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Most biotechnological applications of microbiology have
well-characterized cells growing in defined and stable
environments. Yet even in such idyllic conditions, we
fear the two powers of evolution: mutation and selection
Why? Because they consistently take aim at our own
engineering, inactivating the new genes we have intro-
duced into cells and then growing faster and overtaking
our productive population. However, given everything we
now know about microbial molecular biology, biotechnol-
ogy and genomics, we should soon be at the point
where we can predict how these two forces will play out.
For predicting evolution, our best bet is to consider

how Escherichia coli engineered with plasmids end up
being outcompeted by cells that acquire inactivating
mutations. Plasmid-based gene expression is widely
used in research and biotechnology and is the most
common form of genetic engineering used today. Com-
pared to integrating genes into the host genome, it is an
inelegant approach and prone to problems, yet remains
the go-to-method for the overproduction of proteins and
for engineering bacterial cells for biosynthesis of metabo-
lites. Thanks to the failures of thousands, there are doc-
umented (and countless undocumented) cases where
populations of E. coli transformed with plasmids have
evolved to inactivate the expression of heterologous
plasmid-hosted genes. How quickly this evolution occurs
is defined by the strength of two powers of evolution: the
likelihood of mutation and the degree of selection.
While predicting likely mutations sounds like a fantasy

for those who study evolution of organisms and gen-
omes, it is actually not so far-fetched when we narrow
things down to just the few thousands of bases that
comprise engineered plasmids in E. coli. Most loss-of-

function mutations in cells engineered via plasmid trans-
formation are likely to be mutations to the plasmid, not
the genome, and substantial research tells us that the
plasmids typically used in biotechnology have common
forms of mutation (Oliveira et al., 2009). In particular,
deletions due to intra-plasmid recombination are com-
mon, removing out entire chunks of the plasmid at a
time. Another type of mutation is caused by the trans-
posable ‘insertion sequence’ (IS) elements which insert
themselves at poorly conserved sequence motifs. E. coli
has a diversity of IS elements with varying specificity,
and these are well known to disrupt plasmids at times of
stress by transposing into permissive sites.
Two key synthetic biology studies from the past dec-

ade have given us some much-needed characterization
data on the escape mutations that lead to plasmid-bur-
dened E. coli being outcompeted. Sleight et al. used
modular DNA assembly to build a library of different
plasmids expressing three different fluorescent proteins
from different promoters and followed the loss of fluores-
cence over time as the E. coli hosting these plasmids
were passaged over several days in the laboratory
(Sleight and Sauro, 2013). Traditional sequencing was
then used to reveal the types of mutations that inacti-
vated expression. Recombination-mediated deletion was
found to be the main culprit in these designs. More
recently Rugbjerg et al. (2018) used next generation
sequencing to track the different escape mutants that led
to loss of productivity in E. coli engineered with a plas-
mid encoding a metabolic biosynthesis pathway. Inter-
estingly, no obvious mutations were identified on the
host genome that led to loss of productivity and faster
cell growth, instead escape mutations were only ever
found on the plasmid, and in this case were typically
caused by IS elements.
To help predict plasmid-based mutation in E. coli, the

Barrick laboratory devised the ‘Evolutionary Failure
Mode (EFM) Calculator’ in 2015 (Jack et al., 2015). This
easy-to-use software tool analyses a plasmid DNA
sequence file, searching for homologous sequences
found multiple times in each plasmid (which are hotspots
for recombination-mediated deletion) and simple
sequence repeats (which are hotspots for short inser-
tions and deletions). Based on the occurrence of these,
it will give a plasmid a relative instability prediction (RIP)
score: the higher the RIP, the higher the chance that the
plasmid will mutate. The current version does not
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consider mutation caused by IS elements, but one can
expect that with further work an updated calculator could
be developed to also take into account the most preva-
lent IS elements from the most commonly-used strains
of E. coli. If this and consideration of the underlying rate
of mutation of plasmid sequences (i.e. the infidelity of
DNA replication) could be added to the calculator, then
we would essentially have a prediction tool for plasmid
mutation.
Of course, mutation is only one of the two powers of

