glutamine in the normal neural parenchyma. Disruption of the cycle can provide neoplastic GBM cells access to glutamine. Besides serving
as a metabolic fuel for the neoplastic tumor cells, glutamine is also an important fuel for cells of myeloid linage, which include macrophages,
monocytes, microglia, and especially the invasive mesenchymal cells in GBM (1, 13, 82–84). In contrast to the proliferative GBM stem cells, the
neoplastic GBM mesenchymal cells are thought to be derived from microglia or from microglia-stem cell fusion hybrids, which would have
immuno-suppressive properties (82, 85). As long as GBM cells have access to glucose and glutamine, the tumor will grow and acidify the
microenvironment making long-term management difficult. The current treatments for GBM (radiation and TMZ chemotherapy) will further
increase glucose and glutamine availability, creating an unnecessary metabolic storm that will enhance microenvironment acidification and rapid
tumor recurrence. The red hue is indicative of the inflammation and acidification of the tumor microenvironment (see text for further details).
(B) The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, will reduce
acidification, restore the pH balance of the microenvironment, and growth arrest or kill most of the neoplastic cells (11–13). RAC, reactive
astrocytes; TAM, tumor-associated macrophages; Gln, glutamine; Glu, glutamate. These images were modified from that in (86).
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Mesenchymal cells will contribute to
GBM acidification

Accumulating evidence shows that the highly invasive

mesenchymal cells seen in GBM are derived from neoplastic

microglia or from microglia/macrophages that hybridize with

non-invasive cancer stem cells, similar to that reported for other

highly invasive metastatic cancers (82, 118, 120–124). Indeed, up

to 60% of the cells in some GBM contain macrophage
Frontiers in Oncology 06
characteristics (125–128). We described how the neoplastic

GBM cells with mesenchymal characteristics can be derived

from transformed macrophages/microglia (13, 82, 129–131). As

activated macrophages are immunosuppressive and acidify the

microenvironment , i t should be no surpr i se why

immunotherapies have been largely ineffective in managing

GBM (1, 132–134). The mesenchymal cells seen in GBM,

whether part of the neoplastic cell population or part of the

infiltrating cell population, will acidify the microenvironment
B

C

A

FIGURE 4

Influence of diet on the intracerebral growth of the CT-2A malignant astrocytoma. Dietary treatment was initiated 1 day after tumor
implantation and was continued for 13 days. The visual representation (A) and quantitative assessment (B) of tumor growth in C57BL/6J mice
receiving either the standard diet (SD) or ketogenic diet (KD) under either unrestricted (UR) or restricted (R) feeding. The asterisk indicates that
the dry weights of the tumours in R groups were significantly lower than those in the UR groups at P < 0.01. (C) Linear regression analysis of
plasma glucose and CT-2A-tumor growth in mice from both the SD and KD dietary groups combined (n = 34). These analyses included the
values for plasma glucose and tumor growth of individual mice from both the UR and R-fed groups. The linear regression was highly significant
at P < 0.001, indicating that blood glucose levels predict CT-2A tumor growth rate (100). The failure of the KD-UR to reduce blood glucose
levels and tumor growth could be due to insulin insensitivity in this mouse strain (102). Images reproduced under a Creative Commons license.
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through a variety of inflammation-linked mechanisms (135,

136). Some researchers also consider tumor cell-derived lactate

as a checkpoint due to its ability to block immunotherapies (69).

As lactate is derived from glucose, glucose restriction should

reduce this “so called” checkpoint inhibitor. Hence, the

mesenchymal cell populations in GBM will not only

contribute to microenvironment acidification, but will also

contribute to their own survival using glutamine as a

metabolic fuel (13, 137, 138).
Frontiers in Oncology 07
Can metabolic therapy improve
immunotherapy?

