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Biotecnologı́a–Consejo Superior de Investigaciones Cientı́ficas, Madrid, Spain

Abstract

Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development.
However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess
their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA
families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an
endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ,20% of analyzed
families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer
translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in
development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of
individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less
conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental
aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for
the study of miRNA function in plants.
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Introduction

MicroRNAs (miRNAs) are a class of small RNA (sRNA)

molecules that has recently emerged as a key regulator of gene

activity. In plants, miRNAs are released from larger precursors

(pri-miRNAs) in the nucleus mainly, by DICER-LIKE1 (DCL1)

[1]. The resulting sRNA duplex is methylated and translocated to

the cytoplasm where it can be loaded into an RNA-induced

silencing complex (RISC) that includes a member of the

ARGONAUTE (AGO) family as catalytic component. The RISC

can then recognize mRNAs containing sequences complementary

to the loaded miRNA [2]. In plants, cleavage of the target mRNA

is an important mechanism for plant miRNA action, but there are

also direct effects on protein accumulation, as reported for many

animal miRNAs [3–11].

The spatio-temporal expression pattern of miRNA genes is

regulated to a large extent at the transcriptional level, and different

members of a miRNA family can have distinct, specialized

expression domains [12–17]. An additional layer of regulation in

miRNA action has been reported by Franco-Zorrilla and

colleagues [18]. IPS1 (INDUCED BY PHOSPHATE STARVATION

1) encodes a non-coding RNA with a short motif that is highly

complementary to the sequence of miR399, which like IPS1 is

involved in the response to phosphate starvation [19–23]. In

contrast to regular miRNA target sites, the IPS1 sequence contains

a three-nucleotide insertion in the center, corresponding to the

position where normally miRNA-guided cleavage takes place, and

this bulge in the miRNA/target pair prevents endonucleolytic

cleavage of IPS1 transcripts. This results in sequestration of

RISCmiR399, leading to a reduction of miR399 activity. A similar

phenomenon, negative regulation of small RNA activity by a

partially complementary mRNA, has been recently described in

bacteria as well [24,25].

MiRNA target mimicry can be exploited to study the effects of

reducing the function of entire miRNA families [18]. Simulta-

neous inactivation of all miRNA family members by constructing

multiply mutant lines has so far been achieved for only two

relatively small families [16,26]. Plant target mimics are

conceptually similar to miRNA sponges, used to reduce miRNA

activity in animals. MiRNA sponges are transcripts containing

multiple miRNA binding sites that compete with endogenous

target mRNAs, thereby reducing the efficiency of the correspond-

ing miRNA [27]. Although in animals perfect-match miRNA

binding sites seems sufficient to sequester miRNAs [28], such

optimal sites would be generally cleaved in plants, and they would

not succeed in sequestering the miRNA-loaded RISC. Consistent

with this, plants overexpressing non-modified versions of miR156

and miR319 target genes show much milder phenotypes than

plants expressing the corresponding target mimics [18,29,30].

Modifications of the miRNA binding site that prevent cleavage but
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still allow miRNA binding are therefore required to reduce

miRNA activity in plants.

Here, we present a collection of transgenic plants expressing

artificial target mimics designed to knockdown the majority of

Arabidopsis thaliana miRNA families. One fifth of these lines have

obvious morphological defects, which is in the same range as the

approximately 10% of miRNA knockouts that caused phenotypic

abnormalities or lethality in Caenorhabditis elegans [31]. We found a

clear correlation between the evolutionary conservation of plant

miRNA families and their effect on aerial plant morphology.

Results/Discussion

Design of target mimics
We generated artificial target mimics for 73 different families or

subfamilies of miRNAs and expressed them in Arabidopsis thaliana

plants under the control of the constitutive 35S CaMV promoter.

As described [18], we modified the 23 nucleotide, miR399-

complementary motif in IPS1. The different constructs, and the

corresponding transgenic lines, are named ‘‘MIM’’, followed by

the numeric identifier of the targeted miRNA family or subfamily.

