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Abstract

Background: There is an ever-expanding range of technologies that generate very large numbers of biomarkers
for research and clinical applications. Choosing the most informative biomarkers from a high-dimensional data set,
combined with identifying the most reliable and accurate classification algorithms to use with that biomarker set,
can be a daunting task. Existing surveys of feature selection and classification algorithms typically focus on a single
data type, such as gene expression microarrays, and rarely explore the model’s performance across multiple
biological data types.

Results: This paper presents the results of a large scale empirical study whereby a large number of popular feature
selection and classification algorithms are used to identify the tissue of origin for the NCI-60 cancer cell lines. A
computational pipeline was implemented to maximize predictive accuracy of all models at all parameters on five
different data types available for the NCI-60 cell lines. A validation experiment was conducted using external data
in order to demonstrate robustness.

Conclusions: As expected, the data type and number of biomarkers have a significant effect on the performance
of the predictive models. Although no model or data type uniformly outperforms the others across the entire
range of tested numbers of markers, several clear trends are visible. At low numbers of biomarkers gene and
protein expression data types are able to differentiate between cancer cell lines significantly better than the other
three data types, namely SNP, array comparative genome hybridization (aCGH), and microRNA data.
Interestingly, as the number of selected biomarkers increases best performing classifiers based on SNP data match
or slightly outperform those based on gene and protein expression, while those based on aCGH and microRNA
data continue to perform the worst. It is observed that one class of feature selection and classifier are consistently
top performers across data types and number of markers, suggesting that well performing feature-selection/
classifier pairings are likely to be robust in biological classification problems regardless of the data type used in the
analysis.

Background
Due to the recent rise of big-data in biology, predictive
models based on small panels of biomarkers are becom-
ing increasingly important in clinical, translational and
basic biomedical research. In clinical applications such
predictive models are increasingly being used for

diagnosis [1], patient stratification [2], prognosis [3], and
treatment response, among others.
Many types of biological data can be used to identify

informative biomarker panels. Common ones include
microarray based gene expression, microRNA, genomic
copy number, and SNP data, but the rise of new technol-
ogies including high-throughput transcriptome sequen-
cing (RNA-Seq) and mass spectrometry will continue to
increase the diversity of biomarker types readily available
for biomarker mining.
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Useful predictive models are typically restricted to use
a small number of biomarkers that can be cost-effectively
assayed in the lab [4]. The use of few biomarkers also
reduces the effects of over-fitting, particularly for limited
amounts of training data [5]. Once training data has been
collected and appropriate procedures for normalization
of primary data have been defined, assembling a robust
biomarker panel requires the solution of two main com-
putational problems: feature selection, to identify a short
list of informative biomarkers, and classification, used to
make predictions for new samples based on patterns
extracted from the training data. Both of these steps have
been explored extensively in the statistics and machine
learning literature, and many alternative algorithms are
available for each. Due to the sheer number of available
choices and the lack of predictable interactions between
feature selection method, classification algorithm, and
data type, assembling the most robust biomarker assay
for a given biomedical application is rarely undertaken
systematically. Rather, it is more often driven by the
intuition and a priori preferences of the statistician.
Available feature selection methods can be grouped into

three broad categories: filter, wrapper and embedded.
Filtering approaches use an easy to calculate metric which
allows quick ranking of the features, with top ranking fea-
tures being selected. Wrapper methods use a classification
algorithm to interrogate the effect of various biomarker
subsets. Embedded approaches are classification algo-
rithms which eliminate features as part of the training
process. Recent studies [6-8] investigated the influence
of feature selection algorithms on the performance of pre-
dictive models and provided a framework for thorough
comparison of approaches. However the effect of the
number of biomarkers selected and high-dimensional data
type was not explored.
There are hundreds of publications describing classifica-

tion algorithms and their applications to genetic research
and medicine. Many publications advocating a new
method employ a limited comparison between similar
approaches. However non-uniform validation strategies
make it difficult to assess performance of a wide variety of
approaches. A previous study compared both classification
and feature selection approaches in a unified framework
[8], however the effect of biological data type was not
explored, but it was observed that the biological question
does have an effect on the best model. Additionally most
comparisons typically overlook the effect of model para-
meterization even though the choice of parameters can
have profound effects on performance.
This work presents a large scale empirical comparison of

the effects of the interaction between the main compo-
nents of the predictive model (i.e., feature selection and
classification algorithms), the number of features utilized,
and the underlying data type on the performance of the

overall model. This study also implements exhaustive
parametrization of all models to ensure a fair comparison
between models.
In order to test the performance of the large number of

