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Abstract: Although toxic Cd (cadmium) and Cr (chromium) in the aquatic environment are mainly
from natural sources, human activities have increased their concentrations. Several studies have
reported higher concentrations of Cd and Cr in the aquatic environment of Malaysia; however,
the association between metal ingestion via drinking water and human health risk has not been
established. This study collected water samples from four stages of the drinking water supply chain
at Langat River Basin, Malaysia in 2015 to analyze the samples by inductivity coupled plasma mass
spectrometry. Mean concentrations of Cd and Cr and the time-series river data (2004–2014) of these
metals were significantly within the safe limit of drinking water quality standard proposed by the
Ministry of Health Malaysia and the World Health Organization. Hazard quotient (HQ) and lifetime
cancer risk (LCR) values of Cd and Cr in 2015 and 2020 also indicate no significant human health
risk of its ingestion via drinking water. Additionally, management of pollution sources in the Langat
Basin from 2004 to 2015 decreased Cr concentration in 2020 on the basis of autoregression moving
average. Although Cd and Cr concentrations were found to be within the safe limits at Langat Basin,
high concentrations of these metals have been found in household tap water, especially due to the
contamination in the water distribution pipeline. Therefore, a two-layer water filtration system
should be introduced in the basin to achieve the United Nations Sustainable Development Goals
(SDGs) 2030 agenda of a better and more sustainable future for all, especially via SDG 6 of supplying
safe drinking water at the household level.
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1. Introduction

Cadmium (Cd) and Chromium (Cr) in the aquatic environment are mainly from the erosion of
natural deposits [1,2], but can also be a result of discharge from metal refineries and runoff from waste
batteries and paints [3–6]. The detrimental impact of toxic Cd and Cr on living organisms in the
aquatic environment is due to their prolonged persistence and non-biodegradable characteristics [7,8].
Therefore, these metals have been listed as the toxic trace metals by the United States Environmental
Protection Agency (USEPA) if ingested via drinking water. The natural weathering of mineral rocks is
considered as the main source of Cd and Cr in the Langat River, Malaysia [9,10]. Low concentration
of dissolved Cd (1 × 10−3 mg/L) was reported by Mamun et al. [11] in the Langat River; however,
Sarmani [12] and Yusuf [13] observed very high concentration of Cd in Langat River (35.56 × 10−3 mg/L
and 24 × 10−3 mg/L, respectively). The high concentration of Cd in Langat River might be because of
sampling locations near ex-mining sites and runoff from infrastructure development activities within
the Langat Basin. Similarly, Wang et al. [14] found high dissolved Cd concentration (61.74 × 10−2

±

90.12 × 10−2 mg/L) in the Huaihe River, China. Aris et al. [9] reported a low Cr concentration (6.7 × 10−4

± 9 × 10−4 mg/L) in the Langat River; however, higher Cr concentration was recorded (7 × 10−2 mg/L)
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in Langat River [13]. Islam et al. [7] also reported high Cr concentration (7.8 × 10−2
± 2.7 × 10−4 mg/L)

in the Korotoa River, Bangladesh.
The corrosion of galvanised pipes is also attributed to higher concentration of Cd and Cr in

the tap/drinking water globally, including in Malaysia [15,16]. For instance, Ong et al. [17] reported
Cd concentrations of 1.33 × 10−3 mg/L and Cr 1.24 × 10−3 mg/L in the tap water of Kuala Lumpur,
Malaysia. Similarly, Nalatambi [16] found the concentrations of Cd to be 1.3 × 10−5 mg/L and Cr 6.75
× 10−3 mg/L in the tap water at Sunway Kuala Lumpur, Malaysia. Low levels of Cd (4.1 × 10−5

±

1 × 10−5 mg/L [18] and 2 × 10−5
± 1 × 10−5 mg/L [19]) and Cr (8 × 10−3

± 4 × 10−4 mg/L [19]) have
also been reported in the Langat River Basin, Malaysia. Langat River is one of the main sources of
drinking water in the State of Selangor, Malaysia, providing drinking water to almost one-third of the
population in the state [20–22]. However, no studies in Malaysia have linked the association between
Cd and Cr ingestion via drinking water and human health risk.

The association between Cd exposure and renal cancer has been reported by studies in Thailand [23],
China [24], the USA [25–27], and Europe [28–30]. Cadmium is highly toxic and highly soluble in
water [31,32], so even at low levels (i.e., 1 × 10−3 mg/L) the ingestion of cadmium via drinking water
may cause acute gastroenteritis [33], renal tubular dysfunction, and renal cancer [34,35], as well as
histopathological changes in humans [36]. Therefore, humans are very susceptible to the acute toxicity
of Cd ingestion via drinking water because of its 10–35 year biological half-life [37,38] as well as
its bioavailability and bio accumulative characteristics [27,39]. Hence, Cd is classified as a human
carcinogenic (Group 2A) by the International Agency for Research on Cancer [31] and the European
Commission [40] on the basis of human and animal experiments. In addition to carcinogenic impacts of
Cd exposure, non-carcinogenic impacts such as chronic kidney disease (CKD), hypertension, diabetes,
bone defects, and macular degeneration have been observed [23–44].