Immunotherapies have not yet been effective GBM

management, but could be effective if there is evidence showing

that they will not increase availability of glucose and glutamine in the

tumor microenvironment, enhance inflammation, or cause hyper-

progressive disease, as was documented in non-small cell lung cancer

(139). Inflammatory oncotaxis, arising from surgical resection or
FIGURE 5

Influence of calorie restriction (CR) on microvessel density and apoptosis in the CT-2A malignant astrocytoma. CR was initiated 7 days before
intracerebral tumor implantation and was continued for 11 days. H & E stained tumor sections in an ad libitum (AL) mouse (A) and in a CR
mouse (B) (100X). Factor VIII immunostaining from the tumor grown in an AL mouse (C) and in a CR mouse (D) (200X). TUNEL positive
apoptotic cells (arrows) from the tumor grown in an AL mouse (E) and in a CR mouse (F) (400X). Each stained section was representative of the
entire tumor. All images were produced from digital photography. Image reproduced under a Creative Commons license from (119).
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from biopsy of lower-grade brain tumors, could also contribute to

the transformation to high-grade secondary GBM (140–143). As the

neoplastic macrophage/mesenchymal cells seen in GBM are

dependent to a large degree on glutamine (13, 144), glutamine

restriction will be essential for targeting these cells as we recently

demonstrated (13). Recent studies show that a ketogenic diet can

enhance the efficacy of immunotherapy (145). Most importantly, the

simultaneous restriction of glucose and glutamine could improve the

therapeutic efficacy of immunotherapies.
GBM chemotherapy can contribute
to microenvironment acidification

TMZ chemotherapy can contribute to microenvironment

acidification through adverse effects on mitochondrial OxPhos

function and increased production of GBM driver mutations (1, 9,

146, 147). In addition to increasing blood glucose levels,

dexamethasone also increases glutamine levels through its

induction of glutamine synthetase activity (7, 11, 86, 113, 148,

149). Bevacizumab (Avastin) is also widely prescribed to GBM

patients to reduce angiogenesis (150–152). Bevacizumab, however,

increases tumor necrosis while selecting for the most invasive and

therapy-resistant tumor cells (153, 154). As both bevacizumab and

TMZ damage mitochondria (155), these drugs will contribute

further to tumor cell reliance on fermentation metabolism thus

increasing microenvironment acidification (7, 11). Considered

together, the current GBM chemotherapies inflict damage to the

microenvironment and facilitate availability of glucose and

glutamine to the neoplastic tumor cells, all of which will

contribute to tumor recurrence, further acidification, and rapid

progression (Figure 3A). It is not likely that overall patient survival

could be improved when using therapies that increase distal tumor

cell invasion and microenvironment acidification.

It should also be recognized that human cytomegalovirus

(HCMV) infects many GBM that would further facilitate tumor

cell use of glutamine and glucose (1, 156, 157). Recent studies show

that vaccine-targeting of the HCMV pp65 protein could increase

progression free and overall survival of some GBM patients (158). It

would be interesting to determine if this therapeutic effect resulted

in part from inhibition of the glycolysis or the glutaminolysis

pathways in GBM cells (159, 160). Glucose and glutamine are

required for synthesis of glutathione while glutamine is essential for

the action of manganese superoxide dismutase (161–163).

Consequently, the elevated use of glucose and glutamine, which

increases anti-oxidant potential, will contribute to the resistance of

GBM cells to chemotherapy and radiotherapy.

It is known that elevated aerobic fermentation (Warburg

effect) also drives the multidrug resistant (MDR) phenotype,

which protects GBM cells from toxic chemotherapy (1, 5, 41,

164). Hence, the treatment-linked increases in fermentable energy

metabolites and disruption of the tumor microenvironment can

explain in large part how overall survival remains so poor formost
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GBM patients treated with current standard of care (7, 97). The

information presented in Figure 3A describes how current

therapies can facilitate rapid GBM recurrence. It is our view

that these therapies can account in large part the remarkable

reproducibility of poor patient survival across multiple surgical

institutions as seen in Figure 1. It is unlikely that GBM patient

survival will improve significantly if therapies that increase

microenvironment acidification and are inherently ineffective

are continuously used (165).
Ketone bodies are non-fermentable
and can reduce GBM acidification

As fermentation metabolism is ultimately responsible for rapid

GBM growth and the acidification of the microenvironment, then

therapies that target fermentation metabolism should reduce

acidification and GBM growth. Metabolic therapy involves diet/

drug combinations that target the availability of glucose and

glutamine while also elevating non-fermentable, anti-inflammatory

ketone bodies (13, 41, 166–170). Most importantly, GBM and other

tumors cannot use ketone bodies for energy due to deficiencies in

SCOT; the key mitochondrial enzyme needed for ketone body

metabolism (171–173). No evidence has been presented, to our

knowledge, showing that ketone bodies can replace glucose or

glutamine in serum free media for the survival of any tumor cell.