models tested in this study, and in order to be able to
run direct comparisons of the models on different biolo-
gical data types, we took advantage of the publicly avail-
able NCI-60 cancer cell line data set [9]. The NCI-60 cell
line collection represents a carefully curated collection of
60 independent cancer cell lines derived from nine types
of cancer occurring in 60 individual patients. Each line
has been uniformly cultured and DNA fingerprinted to
ensure independence [10]. In addition, the NCI-60 cell
lines have been subjected to extensive molecular charac-
terization including mRNA microarray [11], microRNA
[12], protein lysate arrays [11], SNP arrays [13], and
aCGH analysis [14]. For these reasons, the NCI-60 data
set represents a tremendous research tool for exploring
and benchmarking Omics-type approaches to cancer
classification and therapeutics.
Cancers are widely believed to derive from a single

event in which one cell escapes the many surveillance
mechanisms in place to prevent uncontrolled prolifera-
tion. Once this has occurred, the cancer often evolves
quickly, rapidly acquiring large numbers of mutations,
ranging from small point mutations to very large chro-
mosomal aberrations and regional amplifications (DNA
duplications). The original identity of the cancer cell (its
cell type or tissue type) appears to exert a very strong
influence on the course of evolution of the cancer. For
this reason, characteristic mutations will often be found
in cancers derived from the same tissue, even in differ-
ent patients. In addition, because identical cell types
from different patients will share very similar gene
expression signatures, cancers derived from these tissues
will often do the same. In the present study we take
advantage of these two features of cancer to test the
ability of various statistical models to correctly infer the
cell type (or “tissue-of-origin”) of each cancer cell line.
The ability to make this inference correctly not only repre-
sents an excellent test of these models on real biological
data, it is a good example of the type of classification
ability required for targeted cancer therapeutics.

Methods
NCI-60 cancer cell-line dataset
In order to test the predictive models in this study we use
publicly available data from the NCI-60 cancer cell lines as
provided by CellMiner [9]. For the purpose of this study,
we analyzed cancers with at least 5 representative cell lines
derived from the same tissue-of-origin (5-9 cell lines per
tissue-of-origin). These lines represent cancers emerging
from eight tissues: breast, central nervous system, colon,
leukemia, melanoma, non-small cell lung, ovarian, and
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renal cancers. The data types used in this study are gene
expression (mRNA) and protein lysate (protein) arrays
[11], microRNA [12], SNP arrays [13], and array compara-
tive genome hybridization (aCGH) [14]. All data has been
normalized according to best practices for each assay plat-
form prior to downloading for this study [9]. The specific
cell lines and data files used in this study can be found in
Supplemental Tables S1 and S2.

Feature selection methods
The area of feature selection in machine learning has
recently been quite robust. There are numerous specia-
lized feature selection algorithms which identify the most
informative biomarkers from high-dimensional data. This
study utilized at least one approach from each of the three
broad categories identified above (filter, wrapper, and
embedded). Every approach utilized allowed for a specific
number of features to be chosen. No requirement was
established that induced a relationship between feature
sets from the same algorithm. So the 16 features chosen
by one approach are not required to be a subset of the 32
features chosen by the same. For all algorithms we used
the implementations in the Scikit-learn [15] Python pack-
age, please refer to its associated documentation for speci-
fic implementation details.
The fastest and most simplistic selection method is uni-

variate filtering. These approaches rank features according
to some score, and the user selects the best k features
accordingly. Here the F-statistic (Anova), a generalization
of the t-test, is used as a filter, as suggested in [8] and [6].
There are no parameters for this feature selection method.
Wrapper approaches typically use some type of greedy

strategy to select influential features using a black box
classifier. They are more computationally intensive,
however SVM recursive feature elimination (SVM-RFE)
is extensively used in medical applications [16]. The
parameters considered were the penalty parameter and
loss function.
The final class of feature selection algorithms is

embedded approaches where the features are chosen while
building the classifier. To represent this class two tree-
based methods were adapted; random forest (RF) [17] and
extra-trees (ET) [18]. The parameter considered was the
number of trees used in each approach.
A summary of parameters of all considered feature

selection methods along with the range of values searched
for each parameter are given in Supplemental Table S3.