On the other hand, Cr is naturally found in environmental media originating both from ingenious
geologic formations and anthropogenic activities [2,45]. Chromium is also highly soluble in water and
has prolonged persistence in the environment [46]. Therefore, both the IARC (International Agency for
Research on Cancer) and USEPA have classified Cr (VI) as a group 1 human carcinogen because of its
acute toxicity via ingestion [47–49]. The carcinogenic characteristics of Cr (VI) are based on laboratory
experiments on animal stomachs, intestinal tracts, and lung [50,51]. Therefore, human epidemiology
is required to find out the association between Cr ingestion via drinking water and various forms of
cancer [52,53]. Meanwhile, several studies have reported the association between the lung cancer of
workers in the USA and the inhalation of Cr (VI) [54]. The U.S. National Institute for Occupational
Safety and Health has estimated that the lifetime risk of lung cancer death at exposure to 1 × 10−6 mg/L
Cr (VI) is 6 per 1000 workers; exposure to 2 × 10−7 mg/L Cr (VI) has been estimated to be approximately
1 lung cancer death per 1000 workers [55]. Similarly, Cr (VI) was detected in about one-third of 7000
drinking water sources surveyed by the State of California in the USA (detection limit 1 × 10−3 mg/L),
although the reported concentrations of Cr (VI) was relatively low (86% < 1 × 10−2 mg/L) [56]. It is
suspected that about 200 million people in USA across all the 50 states have been exposed to higher
than recommended levels of Cr (VI) through their tap water; therefore, they are susceptible to more
than 12,000 new cases of cancer in 2014 [57,58]. Beaumont et al. [56] reported that ingestion of Cr (VI)
via drinking water is possibly associated with stomach cancer in China. Non-carcinogenic risks of Cr
(VI) exposure include diarrhea, stomach and intestinal bleeding, cramps, liver damage, and kidney
damage [59,60]. This study determined the Cd and Cr status in the drinking water supply chain at the
Langat River Basin, Malaysia. Additionally, predictions are made on the potential human health risk
of Cd and Cr ingestion to suggest better management of drinking water.
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2. Materials and Methods

2.1. Water Quality Determination

Water samples were collected one time in 2015 from the four stages of drinking water supply chain
(i.e., river water, water treatment plant (WTP), household (HH) tap water, and post- filtration water) at
Langat River Basin, Malaysia. Three replicates of water samples were collected from the eight points
of Langat River where the WTPs collect water for drinking water treatment purposes. Three replicates
of water samples were also collected from the outlets of the eight WTPs. Three replicates of household
tap water and post-filtration filtered water samples were also collected on the basis of the five types of
water filtration systems in the same households (Figure 1). A Chelex 100 resin column ion-exchange
method was applied to analyze the dissolved Cd and Cr concentrations in the water samples [61,62] by
the inductive coupled plasma mass spectrometry (ICP-MS). Standards of several concentrations were
prepared to calibrate the analysis of these metals by ICP-MS. Blanks were also prepared to avoid the
error in the results of metal concentrations. Multi-element calibration standard III (PerkinElmer, Lot
#CL7-173YPY1, PE #N9300233) was used for the recoveries of the standard reference material (SRM); it
was calculated for Cd at 94.966% ± 0.295% and Cr at 99.803% ± 0.005%. ANOVA was performed using
SPSS software (IBM Corp., Armonk, NY, USA, Version 21.0) to compare Cd and Cr concentrations
among the four stages of drinking water supply chain and among the sampling locations in the Langat
River Basin.
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2.2. Human Health Risk Assessment

The USEPA has listed Cd and Cr as highly toxic contaminants that can have cancer risks if ingested
for a long period of time [32,47,63]. Therefore, to assess the human health risk, the USEPA established
a model of chronic daily intake (CDI) of chemicals [64], non-carcinogenic hazard quotient (HQ), and
carcinogenic lifetime cancer risk (LCR) [3] based on Cd and Cr ingestion via drinking water [63,65].

CDI (mg/kg-Day) = [Cdw (mg/L) × IR (L/Day) × EF (Day/Year) × ED (Years)]/[BW (kg) × AT (Days)] (1)
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HQ = [CDI (mg/kg-Day)]/[RfD (mg/kg-Day)] (2)

LCR = [CDI (mg/kg-Day)] × [SF (mg/kg-Day)−1] (3)

Here:
CDI = chronic daily intake (mg/kg-day);
Cdw = metal concentration in water (mg/L);
IR = water ingestion rate (1.996 L/day; questionnaire survey);
EF = exposure frequency (365 day/year [3,63]);
ED = exposure duration (74 years [3]);
BW = body weight (63.193 kg; questionnaire survey);
AT = average time (27,010 days [3,63]).
The upper bound range of lifetime cancer risk (LCR) to an individual is 10−4 to 10−6. Most highly

exposed populations should not exceed 10−5 risk level; however, if cancer risk value is greater than
10−5, then action must be taken to protect the populations [65]. Similarly, any value of hazard quotient
(HQ) ≥ 1 should be taken seriously to avoid non-carcinogenic risks to humans [3,65]. Therefore, the
chronic daily intake (CDI) of Cd and Cr at Langat Basin, Malaysia was calculated through Equation (1).
The HQ and LCR values were calculated according to Equations (2) and (3), respectively, using the RfD
(oral reference dose) of Cd (5 × 10−4 mg/kg-day) [66] and Cr (3 × 10−3 mg/kg-day) [67], as well as the
slope factor value of Cr (5 × 10−1 (mg/kg-day) [67].

