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Interoperability is the faculty of making information systems work together. In this paper

we will distinguish a number of different forms that interoperability can take and show

how they are realized on a variety of physiological and health care use cases. The last

15 years has seen the rise of very cheap digital storage both on and off site. With the

advent of the Internet of Things people’s expectations are for greater interconnectivity and

seamless interoperability. The potential impact these technologies have on healthcare are

dramatic: from improved diagnoses through immediate access to a patient’s electronic

health record, to in silico modeling of organs and early stage drug trials, to predictive

medicine based on top-down modeling of disease progression and treatment. We will

begin by looking at the underlying technology, classify the various kinds of interoperability

that exist in the field, and discuss how they are realized. We conclude with a discussion

on future possibilities that big data and further standardizations will enable.
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1. Introduction

It has been said that progress is impossible without change and in a digital world it would
seem archaic to still have handwritten patient health records. Similarly, the development of
new experimental tools, methods, and technologies based on computers has increased our
understanding of human anatomy and physiology.

The fundamental theory that underpins computation is that source code and data are
interchangeable. However, enabling different systems to exchange such information requires both
standards and technologies that deliver viable and meaningful communication. Much of the
underlying technology for creating semi-structured data and enabling data exchange was developed
in the 1970s. However, it has only been since the late 1990s that their widespread use became
feasible due to the dramatic price drop in the cost of storage and the rise of the Internet. A markup
language is a standard for annotating a document in a way that is syntactically distinguishable from
the content. Early examples of this were created by IBM to annotate documents with formatting
commands so that they did not need separate versions for each printing device. In these early cases,
the modeling annotations were fixed. The eXtensible Mark Language11 (XML) is a set of syntactic
rules that allow users to develop their own annotations, and more precisely, their own markup
languages.

The ability to easily create, read and modify one’s own document structures using a
standard template facilitates syntactic interoperability. In the case of XML, this is achieved through

1http://www.w3.org/XML/
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a hierarchical structure composed of elements and attributes.
Alternatively, JSON2 adopts a less cluttered format based on
attribute key-value pairs to produce a similar result.

Alas the adoption of a generalized markup language is
not sufficient to create interoperability. Both sides of a
communication need to be able to interpret the information
exchanged. To achieve semantic interoperability, controlled
vocabularies, and standard taxonomies are required. A more
generic solution is achieved through the adoption of ontology
languages. Such Semantic Web techniques allow the encoding
of knowledge about specific domains by augmenting existing
documents with attributes that denote meaning. This allows
information to be exchanged meaningfully and accurately, even
when terms are expressed in different languages, or when two
or more terms refer to the same concept but are not easily
recognized as synonyms. The Semantic Web Health Care and
Life Sciences Interest Group3 is tasked to develop and encourage
the use of software technologies in the global healthcare arena:
from ontologies to integrate biological data, to providing decision
support capabilities for patient record systems, and looking at
linking the laboratory to the clinic.

Alongside the exchange of information between systems,
we require executing computer program components to be
able to communicate. If we have two or more components
operating over a domain of interest, it would be opportune
to pull these resources together in a meaningful manner. This
amounts to execution interoperability. Computer models have
become valuable tools for the understanding of phenomena that
govern biophysical behaviors. In silico models allow information
generated from code that simulates different physical scales to
be combined in order to provide a better picture of the coupled
processes and structures.

There are different approaches to biological systems modeling
(Noble, 2002). A “bottom-up” approach looks at simulating
systems from a reductionist point of view, integrating multiple
functional components. A “top-down” approach looks at the
object in its entirety and develops simulations that match
known observations. For example, in modeling cancer both
of these approaches are used to simulate different aspects of
cancer, such as cancer progression and tumor growth. Naturally
there is interest in combining such mathematical modeling
techniques in a hybrid fashion. Enabling information exchange
between components of compound and hybrid models is not
trivial, and this execution interoperability requires syntactic and
semantically interoperable approaches.