We targeted all miRNA families reported in miRBase (http://

microrna.sanger.ac.uk/sequences/index.shtml) and ASRP

(http://asrp.cgrb.oregonstate.edu) [32] at the beginning of 2007,

plus some of the miRNAs described subsequently [33]. The

majority of the analyzed families have only been described in

Arabidopsis thaliana and Arabidopsis lyrata [34,35]. The remaining

families are shared with other angiosperms, and less than a quarter

has been detected in non-flowering plants, including gymno-

sperms, ferns or mosses [32,33,36,37]. A complete list of MIM

constructs, and the primer pairs used to generate them, can be

found in Table S1. For miRNA target predictions, see [8,33],

unless stated otherwise.

A single artificial target mimic could be designed for most

miRNA families. The mature miRNAs produced by members of

the miR169 and miR171 families differ slightly, and different

target mimics were designed for these subfamilies. Two target

mimics were also designed for the miR161 family, which produce

two mature miRNAs that have only partially overlapping

sequences, and that target similar subsets of the PPR gene family

[38]. Conversely, some miRNA families have very similar

sequences and overlapping in vivo targets (e.g., miR159/319,

miR156/157 and miR170/171a), and artificial target mimics

might not be able to unambiguously discriminate between

different miRNAs.

In some cases, the sequence of the bulge in the miRNA/target

mimic pair had to be modified. For example, maintaining the

original central sequence of IPS1 in MIM172 could have

reconstituted a cleavage site for miR172. Consistent with such

modifications being important, plants expressing the appropriately

modified version of MIM172 showed an altered phenotype (see

below), whereas plants expressing an initial version of MIM172 in

which a putative miR172 cleavage site was present (MIM172cs) did

not. Moreover, plants expressing a MIM172 version with only a

single-nucleotide mismatch corresponding to position 11 of the

mature miRNA (MIM172sn) did not show any abnormal

phenotype either, suggesting that the three-nucleotide bulge is

required for target mimic activity (Figure 1).

Effects of target mimics on morphology and
development

We generated at least 20 independent transformants for each of

75 separate constructs. Of these, 15, targeting 14 different families,

caused reproducible phenotypes in the shoot system of the plants,

which are described below. Phenotypic alterations were consistent

across most, if not all, independent transformants examined for

each construct. An example of the phenotypic variation among

primary transformants is shown in the histograms in Figure 1. An

overview of all lines with morphological defects is given in Table 1,

together with the main target genes of the corresponding miRNA

family and a list of other taxa in which they can be found. The

phenotypes of MIM156 and MIM319 plants have been briefly

described before [18,39]. All miRNA families whose inactivation

resulted in visible phenotypical alterations are conserved among

the angiosperms, and most of them are also found in non-

flowering plants.

MIM156 and MIM157 plants (Figure 2) had reduced leaf

initiation rates, such that they flowered at about the same time as

wild type, but with only two or three true leaves. This phenotype is

similar to what is seen in plants carrying non-targetable versions of

SPL9 or SPL10, two of the miR156/157 targets, and opposite of

plants overexpressing miR156b or spl9 spl15 double mutants

[10,40–42]. In addition, these plants had bent, spoon-shaped

cotyledons. The few rosette leaves were characterized by serrated

margins, indicating adult leaf identity, consistent with a role of

miR156 and its targets in controlling phase change [30].

MIM159 plants had extensive pleiotropic defects, and similar

phenotypes were observed in most MIM319 lines. These plants

had reduced stature, with rounder, upward curled leaves (Figure 2),

shorter stem internodes, and smaller flowers with short sepals,

reduced petals and anthers that did not develop completely. More

severe MIM319 lines were progressively smaller, had warped

leaves and lacked well-developed petals (Figure 3A). Stem

elongation was often completely suppressed (Figure 3B). Most

plants had reduced fertility, and this phenotype was particularly

severe in MIM319 plants, for which only a few viable seeds could

be recovered after they were grown for prolonged periods at 16uC
in long days. Both vegetative and floral phenotypes reminiscent of