2.3. Household Questionnaire Survey

According to the latest population census by the Department of Statistic Malaysia, the total
number of households in the Langat River Basin is 1,494,865 [68]. A 402-household questionnaire
survey was conducted at the basin using Equation (IV) [69,70] to obtain the average daily drinking
water intake by the population in the basin. Additionally, the body weight of household members was
used to calculate the CDI of Cd and Cr ingestion through drinking water.

n = [N/(1 + N (e)2)] (4)

Here:
n = sample size;
N = population size;
e = level of precision (0.05 at 95% confidence level).

2.4. Prediction Model of Metal Concentration in Water

Time series (2005–2014) monthly Langat River water quality data for Cd and Cr were provided by
the Department of Environment (DOE) Malaysia. Therefore, the time series auto regression moving
average statistical analysis was applied to estimate Cd and Cr concentration models in January 2020
on the basis of DOE (2005–2014) and laboratory data (2015–2016) [71–73]. Moreover, the assumptions
of time series data analysis were fulfilled with a significant augmented Dickey–Fuller (ADF) unit root
test for these metals at 0.01 level. Assumptions were also confirmed through autocorrelation (PACF)
and partial autocorrelation (PACF) plots at 95% confidence level.

3. Results and Discussions

3.1. Metal Concentrations in Drinking Water Supply Chain

Concentrations of Cd and Cr in the drinking water supply chain (Table 1) at the Langat River basin,
Malaysia, were within the drinking water quality standards of Ministry of Health Malaysia (MOH),
World Health Organization (WHO), USEPA, and European Commission (EC). The skewness (<2) and
kurtosis (<2) analyses of Cd and Cr concentrations in the river, treated, and tap water indicated normal
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distribution of the data, except in the household (HH) filtered water data of Cr because the kurtosis
value was >4.

Table 1. Mean Cd and Cr concentrations (mg/L) in drinking water at Langat River Basin, Malaysia (2015).

Sample Metal Range Mean Skewness Kurtosis MOH 1 USEPA 2 EC 3

River
water

Cd (mg/L) 3.9 × 10−4–34.3 × 10−4 12.2 × 10−4
± 3.8 × 10−4 1.03 0.13 0.003 0.00072 0.0022

Cr (mg/L) 1.2 × 10−4–12.2 × 10−4 4.7 × 10−4
± 2.7 × 10−4 1.33 1.90 0.05 0.011 –

Treated
water

1.2 × 10−4–9.9 × 10−4 4.2 × 10−4
± 3.1 × 10−4 0.91 −0.84 0.003 0.005 4 0.003 5

0.2 × 10−4–5.3 × 10−4 2.1 × 10−4
± 1.4 × 10−4 0.95 0.14 0.05 0.1 4 0.05 5

Tap
water

1.3 × 10−4–7.7 × 10−4 4.2 × 10−4
± 1.9 × 10−4 0.49 −0.80 0.003 0.005 4 0.003 5

1.0 × 10−4–9.5 × 10−4 3.7 × 10−4
± 2.1 × 10−4 1.08 0.76 0.05 0.14 0.05 5

HH 6

filtration
0.3 × 10−4–7.4 × 10−4 3.1 × 10−3

± 2.1 × 10−3 0.49 −0.90 0.003 0.005 4 0.003 5

0.5 × 10−4–6.6 × 10−4 2 × 10−3
± 1.5 × 10−3 2.00 4.31 0.05 0.1 4 0.05 5

Note: 1 Raw Water Quality Standard proposed by Ministry of Health Malaysia [74]; 2 Criteria Continuous
Concentration by United States Environmental Protection Agency [75]; 3 Annual Average proposed by European
Commission [76]; 4 Regulated Drinking Water proposed by United States Environmental Protection Agency [77];
5 Guidelines for Drinking Water Quality proposed by World Health Organization [78]. 6 HH filtration refers to
household’s filtered water sample.

The maximum high concentration of Cd (34.3 × 10−4 mg/L) in the Langat River might be due
to the natural weathering of Cd from the zinc ores such as sphalerite (ZnS) or Cd minerals such as
greenockite [79] in the Titiwangsa Granite Hill Range of the basin. The point sources of pollution from
sewage treatment plant effluent also attributed high concentration of Cd. Similarly, waste dumping in
the river, runoff from landfills, and industrial waste from the metal finishing process at Bukit Tempoi
might have contributed to high Cd concentration in the Langat River. Accordingly, the maximum
concentration of Cr (12.2 × 10−4 mg/L) in the Langat River indicated pollution in the mid-stream of the
river basin from metal finishing industries such as electroplating, etching, and preparation of metal
components for various industries [6,80]. Similarly, corrosion inhibitors, pigments from industrial
effluents, and lithogenic sources contributed to high concentrations of Cr in Langat River [10,81].

The one-way ANOVA of Cd (F = 27.6; p = 5.99 × 10−14) and Cr (F = 13.1; p = 1.56 × 10−7) in the
Langat River Basin found significant differences at 0.05 confidence level among the four stages of
drinking water supply chain (Table A1). The least significant difference (LSD) of the post hoc test
also found significant mean differences of Cd concentration between river water and water treatment
plants (p = 4.3 × 10−9), tap water (p = 3.5 × 10−11), and HH filtered water (p = 6 × 10−13) at 95%
confidence interval (Figure 2). Similarly, significant differences were found in the concentration of
Cr between river water and treatment plants (p = 9 × 10−5) and HH filtered water (p = 2 × 10−6)
(Figure 3). Moreover, significant differences of Cd and Cr concentrations were also observed among
the river water sampling points, as well as among the WTPs, tap water, and HH filtered water at a 95%
confidence level (Figure 4).