Take for example computer models of Glioblastoma
Multiforme (GBM), an aggressive type of brain tumor. It is
possible to combine the two distinctly different modeling
approaches to increase the accuracy of a diagnosis. Malignant
gliomas are progressive brain tumors. These are classed into
anaplastic gliomas and GBM. Patients who suffer from anaplastic
gliomas typically survive for 2–3 years. However, the majority of
patients with GBM die of the disease within a year after diagnosis
(Louis et al., 2007). The recent combined approach of applying

2http://json.org
3http://www.w3.org/2011/09/HCLSIGCharter.html

temozolomide and radiotherapy has increased the survival
period from 12 to 15 months (Minniti et al., 2008). Improvement
in life expectancy and quality for patients with GBM is needed. It
is now apparent that this can be achieved through collaboration
between clinicians, basic researchers, computer scientists, and
mathematicians, where many new treatments will be developed
with help from personalized computational modeling to increase
survival rates and periods.

The demand for greater interoperability from the
physiological modeling and health informatics perspective
has been largely driven by the European Virtual Physiological
Human network4 (Hunter et al., 2013). The problem this
network is attempting to address is the sharing of the vast
but diverse knowledge created by computational biomedical
scientists. There are many scientific approaches applied and
new emergent technologies but enabling interoperability and
reusability is proving to be very difficult. A key source for this
disparity originates from the lack of consistent cataloging and
annotation of data and models.

This paper will expand on the above through use cases,
explaining how markup languages are useful tools to both health
informatics and physiological modeling. In Section 2 we will
look at how markup is used for electronic health records. In
Section 3 we discuss how biological components can be described
using markup languages, used to create implementations and
form useful repositories. We delve deeper into this theme in
Section 4 where we look at what is required to ensure code blocks
are extensible and reusable, essential to ensuring interoperability
at the model level. We broaden the discussion in Section 5
where we look at how models and data can be brought together
through metadata. One of the defining aspects of this field is how
heterogenous both the data and models are. Being able to deal
with the artifacts in a uniform manner is vital for collaborative
efforts. In Section 6 we discuss how top-down and button-up
models, from separate repositories, can be linked together to
create larger models for the case of modeling tumor progression.
Finally in Section 7 we discuss efforts to specify how to perform
in silico experiments automatically. In Section 8 we summarize
and look toward the future.

2. Interoperability of Patient Data

An electronic health record (EHR) is a sequence of health
information about an individual patient. It is a digital record that
can be shared across different health care settings: over a firewall
protected intranet, an enterprize-wide information system, or
over the internet. An EHR covers a range of patient data,
including personal statistics like age and weight, medical history,
medication and allergies, laboratory test results, immunization
history, radiology images, vital signs.

In order to ensure semantic interoperability EHRs should
adopt a standard taxonomy like SNOMED-CT5 (Cornet and
de Keizer, 2008) which is a multilingual healthcare thesaurus
with an ontological foundation. However, this might not always

4http://vph-portal.eu
5http://www.ihtsdo.org/snomed-ct/
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be possible with legacy systems and data extracted from
relational database management systems. One medical center
could have neurological evaluation documents with terms such
as: “Impairments,” “History of Present Illness,” “Blood Pressure,”
“Flexion,” and “Int. rotation.” Another hospital in the same
health systemmay have a totally different clinical documentation
system using an alternative convention for expressing the
same information. Corresponding tags for similar documents
at this hospital may be: “Impairments,” “HPI,” “BP,” “Flex,” and
“IR.” If these documents where in XML then those from the
hospital could be normalized. Normalization is the process of
standardizing after the fact. For instance, defining rules like
“information following the BP tag from the hospital is the same
as the information following Blood Pressure tag from the medical
center.”

Assuming semantic interoperability has been achieved, either
through the use of standard ontologies or through normalization,
health systems can then aggregate EHRs for use in downstream
functions in ways that were not possible before. Naturally this
facilitates data gathering for clinical evidence-based medical
practices. It also opens up the door to meta-analysis of
clinical trials. Many clinical trials are too small to yield
statistically significant conclusions. However, if sufficiently many
related trials have been conducted, each investigating a similar
medical hypothesis, then the data could be integrated and the
results would be more informative. Semantic interoperability
in these cases requires more than common ontologies for
the physiological markers but also information concerning the
context of the data, such as how the data was collected and who
collected it, in order for aggregation to be meaningful (Davies
et al., 2014). On a day to day basis aggregation also simplifies the
administrative workload of health providers.