MIM159 defects have been reported for plants that express non-

targetable forms of miR159 target genes [29], and in plants doubly

Author Summary

MiRNAs are small RNA molecules that play an important
role in regulating gene function, both in animals and in
plants. In plants, miRNA target mimicry is an endogenous
mechanism used to negatively regulate the activity of a
specific miRNA family, through the production of a false
target transcript that cannot be cleaved. This mechanism
can be engineered to target different miRNA families.
Using this technique, we have generated artificial target
mimics predicted to reduce the activity of most of the
miRNA families in Arabidopsis thaliana and have observed
their effects on plant development. We found that deeply
conserved miRNAs tend to have a strong impact on plant
growth, while more recently evolved ones had generally
less obvious effects, suggesting either that they primarily
affect processes other than development, or else that they
have more subtle or conditional functions or are even
dispensable. In several cases, the effects on plant
development that we observed closely resembled those
seen in plants expressing miRNA–resistant versions of the
major predicted targets, indicating that a limited number
of targets mediates most effects of these miRNAs. Analyses
of mimic expressing plants also support that plant miRNAs
affect both transcript stability and protein accumulation.
The artificial target mimic collection will be a useful
resource to further investigate the function of individual
miRNA families.

MicroRNA Target Mimics in A. thaliana
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mutant for miR159a and miR159b [26]. In particular, upward

curled leaves have been observed in plant expressing non-

targetable forms of MYB33, which can be targeted both by

miR159 and miR319 [43]. Milder MIM319 lines showed different

leaf defects, with leaves curled downward (Figure 2). This is

consistent with what has been reported for plants that express non-

targetable forms of TCP2 and TCP4, which are both exclusive

miR319 targets [29], suggesting that target mimics can at least

partially discriminate between these two miRNA families.

Serrated and hyponastic leaves were seen in MIM160 plants

(Figure 2), in agreement with the phenotype of plants that express

non-targetable versions of ARF10 or ARF17, two of the three

miR160 targets [44,45]. In addition, MIM160 plants were smaller

than wild type. Compared to other constructs, fewer transformants

were recovered, consistent with the known requirement of miR160

for seed viability or germination [44].

A different type of leaf serration was caused by MIM164

(Figure 2), similar to what has been reported for plants expressing

a non-targetable version of CUC2, one of the miR164 targets, and

for plants lacking one of the miR164 isoforms, miR164a [13].

While expression of MIM160 affected the entire leaf, with the

serrations being regular and jagged, MIM164 caused mainly

serration of the basal part of the leaf, with more irregular and

rounded sinuses and teeth (Figure 3C). Although carpel fusion

defects have been described for plants lacking miR164c [12], the

carpel defects in MIM164 plants seemed to be different, with

ectopic growths forming at the valve margins (Figure 3D),

resembling those seen in the cuc2-1D mutant, in which a point

mutation affects the miR164 complementary motif in CUC2 [46].

In some cases, this tissue could develop into adventitious pistil-like

structures (Figure 3E).

Rounder leaves with an irregular surface, which appeared to be

hollowed out between the main veins, were caused by MIM165/

166. Younger leaves tended also to be cup-shaped (Figure 2).

Targets of miR165/166, including the transcription factor-

encoding genes PHAVOLUTA and PHABULOSA, control leaf

polarity, and dominant mutations that disrupt the miRNA

target site in these genes cause severe alterations in leaf

morphology [47–49].

A substantial delay in flowering was observed in MIM167

plants, which flowered with 20.864.2 (mean 6 standard

deviation; n = 30) leaves in long days, compared to 13.060.9

rosette leaves in wild-type plants (Figure S1A and Figure S2).

These plants had in addition twisted leaves (Figure 2), as well as

defects in the maturation of anthers (Figure 3F) and in the

development and shattering of seeds, which often remained

Figure 1. Requirement of a bulge at the cleavage site for target mimicry. (A) A target mimic with an unmodified central sequence
(MIM172cs), which retained complementarity to the central portion of miR172 across the cleavage site (red line) opposite position 10 to 11 of the
miRNA, did not change flowering time. Modification of the central sequence (TCTA to GAGT; MIM172) restored a three nucleotide bulge found in IPS1
and generated a functional target mimic, causing a delay in flowering. However, a single nucleotide mismatch introduced into the center of an
authentic miR172 target site (MIM172sn), but without a bulge, was not sufficient to reduce miR172 activity. (B) Four-week old plants grown at 23uC in
long days. MIM172cs and MIM172sn are phenotypically indistinguishable from wild-type Col-0 plants (see also Figure S1B). (C) Distribution of
flowering times of primary transformants grown in the same conditions; compare with Col-0 plants transformed with an empty binary vector in
Figure S2.
doi:10.1371/journal.pgen.1001031.g001