The mean dissolved concentration of Cd in the supply water of the basin was estimated as being
0.42× 10−3

± 0.19× 10−3 mg/L (Table 2) and was within the drinking water quality standard proposed by
MOH and WHO (0.003 mg/L). The highest concentrations of dissolved Cd was observed at the location
Hentian Kajang II (0.75 × 10−3

± 0.02 × 10−3 mg/L), followed by the location Universiti Kebangsaan
Malaysia (UKM) III 0.73 × 10−3

± 0.04 × 10−3 mg/L. The high concentration of dissolved Cd in the
water distribution system might have been due to corrosion in galvanized (i.e., zinc-coated) pipelines
or cadmium-containing solders in fittings and taps. Hence, the leaching of Cd from galvanized pipes
occurred because of the presence of Cd and lead (Pb) impurities in the zinc [82] of galvanized pipe
along with the residence time of low pH water from the use of lime in water treatment [17].
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treatment plant (WTP), (C1,C2) tap water, (D1,D2) household (HH) filtered water). Note: * one-way
ANOVA and least significant difference (LSD) post hoc test is significant at a 95% confidence level.
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Table 2. Cd × 10−3 and Cr × 10−3 concentrations (mg/L) in drinking water supply chain at Langat River Basin, Malaysia (2015).

Water Sampling
Locations

River Water Treatment Plant
Filter (Household Locations)

HH 1 Tap HH 2 Filtration

Cd (mg/L) Cr (mg/L) Cd (mg/L) Cr (mg/L) Cd (mg/L) Cr (mg/L) Cd (mg/L) Cr (mg/L)

Pangsoon 1.60 ± 0.66 0.60 ± 0.56 0.87 ± 0.12 0.32 ± 0.21 Alkaline I (Serdang I) 0.19 ± 0.06 0.38 ± 0.12 0.32 ± 0.002 0.15 ± 0.09
Lolo 1.78 ± 1.43 0.66 ± 0.36 0.93 ± 0.06 0.22 ± 0.2 Alkaline II (Serdang II) 0.19 ± 0.03 0.38 ± 0.12 0.66 ± 0.08 0.18 ± 0.09
Serai 2.54 ± 0.02 0.60 ± 0.04 0.25 ± 0.09 0.1 ± 0.02 Alkaline III (Serdang III) 0.18 ± 0.02 0.35 ± 0.12 0.6 ± 0.02 0.35 ± 0.13

Langat 1.25 ± 0.09 0.31 ± 0.14 0.51 ± 0.1 0.24 ± 0.16 RO 3 I (Hentian Kajang I) 0.42 ± 0.01 0.18 ± 0.03 0.65 ± 0.01 0.13 ± 0.04
Cheras 1.23 ± 0.73 0.57 ± 0.32 0.17 ± 0.05 0.35 ± 0.13 RO 3 II (Hentian Kajang II) 0.75 ± 0.02 0.19 ± 0.01 0.49 ± 0.03 0.14 ± 0.09
Bukit 0.43 ± 0.03 0.32 ± 0.12 0.19 ± 0.02 0.21 ± 0.07 RO 3 III (Hentian Kajang III) 0.58 ± 0.08 0.22 ± 0.08 0.4 ± 0.01 0.1 ± 0.02
Salak 0.50 ± 0.04 0.36 ± 0.02 0.25 ± 0.05 0.16 ± 0.01 Carbon I (Hentian Kajang IV) 0.25 ± 0.04 0.59 ± 0.2 0.29 ± 0.04 0.17 ± 0.09
Labu 0.47 ± 0.04 0.31 ± 0.12 0.19 ± 0.05 0.11 ± 0.03 Carbon II (Hentian Kajang V) 0.40 ± 0.03 0.53 ± 0.08 0.17 ± 0.08 0.12 ± 0.03
Mean 1.22 ± 0.38 0.47 ± 0.21 0.42 ± 0.31 0.21 ± 0.14 Carbon III (UKM II) 0.39 ± 0.03 0.27 ± 0.25 0.18 ± 0.01 0.21 ± 0.01

Distilled I (UKM III) 0.73 ± 0.04 0.63 ± 0.02 0.13 ± 0.01 0.12 ± 0.01
Distilled II (Hentian Kajang VI) 0.72 ± 0.07 0.71 ± 0.41 0.15 ± 0.02 0.66 ± 0.003

Distilled III (UKM I) 0.43 ± 0.03 0.4 ± 0.14 0.23 ± 0.04 0.22 ± 0.07
UV I (Bangi I) 0.43 ± 0.01 0.23 ± 0.150 0.03 ± 0.01 0.18 ± 0.01

UV II (UKM IV) 0.4 ± 0.03 0.2 ± 0.04 0.31 ± 0.02 0.17 ± 0.12
UV III (Hentian Kajang VII) 0.26 ± 0.03 0.29 ± 0.004 0.04 ± 0.01 0.14 ± 0.04