Classification methods
An exhaustive comparison of all classification algorithms
would be quite challenging. Therefore only a small
number of approaches was explored, chosen to represent
most common machine learning approaches used
in bioinformatics. Identifying the cancer type from the

NCI-60 dataset is inherently a multi-category classification
problem. Therefore each considered approach must
accommodate this setting or be adaptable by one-vs-one
[19] or equivalent approaches. The types of algorithms
tested fall into three main categories: linear, tree, and dis-
tance based methods. Again we used the Scikit-learn [15]
Python implementations for all compared classification
algorithms.
Linear classifiers use a linear function to score classes by

taking the dot product of feature values and feature
weights computed during training. One of the most
powerful, flexible and ubiquitous linear classifier is the
support vector machine (SVM) with linear kernel [20].
SVM has been utilized in numerous works describing pre-
dictive models with biological and medical significance.
Both the penalty and loss function parameters were
explored. Another powerful linear classifier is logistic
regression (LR) [21]. The specific implementation uses
one-vs-all to accommodate the multi-classification setting
instead of the one-vs-one approach. The penalty function,
and regularization parameters were explored.
Classification trees are a machine learning tool which

has found extensive use in the biological and medical
communities. This is partially due to both their resilience
to over-fitting and ease of interpretation. This work looks
at three related approaches; vanilla decision trees (DT)
[22], random forest (RF) [18] and gradient boosting (GB)
[23]. Decision trees represent class labels as leaves in the
tree and branches are combinations of features that lead
towards a leaf. Vanilla decision trees can often over-
complicate the explanation necessary to arrive at the
appropriate class label, however their interpretation is very
simple. Random forest approach and gradient boosting are
ensemble learning techniques where multiple trees are
created and the final decision is some aggregate. These
approaches are less-susceptible to over-fitting however
they are often computationally intensive. The common
parameter explored is the number of trees used and for
gradient boosting the number of boosting stages.
Distance based methods surveyed are k-nearest neigh-

bors (KNN), cosine (Cos) and correlation (Corr). Cosine
and correlation are simple classifiers which calculate the
distance to all training samples from the test sample and
assigns the label based on the closest match. KNN is a
slightly more advanced version of the same concept in
which class membership is assigned by majority voting
among the k closest matches.
A summary of parameters of all considered classification

algorithms along with the range of values searched for
each parameter are given in Supplemental Table S4.

Validation strategy
A common validation strategy used in evaluating machine-
learning methods is k-fold cross-validation [6,8]. Here the
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data is partitioned into k equal size subsets with each set
used in turn for testing while the other k − 1 subsets are
used as training data. Care must be taken taken to avoid
substantial biases [24] by ensuring that feature selection is
performed only on the data reserved for training. Since
the approach presented here is also parameterizing for
each distinct model, nested k-fold cross-validation is used
to tune parameter values. This requires an additional
cross-validation experiment on each training dataset,
where a grid-search over the considered parameter range
is performed. The inner phase identifies the best para-
meter values which are then used exclusively in the outer
cross-validation. In order to build stronger evidence for
the models’ performance, the outer cross-validation phase
was repeated 100 times, however the parameterization was
only performed in the first iteration. Biases towards select-
ing more complex models with more parameters or overly
fine grid-steps are still a possibility, however nested cross-
validation should largely mitigate them. More advanced
techniques presented in [25] could be utilized in future
iterations. An outline of the validation strategy can be
seen in Figure 1.

The nested k-fold cross-validation strategy is computa-
tionally very intensive. With 4 × 9 = 36 models (combi-
nations of feature selection and classifier) to evaluate,
dozens of parameter values and different number of
selected markers there can be upwards of 1,000,000
individual classifier runs per data type. The majority of
the jobs occur in the inner cross-validation loop, and
fortunately can all be run in parallel on a cluster or
multi-core server. Also, a pre-filtering heuristic was
applied to speed up the feature selection process. For all
datasets with more than 1,000 features we retained only
the top 1,000 features as ranked by the F-statistic prior
to any additional feature selection.
To further validate the results on external datasets, eight

primary tumor cohorts from The Cancer Genome Atlas
(TCGA) were identified to match five NCI-60 tissue-of-
origin cell lines; central nervous system, colon, non-small
cell lung, ovarian, and renal. The mapping of the TCGA
cohorts to the NCI-60 cell lines can be found in Supple-
mental Table 7. The TCGA derived gene expression
microarray data was obtained from the Broad Institute’s
GDAC Firehose utility [26-34]. The presented pipeline

Figure 1 Validation strategy. Flow chart of the validation strategy. First all combinations of feature selection and classification algorithms (4x9)
are parametrized in the inner k-fold cross-validation loop based on the training folds of the outer k-fold cross-validation. The best parameters
are found by maximizing AUC. Once the parameters are fix the outer k-fold cross-validation loop is run and the average AUC (or similar metric)
is recorded.

Hemphill et al. BMC Bioinformatics 2014, 15(Suppl 13):S4
http://www.biomedcentral.com/1471-2105/15/S13/S4

Page 4 of 14



was used to select biomarkers, identify and train the most
informative model using NCI-60 data [35]. Then its
performance was tested using the TCGA derived data.