MicroRNA Target Mimics in A. thaliana
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attached to the dehiscent siliques (Figure 3G), resulting in reduced

seed production and germination (not shown). This is consistent

with what has been observed in plants that express a non-

targetable form of the miR167 target ARF6 or ARF8. Such plants

have smaller leaves and are often sterile due to defects both in

ovule and anther development [17]. Effects on flowering time have

not been previously associated with miR167 [17,50], and the late-

flowering phenotype of MIM167 plants reveals a new role for this

miRNA family.

Two constructs were used to downregulate different subfamilies

of miR169 family, whose main targets are HAP transcription

factors. MIM169 was designed for miR169a, b, c, h, i, j, k, l, m and

n, and MIM169defg for miR169d, e, f and g. Both target mimics

reduced the size of transgenic plants (Figure 2).

MiR170 and miR171 target a group of SCARECROW-like

transcription factor genes [9], and both MIM170 and MIM171A

plants had round, pale leaves (Figure 2), as well as defective flowers,

with sepals that did not separate properly, resulting in reduced fertility

(Figure 3H and 3I). Expression of target mimics against the b and c

members of the miR171 family did not confer any phenotype,

suggesting less important roles for these two miRNAs.

MIM172 plants were also late flowering, with 20.063.5 (n = 30)

rosette leaves in long days (Figure S1B), consistent with the

flowering time phenotype of plants that have increased expression

of miR172 targets [4,6,51]. In addition, leaves of MIM172 plants

appeared to be somewhat narrower than those of wild type, and

mildly curled downward, and severe MIM172 lines presented

reduced apical dominance (not shown). In contrast to plants that

express a non-targetable version of AP2 [52], flowers of MIM172

plants were normal. These differential effects could be due to the

particularly high levels of miR172 levels during early flower

development [6].

MiR393 targets a small group of auxin receptor genes. MIM393

plants had mild defects in leaf morphology, with narrow leaves

that were curled downward (Figure 2). Leaf epinasty is often

associated with high auxin levels [53], and is consistent with an

increase of auxin signaling caused by downregulation of miR393

activity.

Finally, epinastic leaves were observed also in MIM394 plants

(Figure 2). MiR394 is predicted to target a gene encoding an F-box

protein.

Effects of target mimics on miRNA target genes
Artificial target mimics are thought to sequester their target

miRNAs, presumably by stably binding to miRNA-loaded RISCs.

To obtain additional evidence for such interactions, we embedded

a functional MIM159 site in the 39-UTR of a triple- Enhanced

Yellow Fluorescent Protein (EYFP) reporter; stable recruitment of

RISCmiR399 to the mimic site could be expected to interfere with

EYFP translation. In 80% of MIM159 expressing T1 plants, as in

control plants, the EYFP transgene was completely silenced. In the

remaining 20%, we detected EYFP signal that was strongly

reduced in the region where MIR159 genes are known to be

expressed (Figure 4A) [26]. In addition, these plants presented the

typical phenotypic defects of MIM159 plants, confirming that the

EYFP:MIM159 construct functions properly as a target mimic.

Table 1. Artificial target mimics causing visible phenotypes.

Mimic miRNAs* Phenotype miRNA targets Conservation**

MIM156 miR156 Longer plastochron. Altered morphology of
cotyledons and true leaves.

SPL2, SPL3, SPL4, SPL5, SPL6, SPL9, SPL10,
SPL11, SPL13, SPL15

1, 2, 3, 4

MIM157 miR157 Similar to MIM156. SPL2, SPL4, SPL5, SPL6, SPL9, SPL10, SPL11, SPL13,
SPL15

MIM159 miR159 Reduced size and stature. Thicker, upward curled leaves.
Incomplete development of sepals, petals and anthers.

MYB33, MYB65, MYB81, MYB97, MYB101, MYB104,
MYB120, DUO1

1, 2, 3

MIM160 miR160 Smaller plants, with serrated and curled upward leaves. ARF10, ARF16, ARF17 1, 3, 4

MIM164 miR164 Partially serrated leaves. Ectopic tissue growth in the
developing fruit.