An outstanding issue is that EHRs are typically stored where
the patient is registered, either with a general practice or
the local health provider. With the advent of interoperable,
secure and trusted means of porting EHRs patient data will
not be restricted and we will see an increase in patient care
commensurate with greater mobility through traveling and
peripatetic work patterns. The challenges posed in implementing
EHRs, even with interoperable data formats, should not however
be underestimated as demonstrated by the scrapping of the
12 billion (approximately US $18.5 billion) UK National
Health Service (NHS) National Programme for IT, the NPfIT
(Mathieson, 2011), however structured, coded patient data
exists—for example, in EHRs in specific therapeutic areas as
well as in more generalized clinical standards—and automatic
extraction and normalization of data is increasingly possible.
It may not be standard practice universally, but structured
EHRs are being adopted. While the NPfIT was scrapped, work
is ongoing by the NHS to adopt localized EHR solutions in
individual local health providers (Sheikh et al., 2010).

3. Separating the Model from the Code

Scientific modeling aims to capture features of the world that
we wish to understand, quantify, visualize or simulate. Since the
1960s computers have been used to model biological processes

with the aim of understanding and predicting diseases. Biological
systems involve many processes occurring in parallel over a wide
range of time scales and size. Organs such as the heart are
comparatively large and operate over seconds, whereas smaller
processes within cells can operate at the nanosecond time scale
and are important for modeling tumors. Computational biology
is becoming ever more accessible due to the dramatic increase
in computing power over the last two decades. The result of this
is we can now apply computer simulations to track increasingly
detailed descriptions of cells and model large numbers of cells
at the same time. Moreover, we can now couple a wide range of
scales into the same simulation to allow more complex biological
structures to be modeled. The multi-scale and multi-physics
nature of these models makes their instigation non-trivial, both
from the mathematical and biological perspectives. Sharing and
reusing models has proved tricky. The published models are hard
to verify and often lack information that is required to reproduce
the results. It is not uncommon for there to be errors in the
papers, both in the mathematical equations but also in the large
parameter lists required to generate the models.

The International Union of Physiological Sciences Physiome
Project6 was created in 1997 with the goal of addressing
these issues by providing a framework for the modeling of
the human body. Hunter (2007) As part of this project, the
specification of the CellML7 markup language were released in
2001. It is a language used to store and exchange computer-
based mathematical models. Developed out of the cardiac
modeling community, CellML aims to cover a range of biological
phenomenon, chiefly cell-function. The notation and it’s tool base
is described in Garny et al. (2008). Simultaneously a separate
consortium developed SBML8 over a series of workshops and was
released in 2002. SBML is also an XML based markup modeling
language and was developed to capture bio-chemical processes at
the molecular scale.

Other notations have proceeded, each with constructs suitable
for the physiological field that they’re aiming to emulate but
the essential idea remains the same: developing a notation
that is domain specific and separate from a general purpose
programming language or a mathematical solving tool such as
MATLAB; provide means of editing, storing, and simulating
these models. For instance, the Pharmacometrics Markup
Language9 (PharmML) has been designed as the exchange
medium for pharmacometricmodels driven in part by the success
of SBML; FieldML10 (Christie et al., 2009; Britten et al., 2013)
proposes a standard for modeling the physics of structures and
fields in physiology such as muscle fibers in heart muscle, as well
as linking to other scales of model; and NeuroML11 (Goddard
et al., 2001; Gleeson et al., 2010) for modeling biophysical and
anatomical properties of the neuron and brain.

Having effective physiological markup notations has led to
MIRIAM (Minimal Information Required In the Annotation of

6http://physiomeproject.org
7http://www.cellml.org
8http://sbml.org
9http://www.ddmore.eu
10http://physiomeproject.org/software/fieldml
11http://www.neuroml.org/
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Models), a community-level effort to standardize the curation
and annotation processes of biological models (Novère et al.,
2005). MIRIAM consists of a set of guidelines that can be
applied to any structured format. Thereby facilitating diverse
groups to collaborate and share resulting models. Compliance
to these guidelines enables the sharing of software and service
architectures built upon modeling activities.

Alongside community guidelines one also needs to include
in the model description information that puts the model into
a wider context. This information is called metadata, namely
“data about data.” These physiological markup notations require
metadata for two main reasons:

• To enable reuse. If a modeler wants to use a model written by
someone else then they need to know about the phenomenon
the component describes, such as what biological entity it
represents. Where possible these metadata annotations should
link with publicly accessible ontologies of such concepts such
as the Gene Ontology12 (Ashburner et al., 2000), the PROtein
ontology13 (Natale et al., 2007) or UNIPROT14 (Apweiler,
2010). The modelers might also need to know when the model
was created and from which experimental data sets it was
validated with.