Ketogenic diets and water-only therapeutic fasting will lower

circulating glucose levels while elevating circulating D-b-
hydroxybutyrate (D-b-OHB) levels (41, 174–176). Water-only

fasting in humans is comparable to a 40% calorie restriction in

mice due to differences in basal metabolic rate that about six times

faster inmice than in humans (177). Therapeutic strategies that lower

blood glucose while elevating blood ketone bodies are anti-

angiogenic, anti-edematous, anti-inflammatory, and pro-apoptotic.

Evidence supporting this statement was described previously (13,

178). Diets that lower glucose and elevate D-b-OHB can also reduce

circulating levels of insulin-like growth factor 1 (IGF-1), a known

driver of tumor growth (Table 1). There is no known drug that can

produce the broad range of therapeutic effects as can diets that reduce

glucose while elevating D-b-OHB.
It is important to mention that blood glucose can be reduced to

very low levels (less than 1.0 mM) in humans that are in therapeutic

ketosis (6-8 mM, D-b-OHB) without producing hypoglycemic

reactions (174, 179, 180). A whole-body transition from glucose-

driven metabolism to D-b-OHB-driven metabolism will reduce

circulating glucose levels thus reducing extracellular acidification

from lactic acid production. At the same time, this transition will also

produce metabolic stress on all neoplastic GBM cells that are

dependent on glycolysis for growth (41, 172, 174, 181). Moreover,

D-b-OHB metabolism enhances the DG’ATP hydrolysis in normal

cells from -56 kJ/mole to -59 kJ/mole, thus providing normal cells

with an energetic advantage over the fermentation-dependent tumor

cells (41). We are not familiar with any therapies, besides ketogenic
frontiersin.org

https://doi.org/10.3389/fonc.2022.968351
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Seyfried et al. 10.3389/fonc.2022.968351
metabolic therapy (KMT), that can enhance the energetic advantage

of normal cells over that of tumor cells (11, 41).

The energetic advantage of D−b-OHB metabolism in normal

cells is seen predominantly with D-b-OHB, and is not seen with

either the D/L- b-OHB racemic mixture or with fatty acids (174,

182, 183). On the other hand, racemic D/L-b-OHB tends to reduce

blood glucosemore through shifting redox state in the liver and can

potentially increase ROS production in tumor cells through b-
oxidation of the L-form (41). The L-b-OHB interconverts back to

D-b-OHB (in tissues) through a racemase enzyme or gets

converted to acetyl-CoA. The L-b-OHB also has greater potential

as a signaling molecule since it remains in circulation longer and

has similar effects at suppressing the NLRP3 inflammasome and

epigenetic effects (184–186). Hence, D-b-OHB and D/L-b-OHB
can stress tumor cell metabolism while enhancing the metabolism

of normal cells through a variety of mechanisms.

The therapeutic effects seenwith ketone bodies are generally best

when blood glucose levels are low (generally below 3.6mM), as little

or no therapeutic benefit is seen in either preclinical GBMmodels or

in human patients when glucose levels remain elevated (100, 171,

187). These therapeutic glucose levels could be difficult to achieve for
Frontiers in Oncology 09
manyGBMpatients, however, due to the glucose-elevating effects of

the current standard treatments used to manage GBM.We also did

notfindany therapeutic benefit of sodiumbicarbonateon thegrowth

of the VM-M3 mouse glioblastoma suggesting that alkalinization

using sodium bicarbonate was ineffective in managing this GBM

model (L. Shelton, unpublished). It is the synergistic action of low

blood glucose with elevated ketone bodies that provides the best

therapeutic strategy for slowing growth and reducing

microenvironment inflammation and acidification.