evolution; so what about selection? For E. coli growing
in large populations in defined and stable environments,
selection is effectively equal to growth rate. A cell grow-
ing slower than the rest of the population will eventually
be diluted out and lost, with the speed of loss direction-
ally proportional to how much slower its growth is com-
pared to the rest. What makes a cell with an engineered
plasmid grow slower than its rivals is burden, a long
talked-about problem that has recently seen renewed
interest.
Burden comes in three flavours. Firstly, just the basic

cost of expressing any extra RNA or protein is a burden,
as it takes up energy, machinery and resources to do so
(expression burden). Secondly, an RNA or protein
expressed out of context may have an intended function
that consumes key cellular resources, such as an
enzyme that produces a natural product from host
metabolites (role-based burden). Finally, the RNA or pro-
tein may have unintended interactions with processes in
the cell that impair them, such as a membrane protein
that aggregates with the host’s transport channels (toxic-
ity burden). Of these, only expression burden is univer-
sal and recent studies have shown that expression
burden from plasmids in E. coli can be considerable.
This means that even if a protein does nothing destruc-
tive inside a cell, just the cost of making a lot of it can
severely slow growth.
Again, thanks to recent work in synthetic biology, we

now have ways to quantify and predict the burden of gene
expression, and these do remarkably well at estimating
how E. coli growth rates decrease when these genes are
expressed from plasmids (Ceroni et al., 2015). Protein-
encoding genes can now be measured for burden by a
standard in vitro method ahead of any cloning, and these
data then used to predict what the growth rate decrease
will be when this is used in a multigene constructs (Bor-
kowski et al., 2018). As growth rate is the selection pres-
sure in the typical conditions of industrial use of E. coli,
the burden prediction methods effectively define the
power of selection against all genes that do not have sig-
nificant role-based or toxicity burdens.
So perhaps it is now time to put these efforts together.

We can predict the likely mutations of common plasmids
in E. coli, and we can measure genes and then predict

the selection pressure against them. It follows that when
a plasmid is designed, we could make probabilistic mod-
els of how it could mutate and assign scores for how
much each mutation would decrease the burden (i.e.
improve selection). This could then be used to estimate
which escape mutant would likely dominate a population
in an experiment, and how many hours or generations it
would take for this to happen. This would not be a deter-
ministic prediction as mutation is inherently stochastic,
but randomness would be smoothed by the large num-
bers of cells of E. coli in most experiments.
We should not forget as well that plasmids are usually

present at multiple copies per cell too, and while this
reduces noise, it adds in further complexity. How does
the growth rate of a cell change when just a fraction of
the plasmids have a mutation, and how much of a role
does plasmid partitioning have in propagating mutations?
To understand these issues, we could certainly do with
more data and ideally single cell data too. Flow cytome-
try, microfluidics microscopy and even single cell
sequencing all afford ways to provide this, allowing us to
see how escape mutations in plasmids accumulate in
cells, and then enabling us to better predict how these
mutations spread through a population.
Having a plasmid evolution prediction tool such as this

would likely be broadly useful for both research and
biotechnology. In the first instances, it would allow us to
be more realistic about how long we can expect our
genetic engineering to hold out for; for high-burden plas-
mids in fast competitive growth, this may well be never
more than a day or two. Understanding these limitations
from the outset would encourage more development and
uptake of alternative engineering approaches like geno-
mic integration of expression cassettes or feedback
mechanisms that prevent toxic overexpression.
Such a tool would also predict what the likely mutants

may be that will emerge from long-term uses of engi-
neered cells, such as when modified E. coli are placed
in the gut microbiome for months at a time. Plasmids
could also be intentionally designed to break in predicted
ways over time as a novel route to implement long-term
dynamic changes in how engineered cells behave. A fur-
ther benefit of any prediction tool is that it can help
reveal gaps in knowledge. Where prediction and experi-
mental outcomes fail to match, there is usually an oppor-
tunity to uncover new information that can identify
important mechanisms not previously considered.
Most importantly, a plasmid evolution prediction tool

would allow those designing plasmids to reconsider bad
designs ahead of experiments. Designers could lower
expression levels wherever possible to reduce expected
burden in order to delay inactivation by mutation. They
can also ensure removal of the sequence features most
likely to promote mutation and consider changing hosts
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to those that are free from certain IS elements if these
are expected to be a main source of mutation. Ulti-
mately, being better genetic designers is what synthetic
biologist strive to be, and even if it is an unsurmountable
task to fight evolution, it would be prudent to at least be
designing with it in mind.
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