• To enable curation. Metadata provides a means for locating
particular models and components. It is also important to
document the model and binding this information with the
model itself keeps the metadata from becoming obsolete as the
model is refined.

Sitting on top of these efforts is the BioModels Database15 (Li
et al., 2010). This database is more than just a repository of
models. It contains many manually curated models enriched
with semantic meta-data and cross-referenced from external data
repositories such as publications. The models, their controlled
annotation and all related information is stored in a set ofMySQL
tables. The database allows scientists to search, store, and retrieve
mathematical models. It supports the automatic processing of
CellML and SBML files and has an inbuilt SBML simulator.

Monolithic simulation codes written in efficient but
poorly engineered programming languages led to a “model
engineering crises” centered around initial designs which
lacked extensibility, reproducibility, and modifiability. The use
of markup has brought transparency, curation and powerful
model databases that allow for some degree of interoperability.
Model composition will always lag behind biological model
discoveries for a number of technical and practical reasons.
Modelers have tended to consume available computational
resources so being able to run multiple models concurrently,
with extra demand on processing speed and memory, will
require further resources which might not be readily available.
Moreover models are typically developed and validated in
isolation. Composing such sub-models to create larger scale
models remains problematic.The number of parameters and

12http://www.geneontology.org/
13http://pir.georgetown.edu/pro/
14http://www.uniprot.org/
15http://www.ebi.ac.uk/biomodels-main/

their range of scales are rarely compatible, and whilst the sub-
models might have been validated with respect to some known
data, their combination will also need to go through this process.
Appropriate data for the composed model might not exist or
be sufficiently well-understood to enable rigorous validation to
proceed quickly.

4. Interoperability from a Software
Engineering Perspective

Despite the successes of the markup language efforts described in
the previous section, issues arise when attempting to expand on
the original notations. Extensibility is a characteristic of systems
design. It is a measure of the degree and effort to which a
system can introduce new functionality, with minimal disruption
to its existing behavior. Both SBML and CellML encapsulate
internal components and models to a certain degree. They use
relatively simple techniques to ensure backwards compatibility
with older models. Complex models which simulate multiple
processes achieve this by either spreading the biological concepts
over different parts of the code, or by representing multiple
concepts in one portion of the code. Neither CellML or SBML
provide a means of allowing direct connectivity of data between
modules. Thus, any notion of cohesion is not directly supported.
The grouping of concerns to achieve better modularity and
encapsulation is left to the developer.

Standard module features have been added to CellML and
these enable the embedding of sub models. Current work is
looking at dealing with variation and stochasticity. If you are
solving an ordinary differential equation based model then these
features will allow the representation of any model type you like
within a CellML framework.

Paralleling traditional software engineering in which one
accepts that the system will be extended beyond current
considerations, designing systems based on high cohesion and
low coupling will ensure future rewrites are mitigated. Coupling
is the degree to which each program component relies on
each one of the other components, whereas cohesion refers
to the degree to which the elements of a component belong
together. By ensuring a computer system is designed with low
coupled components, with each component displaying high
cohesion, then the software engineering goals of high readability,
extensibility, maintainability, reusability are better supported.
Another way of looking at it is that entities and methods that
are distinct should be kept apart while those that are similar
should be close together. Low coupling is typically achieved by
designing components to interact through well-defined interfaces
independently from their internal representation, making them
easier to reuse and extend. High cohesion occurs when software
is designed to encapsulate functionality that is closely related,
making components code easier to understand and maintain.

Using abstraction techniques from modern programming
languages such as Generics and well-engineered Inheritance,
we show in McKeever et al. (2013) how they lead to reusable
and interoperable components through low coupling and high
cohesion. We demonstrate their utility on two case studies.
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Generics were used to parameterize heart models on their
ion channels, allowing a range of previously distinct models
to be aligned. We used class inheritance to enable run-time
substitutability of various tumor growth model components.
This enables modelers to easily customize and extend existing
models in an intuitive way. Finally we showed that, when
combined, these techniques allow model designers to pick and
choose suitable abstractions to ensure that their codes may be
maintained and extended in a well-structured and type-checked
manner.