The simultaneous restriction of
glutamine and glucose will reduce
GBM growth and acidification

In addition to glucose, glutamine is the other major fuel that

drives GBM growth especially the neoplastic mesenchymal cells (14,

137, 144). We showed that the glutamine-targeting analogue, 6-

diazo-5-oxo-L-norleucine (DON), used with a calorie restricted

ketogenic diet could significantly reduce growth and improve

overall survival in preclinical models of GBM (Figure 6).
TABLE 1 Influence of diet on plasma glucose, b-OHB, and IGF-I levels in mice bearing the CT-2A intracerebral brain tumoura.

Dietb Groupsc Glucose (mmol I-I) b-OHB (mmol I-I) IGF-I (ng ml I-I)

SD UR 9.1 ± 0.9 0.6 ± 0.1 208 ± 25

R ( 7)d5.2 ± 1.1* (7)1.4 ± 0.2* (6)117 ± 36*

(6 ) (6) (6)

KD UR 11.4 ± 1.4 1.0 ± 0 .3 294 ± 30

(14) (14) (5 )

R 5.7 ± 1.5* 1.3 ± 0.6 193 ± 57*

(6) (6) (6)
aValues are expressed as means ± 95% confidence intervals. bAnimals were fed either a standard chow diet (SD) or a ketogenic diet (KD). cUR (unrestricted feeding) and R (restricted to 60%
of the SD-UR group. dNumbers in parentheses indicate the number of independent tumor-bearing mice examined in each group. The asterisks indicate that the values of the R groups
differed from those of their respective UR groups at P < 0.01. The details of these experiments are as we described (100).
FIGURE 6

Influence of diet/drug therapy on overall survival of VM/Dk mice with the VM-M3 invasive GBM. A calorie restricted ketogenic diet (KD-R) was
administered together with the glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine (DON) as we described (13). Overall survival was significantly
longer in the tumor bearing mice receiving the diet/drug combination (KD-R + DON) than in the mice receiving the standard high-carbohydrate
diet (SD-UR), the KD-R alone, or DON alone. It is important to mention that 2-3x more DON was delivered to the tumor of the mice fed the
KD-R than to the mice fed the SD-UR indicating that the KD facilitates a non-toxic delivery of small drug molecules through the blood brain
barrier (13, 188). Image reproduced under a Creative Commons license from (13).
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Moreover, we found that ketogenic diets facilitated delivery of DON

and other small molecules through the blood brain barrier (13, 188).

This delivery may be due in part to the action of the content of

caprylic acid in the diet (189). Hyperbaric oxygen therapy can also

reduce angiogenesis and microenvironment inflammation

especially in combination with therapeutic ketosis (41, 190–193).

In addition to findings in preclinical models, we also described how

the IDH1 mutation could act as a therapeutic drug that

simultaneous targets the glycolysis and glutaminolysis pathways

to improve survival in a GBMpatient (11) (Figure 7). The long term

survival of this patient, now at eight years, was attributed to a
Frontiers in Oncology 10
combination of his younger age, his low-carbohydrate ketogenic

diet, his acquired IDH1 mutation, and finally to his avoidance of

radiation, TMZ, and steroids (11). Ketogenic metabolic therapy

involves the synergistic therapeutic action of the KD used with

drugs and procedures that restrict availability of glucose and

glutamine while providing normal cells with an energetic

advantage over tumor cells that are limited to energy generation

through fermentation (12, 41). More recent studies also support

some of these observations in younger GBM patients (199).