Mean 0.42 ± 0.19 0.37 ± 0.21 0.31 ± 0.21 0.2 ± 0.15

Note: 1 HH refers to household. 2 HH filtration refers to filtered water at household. 3 RO refers to reverse osmosis (household water filtration system).
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Similarly, the mean concentration of dissolved Cr in the supply water of the basin (0.37 × 10−3
±

0.21 × 10−3 mg/L) was lower than the maximum limit of drinking water quality standard proposed
by the MOH, WHO, and EC (0.5 mg/L). The highest concentrations of dissolved Cr were recorded at
Hentian Kajang VI (0.71 × 10−3

± 0.41 × 10−3 mg/L) and Universiti Kebangsaan Malaysia (UKM) III
(0.63 × 10−3

± 0.02 × 10−3 mg/L). The high concentration of dissolved Cr at Hentian Kajang and UKM
might have been due to corrosion of Cr in the steel pipes (steel alloy and chromium) of the drinking
water distribution system [83–86]. Moreover, the stagnant water period in the water distribution
system was also an important factor to increase the concentration of dissolved Cr in supply water [87].

Accordingly, the high concentration of Cd at Alkaline II (0.66× 10−3
± 0.08× 10−3 mg/L) and Reverse

Osmosis (RO) I filtered water (0.65 × 10−3
± 0.01 × 10−3 mg/L) might have been due to microorganism

growth on the cartridge. Irregular cleaning activities can lead to inorganic ion deposition on the
cartridge [88–92]. Leaching of ions from the cartridge contributed to high concentrations of trace
metals (e.g., Cd) in drinking water. However, the mean concentration of dissolved Cd (0.31 × 10−3

± 0.21 × 10−3 mg/L) in HH filtration water at the basin was lower than the drinking water quality
standards of 0.003 mg/L proposed by the MOH and WHO and 0.5 mg/L proposed by the USEPA and
EC. However, the RO vendor machine at Johor, Malaysia, found a lower concentration of Cd (0.08 ×
10−3

± 0.03 × 10−3 mg/L) and Cr (0.39 × 10−3
± 0.09 × 10−3 mg/L) in the filtered water [93].

The high dissolved concentrations of Cr in the Distilled II (0.66 × 10−3
± 0.003 × 10−3 mg/L) and

Alkaline III (0.35 × 10−3
± 0.13 × 10−3 mg/L) filtered waters might have been due to corrosion of

galvanized iron pipes linked to steel pipes at the end of the reticulation system along with stagnant
water time within the filter. Moreover, rust inside distilled filters and a lack of cleaning activities also
contributed to high concentrations of Cr in the drinking water. However, the mean concentration
of dissolved Cr (0.2 × 10−3

± 0.15 × 10−3 mg/L) in the HH filtered water at the basin was below the
maximum limit of the drinking water quality standard of Cr (0.50 mg/L) proposed by the MOH, WHO,
and EC.

3.2. Prediction Model of Metal Concentrations in Drinking Water Supply Chain

The time series data of Cd and Cr concentrations in Langat River complied with the time series
data analysis at 99% confidence interval. The compliance of time series data analysis was based on
the significant augmented Dickey–Fuller (ADF) unit root test for Cd and Cr at 0.05 level (Table A3).
The ADF unit root test of Cr with constant was not significant (p = 0.65) at the 0.05 level; however,
the ADF unit root test of Cr with constant (i.e., considering Cr trend) was significant (p = 7.17 × 10−2)
at the 0.05 level. Similarly, the autocorrelation (ACF) plots based on the differences in Cd and Cr
concentrations showed significant autocorrelation only at Lag 1, although the ADF unit root test of Cd
and Cr data remained static at a 95% confidence level. Similarly, the partial autocorrelation (PACF)
plots based on the differences Cd and Cr concentrations with a 95% confidence band showed that
the autocorrelation was only significant at Lag 1 and Lag 2 (Figures A1 and A2). Therefore, this
study used a monthly (2005–2020) auto regression model to estimate the Lag effects on Cd (Table A4)
and Cr (Table A5) concentrations in the drinking water supply chain of the Langat River Basin. The
impact of the prior three months (i.e., identified Lags in Table A6) had significant influence on the
Cd concentration trend in Langat River after 2016. The predicted Cd concentration considering the
influences of environmental parameters (i.e., water flow, rainfall, and temperature) was also similar to
the determined Cd concentration in 2015. Similarly, the impact of prior month (i.e. identified Lag in
Table A7) had significant influence on the Cr concentration trend in Langat River after 2016.

Lag 1 to Lag 7 effects in the auto-regressive Cd model (Table A4) suggested that the consecutive
prior seven months had a significant impact on the Cd concentration of the current month in Langat
River, where Lag 7 (t = 2.32; p = 0.02) was significant at the 0.05 level. In addition, the sixth-order
auto-generative coefficient weight 0.21 (t = 2.23; p = 0.03) was significant at the 0.05 level to have an
autocorrelation-free Cd concentration forecast model, because Lag 7 in both ACF and PACF crossed
the 95% interval line, indicating the existence of autocorrelation. Therefore, the auto-regressive



Int. J. Environ. Res. Public Health 2020, 17, 2966 10 of 23

moving average of Cd concentration based on the data from January 2005 to August 2015 forecasted
9.7 × 10−4 mg/L in January 2020 (Figure 5) and a mean Cd concentration of 9.75 × 10−4