NAC1, CUC1, CUC2, ANAC079, ANAC092, ANAC100,
AT3G12977

1

MIM165/166 miR165/miR166 Rounder leaves. Younger leaves cup-shaped,
with an irregular surface.

PHV, PHB, REV, ATHB-8, ATHB-15 1, 2, 3

MIM167 miR167 Delayed flowering. Twisted leaves, rolled
downward. Defects in anther and seed development.

ARF6, ARF8 1, 3

MIM169 miR169a–c, h–n Reduced rosette size. HAP2A, HAP2B, HAP2C, AT1G17590, AT1G54160,
AT3G20910, AT5G06510

1

MIM169defg miR169dd–g Similar to MIM169. HAP2A, HAP2B, HAP2C, AT1G17590, AT1G54160,
AT3G20910, AT5G06510

MIM170 miR170 Round leaves of pale green color. Anthesis
defects, causing reduced fertility.

AT2G45160, AT3G60630, AT4G00150

MIM171a miR171a Similar to MIM170. AT2G45160, AT3G60630, AT4G00150 1, 2, 3, 4

MIM172 miR172 Delay in flowering time. Narrow leaves, mildly rolled
downward. Reduced apical dominance.

AP2, TOE1, TOE2, TOE3, SMZ, SNZ 1

MIM319 miR319 Similar to MIM159. In some lines, leaves
curled downward.

TCP2, TCP3, TCP4, TCP10 TCP24, MYB33, MYB65,
MYB81, MYB97, MYB104, MYB120

1, 2, 3, 4

MIM393 miR393 Narrow leaves, curled downward. AFB2, AFB3, TIR1, GRH1, AT3G23690 1

MIM394 miR394 Narrow leaves, curled downward. AT1G27340 1

*If no letter is given, the entire family was targeted.
**The conservation of miRNA families in the following groups is reported: (1) Other dicots and monocots, (2) gymnosperms, (3) ferns, (4) mosses.
doi:10.1371/journal.pgen.1001031.t001
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RISCmiRNA sequestration in turn should relieve target genes

from miRNA-dependent regulation, resulting in increased levels of

the encoded protein. In agreement with such a scenario, activity

levels of a genomic MYB33:GUS reporter were markedly increased

in MIM159 plants (Figure 4A). In analogy with EYFP:MIM159,

reporter activity was increased in the tissues expressing MIR159

genes [26], as expected.

Sequestration of RISCmiR399 by the natural target mimic IPS1

prevents miR399-guided cleavage of PHO2 mRNA, thus increas-

ing PHO2 mRNA levels [18]. To assess the effects of artificial

target mimics on the levels of mRNA of miRNA target genes, we

tested them by reverse transcription followed by quantitative PCR

(qRT-PCR) in a subset of MIM lines. We preferentially analyzed

organs in which miRNA abundance was high according to the

ASRP database [32,54], or organs with major phenotypic

alterations in MIM lines. Two independent lines were tested for

each construct. Among the miRNA targets, we chose ones known

to induce phenotypic defects when expressed as non-targetable

forms [44,45,47] and ones that show altered expression in miRNA

biogenesis mutants [32,54,55]. PCR products spanned the

miRNA target sequence, allowing quantification of the attenuation

in slicing activity by the corresponding miRNA. Surprisingly, in

most cases there were no major changes in target transcript levels

(Figure 4B and Figure S3).

For comparison, we examined the expression of the same

miRNA target genes in seedlings of several mutants impaired in

small RNA biogenesis and function, including dcl1-100, se-1, hyl1-2

and ago1-27, and in plants overexpressing viral silencing

suppressors that are known to counteract the action of the

small RNA machinery, including P1/HC-Pro, P0, P19 and p21

[56–60]. In most cases, the changes seen in MIM lines correlated

with those seen in miRNA biogenesis mutants. Stronger effects

Figure 2. Leaf rosettes of target mimic expressing plants. Three-week-old plants. Bar corresponds to 1 cm for all panels.
doi:10.1371/journal.pgen.1001031.g002

MicroRNA Target Mimics in A. thaliana
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were observed only in dcl1-100 plants (Figure 4C). These results

are consistent with what has been observed in microarray studies

of miRNA biogenesis mutants, including other dcl1 alleles, se and

hyl1 [55,61].