Well-designed object orientation enables interoperability with
a weak semantic alignment at the code level; through interfaces,
subtype inheritance, and generic instantiation. However, there
is a cost involved with utilizing these techniques; modelers have
to spend time and effort designing their code with such abstract
architectures in mind in order to reap the benefits. Future work
should consider the use of ontologies to facilitate a Model Driven
Approach using UMLs meta-object facility and corresponding
tool support.

5. Semantic Interoperability for Biomedical
Data and Models

Ensuring that the metadata can actively contribute toward
interoperability is the driving force behind the European
RICORDO16 project (de Bono et al., 2011). Here the focus is
on supporting the VPH community through the development
of a multiscale ontological framework to enable interoperability
amongst its modeling and data resources. The motivation is
based on the belief that industrial and clinical traction cannot
be achieved unless sharing and reasoning over metadata can be
demonstrated in practice. RICORDOdraws together a number of
key databases at the UK-based European Bioinformatics Institute
along with tools and methods. The focus was to create a metadata
framework that enables multi scale biological entities to be
coupled.

RICORDO exploits standard reference ontologies, that
encapsulate biological meaning, in the models metadata
to promote interoperability. RICORDO has developed an
architecture based on the storing and inference-based querying of
their annotations (Wimalaratna et al., 2012). This infrastructure
consists of a repository, an intelligent database and a set of
applications.

This work has been further refined in the ApiNATOMY17

system, where the authors have developed a tool that
automatically generates consistent anatomy diagrams and
superimposes anatomy-related information (de Bono et al.,
2012). A key goal of their on going effort is to support the
open biomedical community to collaborate, share and interact
with complex data and models in genomics, physiology,
pharmacology, and pathology.

Other examples of open semantic standards and ontologies
include MAGE-TAB18 (Rayner et al., 2006) (MicroArray and

16http://www.ricordo.eu
17http://apinatomy.org/
18http://fged.org/projects/mage-tab/

Gene Expression Tabular), ISA-TAB19 (Sansone et al., 2012),
BioPAX20 (Biological Pathway Exchange) (Demir et al., 2010),
and the Gene Ontology (GO) (Ashburner et al., 2000) to
name but a few. Ontologies facilitate machine processing,
standardization of resource metadata, as well as reasoning. They
enable the navigation and querying of annotated repositories
using formalized biomedical knowledge. The ontologies allow for
a uniform means of accessing models and data over a wide range
of disparate domains.

6. Execution Platforms

Models and their implementations need to also interoperate
with different computational execution platforms (to be able to
run a simulation) as well as enabling models to interoperate
with each other in combination. As mentioned previously, the
simulation of GBM in silico is one novel treatment modality
by modeling tumor growth and reaction to treatment (Johnson
et al., 2013c). Cancer is a phenomenon that occurs at many scales
and in order to reliably predict cancer progression over time,
including predicting responses to simulated treatment, several
scales should be simulated concurrently, and in combination.
Different research groups focus on different scales and contexts
of tumor dynamics. Fusing modularized models is not trivial,
where the fusing of a bottom-up approach with a top-down
approach may combine data from subcellular systems biology,
DNAmethylation status, deregulated metabolic pathways, or size
of tumor based on imaging.

To address the need for being able to fuse different tumor
models, we developed an XML-based markup language targeted
at the tumor modeling domain, TumorML (Johnson et al.,
2010, 2011, 2012, 2013, 2014; Sakkalis et al., 2012, 2014). The
TumorML XML schema21 was developed out of the European
Commission Transatlantic Tumor Model Repositories project
(TUMOR). The schema allows us to make records of the
metadata relating to cancer model descriptions as TumorML
XML documents. TumorML inherits elements from a number
of other XML standards. Dublin Core is used for basic resource
curation that enable some search and provenance (elements
such as title, creator, description, publisher,
contributor, and date) (Dublin Core Metadata Initiative,
2012). BibTEXML is a representation of the BibTEX format
for bibliographic referencing (Gundersen and Hendrikse, 2007).
Reference elements contain a title, source containing
a URL, creator, full text citation, and a type that
categorizes the reference using BibTEXML categories. Abstract
model descriptions are used to describe the executable run-time
interfaces to cancer models (and cancer model components)
as “black boxes,” where XML declarations of input and output
parameters describe how data flows in and out of a model.
The Job Description Markup Language (JSDL) (Anjomshoaa
et al., 2005) is used to describe the basic system (both
hardware and software) required to execute TumorML-packaged
implementations.