± 1.33 × 10−4

mg/L during 2005–2020 (Figure 6). Moreover, the predicted Cd concentration (9.7 × 10−4 mg/L) in 2020
was a little bit higher than the mean Cd concentration (9.69 × 10−4

± 1.57 × 10−4) mg/L in Langat River
during 2005–2015 (Figure 6). The predicted Cd concentration (9.7 × 10−4 mg/L) at January 2020 in
Langat river was significant (R2 = 0.08; F = 2.4; p = 0.03) at a 95% confidence interval. Similarly, the
forecast of Cd concentration (9.8 × 10−4 mg/L) in August 2015 was similar to the real concentration of Cr
9.7 × 10−4 mg/L in August 2015 in Langat River considering the influence of significant environmental
parameters (Figure A3). Moreover, the concentration of Cd in the Langat River was influenced by the
Cd concentration of the prior 3 months (t = −2.37; p = 0.02; Table A6) and the model was significant
(R2 = 0.05; F = 9.4; p = 2.2 × 10−8; Figure A3) at the 0.05 level.
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Figure 6. Forecast of Cr (mg/L) concentration in Langat River on the basis of auto-generative moving
average from January 2005 to January 2020. Note: X-axis refers to Cd and Cr concentrations in
mg/L. Percentage change of Cd (0.63%) and Cr (−5.04%) concentration was based on the difference of
concentration between 2005–2015 and 2020. 1 Determined concentrations were based on the time series
data (2005–2014) and laboratory results (2015) of this study. 2 Predicted concentrations were obtained
from the auto-generative moving average forecast model. 3,5,7 Laboratory results of this study. 4,6,8

Predicted concentrations in treated, tap, and household filter water were calculated on the basis of the
percentage change of metal concentrations in the river. HH refers to household.

The significant Lag 1 (t = 3.1; p = 0.002) and Lag 2 (t = 9.63; p = 1.25 × 10−16) effects at the 0.05
level in the auto-regressive Cr model (Table A5) suggested that the impact of the prior 2 months had
significant effects on the Cr concentration in Langat River. Similarly, the second order auto-generative
coefficient weight of −0.47 (t = −5.998; p = 2.13 × 10−8; Table A5) was significant at the 0.05 level to have
an autocorrelation-free Cr concentration forecast model; the ACF and PACF correlogram of the initial
few Lags crossed the 95% interval line, indicating the existence of autocorrelations. Therefore, the
auto-generative moving average of Cr concentration based on the data from January 2005 to August
2015 forecasted 1.32 × 10−3 mg/L in January 2020 (Figure 7) as well as a mean Cr concentration of 1.48 ×
10−3

± 8.84 × 10−4 mg/L during 2005–2020. Moreover, the predicted Cr concentration (1.32 × 10−3 mg/L)
in January 2020 was lower than the mean Cr concentration (1.56 × 10−3

± 1.05 × 10−3 mg/L) in Langat
River during 2005–2015. However, the predicted Cr concentration (1.32 × 10−3 mg/L) at January 2020
in Langat river was significant (R2 = 0.44; F = 130.28; p = 6.7 × 10−31; Figure 7) at a 95% confidence
level. Similarly, considering the control variables such as water flow, rainfall, and temperature, the Cr
concentration in Langat River at 2015 was significantly influenced by the concentration of prior two
months (Lag 2, t = 3.6744; p = 0.0004; Table A7). The model was significant (R2 = 0.36; F = 5.37; p = 5.1
× 10−4; Figure A4) at the 0.05 level and the forecasted and real concentrations of Cr in the Langat River
were almost similar.
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3.3. Prediction Model of Metal Concentrations in Drinking Water Supply Chain

Cd concentration in the drinking water supply chain at Langat Basin both in 2015 and 2020 were
within the maximum limit of the drinking water quality standard of the MOH (0.003 mg/L), WHO (0.003
mg/L), and USEPA (0.0022 mg/L). Cadmium concentration (3.11 × 10−4 mg/L) in HH filtration water in
2020 (Figure 6) was also well below the maximum tolerable daily intake of Cd through drinking water
(8.3 × 10−4 mg/L) [37]. Therefore, Cd ingestion through HH filtration water in the Langat Basin posed
no health risk because the HQ (2.67 × 10−2

± 1.23 × 10−2 mg/L and 2.69 × 10−2 mg/L in 2015 and 2020,
respectively; Figure 8) were significantly within the safe limit (i.e., HQ < 1 at 95% confidence level).