As in animals, inhibition of translation is an important

component of miRNA function in plants [4,6,11]. To test whether

artificial mimics impact miRNA effects independent of changes in

target transcript accumulation, we monitored the protein levels

produced by CIP4, a gene that is regulated by miR834 through

translational inhibition [5,62]. In MIM834 lines, CIP4 levels were

appreciably increased, while CIP4 mRNA levels were unchanged

(Figure 4D). Direct effects on protein translation could explain the

absence of a clear correlation between target mRNA levels and

plant phenotype in plants expressing artificial target mimics.

Finally, we investigated the levels of mature miRNAs in plants

expressing artificial target mimics. In all MIM lines we examined,

levels of the targeted miRNA were decreased, suggesting that

unproductive interaction of RISCmiRNA with a decoy affects

miRNA stability (Figure 4E). Although such an effect has not been

observed in case of the endogenous IPS1-miR399 interaction [18],

Figure 3. Details of defects observed in target mimic expressing plants. (A) Smaller flowers in severe MIM319 lines. The most strongly
affected flowers lacked petals and did not have fully developed anthers (left side); in milder lines, flowers had short sepals, narrow petals, but were
fertile (middle). Two flowers from wild type Col-0 are shown on the right side of the panel. (B) Severe MIM159 and MIM319 lines were very small and
compact, without any stem elongation. (C) Leaves of MIM164 plants (compared to a leaf from wild type Col-0, on the far left). (D, E) Developing fruits
of MIM164 with ectopic growths emanating from valve margins (D), which can develop into pseudo-pistils in severe lines (E). (F) Anthers in MIM167
lines did not mature completely (top), resulting in reduced pollen production (compared to a wild type Col-0 flower, bottom). (G) Seeds of MIM167
plants often do not fill completely, and remained attached to the dried silique (compared to a silique of wild type Col-0, on the right). (H, I) MIM171A
lines suffered from defects in the separation of sepals, which prevented emergence of the pistil (H), and caused the plants to be mostly sterile (I, on
the left, compared to a wild-type Col-0 plant, on the right). Bars correspond to 1 cm in (A–C) and I, and to 0.1 cm in (D–H).
doi:10.1371/journal.pgen.1001031.g003

MicroRNA Target Mimics in A. thaliana
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a similar reduction in small RNA levels triggered by a target mimic

has been reported in bacteria [24,25].