19http://www.isacommons.org
20http://www.biopax.org
21http://github.com//tumorml/TumorML-schema
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As described in Johnson et al. (2011), models can be either
“simple” or “complex,” and this is reflected in the XML schema
by having a choice of two patterns that can be enclosed within
a model XML element. To recap, a simple model description
allows a single computational cancer model to be parceled
up, while a complex model describes a compound model; a
combined entity made up of simple or complex models enclosed
in TumorML.

A simple model consists of two key descriptors: an input and
output parameter specification, described with a parameters
XML block with in and out elements that define input and
output parameters. Parameters may refer to system-level files
in order for implemented models to read in or write out data.
Following this, at least one implementation block is used
to describe the metadata of a model’s software implementation.
An implementation specification describes the files that make
up the model implementation (e.g., Binary executable program
files, source code, initial data/parameter files etc.), as well as
instructions on how to handle packaged files, and the minimum
software and hardware requirements for running the model.
The key enabler of interoperability is in defining the parameter
interfaces in a standard way using XML. A complex model is
similar to a simple model, however contains multiple model
declarations. We then describe a set of instances and a topology
of linked sub-model parameters that are connected. This is
illustrated in Figure 1, where the example illustrates threemodels
that make up a complex model. The input and output parameters
are described in XML in a standardized form as defined in
the TumorML schema. in this diagram we show a complex
model that is composed of three different models simulating
different scales and aspects of cancer biology. Connected input
and output parameters must match in terms of computational
and semantic compatibility to enable parameter/data passing
between component models. This allows for interoperation
between linked component models since their input and outputs
are declared in the same way.

The Multiscale Modeling Language, MML; and its XML
version, xMML; proposes a standard for specifying both multi-
scale models and how to couple models of differing simulated
scales. The XML markup for building complex models in
TumorML is inspired by xMML. This allows computational
engines to interpret and execute cancer models, including
communicating input/outputs to the process as well as facilitating
inter-model communication. Full details on the XML markup
used in TumorML can be found in Johnson et al. (2013)

7. Experimental Platforms

In Section 3 we looked at how to standardize the description of
models to ensure reproducibility of simulations. We saw how the
MIRIAM (Novère et al., 2005) guidelines enabled the sharing and
reuse of models. In this section we will discuss how a second set of
minimal information guidelines called MIASE (Waltemath et al.,
2011a) (Minimum Information About a Simulation Experiment)
specifies the requested information about simulation setups. The
key idea is that model reuse can be improved if models and
associated data are considered together. The reason for this is that

to represent increasingly complex biological phenomena requires
models to be instantiated using different conditions, and these
conditions must be formally described together with the model
itself. A coherent and reproducible means of representing in silico
experiments is necessary in order to verify or refute a hypothesis.

The MIASE guidelines are a community effort to identify the
minimal information necessary to enable simulation experiments
to be reproduced. Consequently, the MIASE Guidelines list the
information that a modeler must provide so that a numerical
simulation experiment, based on a set of quantitative models, can
be executed in a manner that others may be able to arrive at the
same results.

The guidelines are respected by the Simulation Experiment
Description Markup Language (SED-ML 22), an XML-based
format for simulation experiment encoding (Waltemath et al.,
2011b). A SED-ML document would list the models required
for an experiment, the transformations needed to be applied to
the models before they can be used, the simulation procedures
required to run on each model, functions to analyse the results
and which ones should be outputted, and finally how the
output should be presented. Each of these descriptions do not
depend on the underlying implementation of the model. By
being model agnostic means that one can perform the same
experiment on differing implementations that aim to model the
same phenomena.

As SED-ML is a software-independent format describing how
to perform simulation experiments, it is not bound to any
simulation environment or tool. In Waltemath et al. (2011b) the
authors demonstrate that, as the support for SED-ML has grown
within the biological modeling community, it has become feasible
to exchange simulation descriptions so that the same experiment
can be run on different simulation tools. One important use case
for SED-ML is functional curation, based on the idea that when
mathematical and computational models are being developed
and curated the primary goal should be the continuous validation
of those models against experimental data. An extended version
of SED-ML enables this tight coupling so that the two data sets
(experimental and simulated) can be curated together, and as new
competing models of the same biological system are developed
they can then be compared directly with existing models through
use of the same protocols. So from a behavioral point of view,
functional curation enables models to be extended and re-used
by other members of the community with confidence. This
technique has been demonstrated on cardiac electrophysiology
cell models (Cooper et al., 2011).