Accordingly, Cr concentration in the drinking water supply chain in Langat Basin in 2015 and
2020 were within the safe limit of the drinking water quality standard of the MOH (0.05 mg/L), WHO
(0.05 mg/L), and USEPA (0.011 mg/L). The concentration of Cr (2.13 × 10−4 mg/L) in HH filtration
water in 2020 were predicted in this study (Figure 6), however, the maximum tolerable daily intake
of Cr through drinking water for humans has yet to be fixed [94]. Hence, Cr ingestion through HH
filtration water in Langat Basin showed no potential non-carcinogenic human health risk (2.13 × 10−3

± 1.55 × 10−3 mg/L and 2.24 × 10−3 mg/L in 2015 and 2020, respectively; Figure 8) because the values
were within the safe limit (i.e., HQ < 1). Accordingly, the LCR values of Cr ingestion through HH
filtration water (1.28 × 10−5

± 9.29 × 10−6 mg/L and 1.35 × 10−5 mg/L in 2015 and 2020, respectively;
Figure 9) were within the safe limit because the LCR values were not greater than ≥1 × 10−5 mg/L at a
95% confidence level.
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10−159 *; HQ (Cr) 2015, t = 16.83, p = 3.81 × 10−34 *; HQ (Cr) 2020, t = 22.41, p = 5.84 × 10−54 *; treated
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2015, t =14.58, p = 1.88 × 10−18 *; HQ (Cr) 2015, t = 11.64, p = 5 × 10−15 *; HH (household) filtration: HQ
(Cd) 2015, t = 9.99, p = 6.72 × 10−13 *; HQ (Cr) 2015, t = 9.35, p = 4.12 × 10−12 *; * significant at 95% level.
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Figure 9. Carcinogenic risk values of Cr ingestion via drinking water in Malaysia. Note: X-axis refers
to the carcinogenic lifetime cancer risk (LCR) value and LCR value < 10−5 is acceptable. River: LCR (Cr)
2015, t = 16.83, p = 3.81 × 10−34 *; LCR (Cr) 2020, t = 22.41, p = 5.84 × 10−54 *; treated water: LCR (Cr)
2015, t = 7.670, p = 8.77 × 10−8 *; tap: LCR (Cr) 2015, t = 11.64, p = 5 × 10−15 *; HH (household) filtration:
LCR (Cr) 2015, t = 9.35, p = 4.12 × 10−12 *; * significant at 95% level. LCR = lifetime cancer risk.
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All eight water treatment plants (WTPs) in Langat Basin follow the conventional water treatment
method. However, this conventional method was unable to fully remove trace metals from the treated
water mainly because of frequent changes in turbidity in Langat River [3]. For instance, Frey [95]
reported that a conventional coagulation method can remove Cr (III) from water; however, it cannot
remove Cr (VI). Similarly, Brandhuber [96] reported that the total Cr removal varied between 40% and
100% with the conventional method because Cr (VI) cannot be removed by alum or ferric coagulation
or by lime softening. Therefore, a two-layer water filtration system should be introduced in the
Langat Basin because treated water contamination in the long pipeline was evident between WTPs and
households; additionally, the conventional method was unable to fully remove metals from treated
water. Hence, the reverse osmosis membrane technology can be appropriate to install in a kitchen tap
of the household managed by the water billing agency because it can remove more than 90% of trace
metals [97].

4. Recommendations

A two-layer water filtration system at the basin should be introduced to achieve the SDG
target 6.1 of obtaining safe drinking water supply before 2030. Because the traditional coagulation
method is unable to completely remove metals from treated water, and treated water contamination
in the long pipeline was evident in between WTPs and households, a reverse osmosis filtration
system with the capacity to remove more than 90% of metals could be installed at the kitchen tap
of household. The installed reverse osmosis filtration system at household could be managed by
the water billing agency and a less-expensive pond sand filtration at the treatment plants could be
maintained. Furthermore, in managing the drinking water, the proactive leadership roles of local
authority would be appropriate to enable the PENTA-HELIX (i.e. consists of five types of stakeholders
such as public, private, academia, non-governmental organization and community) partnership model
to bring public, business, academia, NGO (non-governmental organization), and community sectors
into the same multi-stakeholder platform.

5. Conclusions

Cadmium and chromium concentrations in the drinking water supply chain at Langat Basin were
within the drinking water quality standard of the Ministry of Health Malaysia and WHO. Moreover,
Cd and Cr ingestion through household filtration water in the Langat Basin poses no health risk
because the hazard quotients (HQ) of Cd and Cr were significantly within the safe limit in 2015 and
2020. Similarly, the LCR (lifetime cancer risk) value of Cr ingestion through household filtration water
was within the safe limit in 2015 and 2020. However, high concentrations of these metals have been
found in the household tap water mainly because of contamination in the water distribution pipeline.
The age-old water distribution pipelines in between water treatment plants and households as well as
the old water reticulation systems at the households in the Langat Basin might have attributed to Cd
and Cr concentrations in the household tap water. Similarly, the irregular cleaning activities of the
household water filtration systems might have also attributed to the Cd and Cr concentrations in the
drinking water.
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Appendix A

Table A1. One-way ANOVA of Cd and Cr concentrations in drinking water supply chain, Langat Basin.

Water Quality
Parameter

Sum of Squares Mean Square

N Between
Groups

Within
Groups Total Between

Groups
Within
Groups F

Cd 138 14.6 23.6 38.1 489 0.2 27.6 * (p = 5.99 × 10−14)
Cr 138 1.5 5.1 6.6 0.5 0.04 13.1 * (p = 1.56 × 10−7)

* Significant at 0.05 level.

Table A2. Multiple comparisons of Cd (mg/L) and Cr (mg/L) means based on Tukey HSD (Honestly
Significant Difference) test in drinking water supply chain at Langat River Basin, Malaysia.