Conclusions
We have generated a collection of transgenic plants expressing

artificial target mimics designed to reduce activity for most of the

known miRNA families in Arabidopsis thaliana. Inhibiting the

function of 14 out of 71 miRNA families with target mimics led to

morphological abnormalities. All of these families belong to the

more abundant and widely conserved miRNA families, which

were the first ones to be discovered (Table 1). This agrees with

results from experiments in which miRNAs were overexpressed,

miRNA target genes were mutated, or miRNA genes were

inactivated by conventional knockouts [reviewed in 63]. Together,

these findings are consistent with the scenario of frequent birth and

death of miRNA genes, with only a few becoming fixed early on

during evolution because they acquired a relevant function in

plant development [33,36]. More recently evolved, species-specific

miRNAs could instead play a role in adaptation to certain abiotic

or biotic challenges, or have no discernable function at all. Some

miRNAs are known to regulate physiological traits, and they do

not cause morphological abnormalities under standard benign

conditions [20,21,64]. Such conditional effects would have

escaped our screen, as would have defects in the root system of

the plant. Moreover, compared to expression of non-targetable

forms of miRNA target genes, or miRNA loss-of-function mutants,

the defects of MIM plants were often weaker. Examples are the

absence of an altered floral phenotype in MIM172 plants, which is

seen in plants that express a non-targetable version of AP2 under

the control of normal regulatory sequences [52], or the extra-

petals phenotype seen in mir164c mutants, but not in MIM164

plants [12]. Another caveat is that some miRNAs might be

Figure 4. Effects of artificial mimics on levels of miRNAs and miRNA targets. (A) Nine-day-old plants. Introduction of a MIM159 fragment
into the 39 UTR silences a constitutively expressed 3xEYFP in the MIR159 expression domain (compare p35S:3xEYFP and p35S:3xEYFP-MIM159), which is
revealed in the pMIR159:GUS lines. MiR159 activity is also indirectly revealed by comparing the effect of expressing MIM159 in a genomic MYB33:GUS
line. (B) Transcript levels of select miRNA targets in two independent lines for each MIM construct (represented by bars of different shades of gray). (C)
Expression levels of miRNA targets in mutants impaired in miRNA biogenesis or targeting. Expression values are reported as the average of two
biological and two technical replicates, and are normalized to the expression levels in wild type Col-0 plants (dotted line). (D) CIP4 mRNA and protein
levels in four independent MIM834 lines. Band intensity relative to the wild-type control is reported. (E) Levels of mature miRNAs in several MIM lines.
U6 accumulation is shown as control. Increased accumulation of miR156 (lower band in the blot) was observed upon expression of a resistant version
of a miR156 target (consistent with what observed for miRNA156a precursor levels in [39]) or inhibition of miRNA activity in the ago1-27 mutants. The
decrease in miR156 levels in MIM156 plants is then not an indirect consequence of increased SPL transcript levels.
doi:10.1371/journal.pgen.1001031.g004
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required for embryonic development, in which case only lines with

relatively weak expression of the artificial target mimic might have

survived. Such limitations could be overcome by tissue-specific or

inducible expression of target mimics. On the other hand, while

artificial mimics increase levels of individual miRNA target genes

less strongly than what can be achieved by expression of miRNA-

resistant forms, mimics have the advantage that they affect all

targets simultaneously [18]. Apart from translational regulation

[3–7], another possibility for the absence of a clear correlation

between phenotypic severity and change in mRNA levels of

miRNA targets could be that many miRNAs affect their targets

only in a small set of cells. In these cases, assaying expression in

whole organs would obscure the effects of miRNA downregulation

on mRNA levels.

It has recently been suggested that plant miRNAs could also

repress the translation of target mRNAs that have only limited

sequence complementarity, as often happens in animals [5].

Support for the existence of miRNA binding sites with reduced

complementarity in plants comes from an analysis of miR398,

which regulates COPPER SUPEROXIDE DISMUTASE (CSD)

genes. Certain mutations in the miR398 complementary motif

site reduced the effects of miR398 on CSD mRNA, but not on

protein levels [3]. We have shown that mimic-like sites, when

introduced into the 39-UTR of a protein-coding gene, not only are

active in sequestering the targeted miRNA, but can also reduce

protein levels produced by the mRNA linked in cis. This reduction

likely occurs at the translational level, since mimic sites are not

subject to miRNA-dependent slicing [18]. This observation opens

an intriguing scenario in which mRNAs containing mimic-like

sites, or possibly other sites with reduced complementarity to

miRNAs, are regulated by miRNAs exclusively through transla-

tional inhibition. A further level of complexity is added by such

sites reducing the effects of an miRNA on other mRNA with a

sliceable miRNA targeting motif, similarly to what has been

recently proposed in animal systems [65].

Nevertheless, as pointed out before [43], miRNA overexpres-

sion and knockout of major target genes normally produce very

similar phenotypes, and these are generally the opposite of what is

seen in plants with reduced activity of the miRNA. These

observations are supported by our finding of extensive similarities

between phenotypes caused by target mimics and by expressing

resistant forms of individual targets. We conclude that, at least for

the instances in which developmental defects could be observed,

target genes with extensive complementarity likely account for the

majority of miRNA effects, but that in certain cases targets

regulated solely through translational inhibition via diverged target

sites might be important as well.

Materials and Methods

Plant material
Plants were grown on soil in long days (16 h light/8 hours dark)

under a mixture of cool and warm white fluorescent light at 23uC
and 65% humidity. The se-1, ago1-27, and hyl1-2 and dcl1-100

mutants have been described [66–69]. MIM834 plants were grown

on MS media plates supplemented with 1% sucrose for 14 days in

long days at 23uC. Plants overexpressing viral proteins Hc-Pro, P0,

P19 and P21 were a kind gift from the Carrington lab.