Persistent statements suggesting that tumor cells have a growth

advantage over normal cells make no sense in the light of
FIGURE 7

The metabolic pathways responsible for the acidification of the GBM microenvironment. GBM growth is dependent on glucose carbons for biomass
synthesis through glycolysis and glutamine carbons for ATP synthesis through glutaminolysis. The glutamine nitrogen is necessary for protein and
nucleic acid synthesis. The waste products of the glycolytic and the glutaminolysis pathways (lactic acid, glutamic acid, and succinic acid) will acidify
the GBM microenvironment. The oxygen consumption is linked to ROS production, not to ATP synthesis. Excessive ROS produce somatic mutations
and further increase inflammation and acidification of the microenvironment (7, 12, 14, 194). A calorie restricted KD will reduce glucose availability for
glycolysis while also interfering with the glutaminolysis pathway (11). Glutamine-driven mSLP in the glutaminolysis pathway is a major source of ATP
synthesis for GBM cells (7, 14). The glutaminolysis pathway (red) becomes dominant in tumor cells with inefficient OxPhos and that express the dimeric
PKM2 isoform. PKM2 is expressed in GBM and produces less ATP through glycolysis than does the PKM1 isoform (73, 75, 195, 196). The elevation of
ketone bodies (D-b-hydroxybutyrate and acetoacetate) through KD will indirectly reduce ATP synthesis through the succinate CoA ligase (SUCL)
reaction by diverting CoA from succinate to acetoacetate. The IDH1mutation could reduce ATP synthesis through mSLP by increasing synthesis of 2-
hydroxyglutarate that is derived from a-ketoglutarate and thus reduce the succinyl CoA substrate for the SUCL reaction (11, 14, 197). Besides its
potential effect in reducing glutaminolysis, 2-hydroxyglutarate can also target multiple HIF1a-responsive genes and enzymes in the glycolysis pathway
thus limiting synthesis of metabolites and one-carbon metabolism needed for rapid tumor growth (7, 14, 68, 198). The down regulation of Hif1-a-
regulated lactate dehydrogenase A (LDHA), through the action of both the KD and the IDH1mutation, will reduce extracellular lactate levels thus
further reducing microenvironment inflammation, acidification, and tumor cell invasion. Hence, the simultaneous inhibition of glycolysis and
glutaminolysis through the synergistic effects KMT and the IDH1 mutation will reduce the majority of signaling pathways necessary for rapid GBM
growth and acidification of the microenvironment. BDH, b-hydroxybutyrate dehydrogenase; FAD, flavin adenine dinucleotide; GLSc, glutaminase
cytosolic; GLSm, glutaminase mitochondrial; GLUD, glutamate dehydrogenase; GOT2, aspartate aminotransferase; KGDHC, a-ketoglutarate
dehydrogenase complex; LDHA, lactate dehydrogenase A; NME, nucleoside diphosphate kinase; OXCT1, succinyl-CoA:3-ketoacid coenzyme A
transferase 1; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; PKM2, pyruvate kinase M2; SDH, succinate
dehydrogenase; SUCL, succinate-CoA ligase. KMT, Ketogenic metabolic therapy. Reprinted with modifications from (14).
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evolutionary theory (12). Themetabolic pathways contributing to

GBM microenvironment acidification and their management by

KMT and the IDH1 mutation are described in Figure 7.
Limitations

There are several limitations that currently prevent the

application of metabolic therapy for reducing microenvironment

acidification and the growth of GBM. First, the dosage, timing, and

scheduling of the diet/drug combinations that can best target

glucose and glutamine availability have yet to be optimized for

mostGBMpatients (1, 11, 41, 87). Second, the findings that GBM is

largely dependent on glucose and glutamine fermentation for

growth due to OxPhos deficiency is inconsistent with the current

dogmatic view that GBM and most other cancers are exceedingly

complex genetic diseases requiring complicated Rube Goldberg-

type solutions (12). Finally, the most important limitation for

adapting metabolic therapy in the clinic is the absence of a

business model that can generate sufficient replacement revenue

using cost-effective, non-toxic metabolic therapies (200–203). We

predict that major advances in overall GBM patient survival will be

realized once GBM becomes recognized as a mitochondrial

metabolic disease and when non-toxic metabolic therapies

become the standard of care for management.
Conclusions

Microenvironment acidification is largely responsible for

drug resistance, enhanced invasion, immunosuppression, and

metastasis. The acidic waste products of glucose and glutamine

fermentation metabolism (lactic acid, glutamic acid, and succinic

acid), generated within the neoplastic tumor cells, are responsible

for the acidification of the GBM microenvironment. Stated

simply: The greater is the availability of fermentable fuels, the

greater is the resistance to therapy. The cancer microenvironment

will heal itself if the origin of the acidification can be removed.

Therapeutic strategies that restrict the availability of fermentable

fuels, while increasing levels of non-fermentable ketone bodies,
Frontiers in Oncology 11
will reduce acidification, eliminate the majority of neoplastic

tumor cells, and thus improve GBM management.
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