There are many tools that have been developed to perform
simulations based on markup descriptions of data and models,
for example: CellDesigner, Systems Biology Simulation Core
Library, Repose, Flint and CMISS, to name but a few.
Beyond a single-cell simulations for example, CellML has
been integrated into OpenCMISS (http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4283644/), and other markup languages have
been developed for different aspects of physiological simulation
(FieldML/PHML/NeuroML). Also within the euHeart project
(Smith et al., 2011) some of these standards were even used in

22http://sed-ml.org
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FIGURE 1 | Illustration of multiple cancer models connected together via some interoperable interfaces.

FIGURE 2 | Summary of different standards covered.
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generating whole-heart simulation. Multi-scale componentized
simulations/computations have been done, perhaps are not yet
commonplace, but is a rich and growing area of research in
computational biology.

8. Conclusion

We have discussed how markup languages have enabled better
use of digital technology in the health care and modeling
domain through increased interoperability. However, it is still
early days in this endeavor. Greater standardization and trusted
secure communication will revolutionize patient treatments and
ensure greater healthcare provision through healthcare providers
having efficient access to patient data anywhere and at any time;
automatically generated tool support for clinical trials (Davies
et al., 2014); availability of online psychological treatment and
support23; computational modeling of diseases to personalize
medication24 and treatment. While EHRs on their own may
not provide granular enough detail for biophysical simulations,
such simulations would not be considered using only EHR
data. Simulations are increasingly being developed that include
extremely rich dataset combinations that use EHRs with various
kinds of ’omics (genomics, transcriptomics, metabolomics etc.),
generalized observed parameters from published literature, and
increasingly sensor data such as environment and location,
actimetry, and even physiological signal profiles (e.g., EEG/ECG).
All of these sources of data require syntactic and semantic means
toward interoperating across clinical and research systems.

From the perspective of empowering patients, one can
envisage a future in which doctors prescribe mobile apps that
work with the patient to gather data from smart devices,
model disease progression in real time and calculate medication
accordingly; with remote access to medical backup to ensure
patients are receiving the optimal treatment possible.

We have seen how repositories, such as the BioModels
database, provide curated and reusable components that capture
a wide range of biological systems. They enable in silico
experiments to be undertaken without having to implement
the models from scratch, solely using the equations and data
extracted from the literature. From the modeling perspective
much work remains, integrating models over time and space
requires considerable effort and new techniques need to be
developed in order to link the cell level to the atomistic one for
instance. However, genomic sub-models are being introduced
into cell models (Niederer et al., 2012) where relevant. Crucial
to the successes of model markup languages has been the
role of active communities of tool developers and modelers
who have fostered the early stages of these projects, many
as part of their doctoral studies, to ensure the methodologies
developed sustainable momentums within their respective
fields.

The aim of this paper was to elucidate some of the different
forms interoperability can take in the realm of scientific
computing and health informatics. This has not been an
exhaustive presentation, more an overview of some key research

23http://www.u-care.uu.se
24http://www.p-medicine.eu

FIGURE 3 | Facets of Interoperability, where mark-up has been used to

characterize each distinct component.

areas and the potential added value that can be achieved
through interoperability. In Figure 2 we list the various different
standards that we have discussed in this paper. Figure 3

attempts to portray the various facets of interoperability
discussed within this paper. The patient data, discussed in
Section 2, is the foundation on which health informatics is
built. Predictive therapies will require personalized simulations.
Such simulations are constructed from models described in
Sections 3, 4, 5. Many of these models can currently run
through community based environments. However, compound
models require sophisticated execution platform descriptions
to enable disparate models to be combined as discussed in
Section 6. Finally there are generic frameworks that enable
experiments to be specified so that models can be run in a
reproducible manner as shown in Section 7. We hope to have
shown how mark-up languages play an important part in
structuring data, describing models, specifying workflows,
and creating libraries of experiments in order to combine
resources and encourage re-use. A more comprehensive
list of biological sharing initiatives can be found at
BioSharing25.

25www.biosharing.org/standards
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