Transgenic lines
Artificial target mimics were generated by modifying the

sequence of the IPS1 gene [18]. All target mimics constructs were

placed behind the constitutive CaMV 35S promoter in the

pGREEN vector conferring resistance to BASTA [70]. For the

MYB33:GUS reporter, a MYB33 genomic fragment was PCR

amplified, cloned into the TOPO-PCR8 Gateway vector (Invitro-

gen), and recombined through LR clonase reaction into

pGWB433 [71] to generate a GUS translational fusion. The

MIM159 construct was introduced into three independent

MYB33-GUS T2 lines. A MIM159 site was placed in the 39-

UTR of a triple-EYFP sequence linked to a fragment encoding a

nuclear localization signal (NLS) and driven by a CaMV 35S

promoter. Constructs were introduced into A. thaliana (accession

Col-0) plants by Agrobacterium tumefaciens-mediated transformation

[72].

Histochemical assays
Nine-day-old seedlings from three independent T2 lines for all

the GUS reporter backgrounds were fixed in acetone 90%. GUS

activity was assayed as described [73].

RNA analysis
Total RNA was extracted from 11-day old seedlings and 30-day

old inflorescences (47 days for the MIM172 lines), using TRIzol

Reagent (Invitrogen). For dcl-100, 13-day old seedlings were

collected, to obtain a similar developmental stage compared to the

other plants. For real time RT-PCR, two biological replicates with

tissue pooled from 8 to 10 plants were assayed from two

independent MIM lines per miRNA family or subfamily.

Complementary DNA was produced with the RevertAid First

Strand cDNA Synthesis Kit (Fermentas), using as starting material

4 mg of total RNA that had been treated with DNase I

(Fermentas). PCR was carried out in presence of SYBR Green

(Invitrogen) and monitored in real time with the Opticon

Continuous Fluorescence Detection System (MJR). Oligonucleo-

tide primers are given in Table S2. Small RNA blots were

performed on the same RNA used as template for real time RT-

PCR, with DNA oligonucleotides as probes.

Protein analysis
Proteins were extracted from four MIM834 lines using a Tris

buffer (50 mM Tris pH 7,5; 150 mM NaCl; 1 mM EDTA; 10%

[v/v] Glycerol; 1 mM DTT; 1 mM Pefablock and 1 complete

protease inhibitor cocktail [Roche]). Protein concentration was

measured using a commercial Bradford assay (BioRad). 50 mg of

raw protein extract per sample were resolved on an 8%

acrylamide gel. Blotting and antibody incubation were performed

as described [5], except that the secondary antibody was incubated

for 8 hours at 4uC. Two biological replicates from 4 independent

lines were analyzed. Band intensity was measured using the

ImageJ software (http://rsbweb.nih.gov/ij/).

Supporting Information

Figure S1 Flowering behavior of MIM167 and MIM172 plants.

Five-week-old, long-day grown plants expressing MIM167 (A) and

MIM172 (B) next to wild-type Col-0 plants on the left.

Found at: doi:10.1371/journal.pgen.1001031.s001 (0.89 MB PDF)

Figure S2 Flowering time of MIM167 plants and Col-0 controls.

Distribution of flowering times of primary transformants of plants

transformed with MIM167 or empty pGREEN binary vector,

grown at 23uC in long days.

Found at: doi:10.1371/journal.pgen.1001031.s002 (0.09 MB PDF)

Figure S3 Expression of miRNA targets in inflorescences of

MIM lines. Transcript levels of select miRNA targets in two

independent lines for each MIM construct (represented by bars of

different shades of gray). Expression levels are reported as the

MicroRNA Target Mimics in A. thaliana

PLoS Genetics | www.plosgenetics.org 8 July 2010 | Volume 6 | Issue 7 | e1001031



average of two biological and two technical replicates, and are

normalized to the expression levels in wild-type Col-0 plants

(dotted line).

Found at: doi:10.1371/journal.pgen.1001031.s003 (0.10 MB PDF)

Table S1 Oligonucleotide primers used to modify the IPS1

sequence in MIM constructs.

Found at: doi:10.1371/journal.pgen.1001031.s004 (0.11 MB PDF)

Table S2 Oligonucleotide primers for qRT-PCR.

Found at: doi:10.1371/journal.pgen.1001031.s005 (0.07 MB PDF)
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