Dependent
Variable

(I) Drinking
Water Supply

Stages
(J) Drinking Water Supply Stages

Mean
Difference

(I-J)

Standard
Error

Significance
(p)

95% Confidence
Interval

Lower
Bound

Upper
Bound

Cd (mg/L)

River
Water treatment plant (WTP) 0.80 * 0.12 4.3 × 10−9 0.49 1.12

Household tap 0.80 * 0.11 3.5 × 10−11 0.53 1.08
Household water filtration system 0.91 * 0.11 6 × 10−13 0.64 1.19

Water treatment
plant (WTP)

River −0.80 * 0.12 4.3 × 10−9 −1.12 −0.49
Household tap 0.003 0.11 1 −0.28 0.27

Household water filtration system 0.11 0.11 0.73 −0.17 0.39

Household tap
River −0.80 * 0.11 3.5 × 10−11 −1.08 −0.53

water treatment plant (WTP) 0.003 0.11 1 −0.27 0.28
Household water filtration system 0.11 0.09 0.58 −0.12 0.34

Household
water filtration

system

River −0.91 * 0.11 6 × 10−13 −1.19 −0.64
water treatment plant (WTP) −0.11 0.11 0.73 −0.39 0.17

Household tap −0.11 0.09 0.58 −0.34 0.12

Cr (mg/L)

River
Water treatment plant (WTP) 0.25 * 0.06 9 × 10−5 0.11 0.40

Household tap 0.10 0.05 0.21 −0.03 0.23
Household water filtration system 0.26 * 0.05 2 × 10−6 0.14 0.39

Water treatment
plant (WTP)

River −0.25 * 0.06 9 × 10−5 −0.40 −0.11
household tap −0.16 * 0.05 0.01 −0.28 −0.03

Household water filtration system 0.01 0.05 0.99 −0.12 0.14

Household tap
River −0.10 0.05 0.21 −0.23 0.03

water treatment plant (WTP) 0.16 * 0.05 0.01 0.03 0.28
Household water filtration system 0.17 * 0.04 4.5 × 10−4 0.06 0.27

Household
water filtration

system

River −0.26 * 0.05 2 × 10−6 −0.39 −0.14
water treatment plant (WTP) −0.01 0.05 0.995 −0.14 0.12

Household tap −0.17 * 0.04 4.5 × 10−4 −0.27 −0.06

Note: * The mean difference is significant at the 0.05 level.

Table A3. Augmented Dickey–Fuller (ADF) unit root test for auto regression.

Variable ADF with Constant p-Value ADF with Constant and Trend p-Value

Cd −11.545 3.76 × 10−17 * −11.714 2.6 × 10−16 *
Cr −1.2599 6.5 × 101 −3.2672 7.17 × 10−2 *

Note: * Significant at 0.05 level.
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Table A4. Auto regression for Cd Model (t = 115).

Variables Coefficient Standard Error t-Value p-Value

Constant 1.02417 0.27284 3.754 0.0003 ***
Lag 1 −0.03538 0.09534 −0.371 0.7113
Lag 2 0.05592 0.09289 0.602 0.5485
Lag 3 −0.06715 0.09302 −0.722 0.4719
Lag 4 0.11769 0.09249 1.272 0.2060
Lag 5 −0.01826 0.09297 −0.196 0.8446
Lag 6 −0.22229 0.09283 −2.395 0.0184 ***
Lag 7 0.22085 0.09525 2.319 0.0223 ***
u (-6) 0.20617 0.09257 2.227 0.0280 **

Note: Lag (dependent variable); Lag 1 to 7 = first month to seventh month, respectively; u (-6) = auto generative
weight; *** significant at 0.01 level. ** significant at 0.05 level.

Table A5. Auto regression for Cr model (t = 124).

Variables Coefficient Standard Error t-Value p-Value

Constant 0.19268 0.09610 2.005 0.0472 **
Lag 1 0.20961 0.06767 3.098 0.0024 ***
Lag 2 0.64481 0.06699 9.626 1.25 × 10−16 ***
u (-2) −0.47459 0.07912 −5.998 2.13 × 10−8 ***

Note: Lag (dependent variable); Lag 1 = first month; Lag 2 = second month; u (-2) = auto generative weight;
*** significant at 0.01 level; ** significant at 0.05 level.

Table A6. Auto regression for Cd model with external variables (t = 124).

Variables Coefficient Standard Error t-Ratio p-Value

Constant 0.50945 0.39174 1.3005 0.1960
Water flow −0.00073 0.00162 −0.4547 0.6502

Rainfall −2.17297 × 10−5 0.00013 −0.1715 0.8641
Temperature 0.06835 0.03774 1.8109 0.0727 *

Lag 1 −0.64645 0.13525 −4.7796 5.15 × 10−6 ***
Lag 2 −0.40636 0.14763 −2.7525 0.0069 ***
Lag 3 −0.26401 0.11146 −2.3686 0.0195 **

Dependent variable: Cd. *** significant at 0.01 level. ** significant at 0.05 level. * significant at 0.10 level.

Table A7. Auto regression for Cr model with external variables (t = 125).

Variables Coefficient Std. Error t-Ratio p-Value

Constant 9.44345 4.79696 1.9686 0.0513 *

Water flow −0.0129813 0.00862977 −1.5042 0.1351

Rainfall 0.000526234 0.000716295 0.7347 0.4640

Temperature −0.321556 0.185214 −1.7361 0.0851 *

Lag 2 0.305618 0.0831747 3.6744 0.0004 ***

Dependent variable: Cr. *** significant at 0.01 level. * significant at 0.10 level.
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