Metrics
There are numerous metrics used in evaluating the
accuracy of a predictive model. One common metric is
AUC, or area under the receiver operating characteristic
(ROC) curve. The ROC curve is a plot of the true posi-
tive rate against the false positive rate. The AUC is then
the area under this curve and is used as a single mea-
surement of classifier performance. This definition is
typically for binary classification tasks, however there are
several extensions to multiclass classification problems
[36]. Since the classes are equally represented in the
NCI-60 dataset this work utilizes the multiclass metric,
AUCtotal =

∑
ci∈C AUC (ci) · p (ci), where AUC(ci) is the

typical binary classification AUC for class ci and p(ci) is
the prevalence in the data of class ci.

Results and discussion
This study is evaluating the effect of three parameters
simultaneously: the model, the data type and the number
of markers. Therefore conclusions about the best predic-
tive model are presented from the perspective of each
parameter individually. In Figure 2 an overview of the
AUC for each model, data type and each number of
markers is presented as a heatmap. The hotter entries
represent higher AUC.

Model effects
The accuracy of the predictive models varies greatly, with
the various combinations of feature selection and classifi-
cation algorithms. If the feature selection and classifica-
tion algorithms are grouped by class, a high-level ranking
becomes much clearer. In Figure 3 the relative ranking of
each model is indicated by color for each data type at
each number of features. The RFE-Linear combination
which uses SVM-RFE for feature selection and logistic

Figure 2 AUC heatmap. This heatmap contains the average AUC for each model (grouped by feature selection) for each data type at each
number of markers. The darker the block, the more accurate the predictive model is.
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regression or SVM for classification is the best perform-
ing model in almost all instances. Close behind is
Ensembl-Linear, where in Table 1 it is clear that it per-
forms only slightly worse than RFE-Linear.
If the data type and number of features are fixed the

effects of the models can be explored further. As seen in
Figure 4 the mRNA and protein data types consistently
afford the best classification accuracy at both high and
low number of markers. Although classifiers have rela-
tively poor performance on SNP data for 8 markers, as
the number of selected biomarkers increases best per-
forming classifiers based on SNP data match or slightly
outperform those based on gene and protein expression.
The accuracy of all models is generally highest at a high
number of markers. Therefore mRNA and SNP at 16
(Figure 5) and 64 (Figure 6) markers were chosen to
demonstrate model effects. Surprisingly, the effect of
classifier choice is small as seen in Figure 3. The models
are grouped by feature selection algorithm. For RFE

there is very little difference between all the classifiers
except decision trees and gradient boosting which are
consistently poor performers. The major differences
appear between feature selection groups, where SVM-
RFE is the best, random forest and extra trees have
equivalent performance, and Anova is the worst.
This conclusion is contrary to that of [6], where it was

found that the t-test univariate filter (of which Anova is
considered a multiclass generalization) often performed
the best for feature selection. This could be due to the
differences in the underlying complexity of the question;
namely in [6] the goal was to predict metastatic relapse,
which is a binary question, using gene expression micro-
arrays. In addition, no parameter tuning using nested
CV or similar approach was performed in [6]. Although
this study cannot prove that a particular feature selec-
tion or classification algorithm is best in a certain sce-
nario, it does indicate that a thorough model selection
step is advised.

Figure 3 Model rank. This heatmap contains the relative rank based on AUC of each model across all data types. The darker spots indicate
higher AUC and rank.
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Table 1 AUC by data type and marker count.

Marker Set Size SNP mRNA CNV microRNA Protein

8 RFE ET 0.8598 RFE ET 0.9585 RFE LR 0.7198 RFE RF 0.8352 RFE ET 0.9426

RFE RF 0.8591 RFE RF 0.9554 ET LR 0.7115 RFE SVM 0.8352 ET ET 0.9394

RFE SVM 0.8321 RFE SVM 0.9521 RF LR 0.71 RFE KNN 0.8295 RFE RF 0.9382

ET ET 0.8295 RFE LR 0.951 RFE ET 0.691 RFE ET 0.8275 RF ET 0.9376

RFE KNN 0.9467 RFE RF 0.6802 Anova SVM 0.8089 ET RF 0.9312

Anova LR 0.8051 RF RF 0.9272

RF ET 0.8028

RF RF 0.8027

RFE LR 0.8021

RF LR 0.802

16 RFE ET 0.922 RFE ET 0.972 ET LR 0.7616 RFE SVM 0.8758 RFE ET 0.9666

RFE RF 0.9162 RFE LR 0.9709 RFE LR 0.7607 RFE KNN 0.8704 ET ET 0.9582

RFE SVM 0.9111 RFE RF 0.9681 RF LR 0.7468 RFE RF 0.8671 RFE RF 0.9565

RFE KNN 0.9033 RFE SVM 0.968 RFE ET 0.8597

ET ET 0.8997 RFE Cos 0.9663 RFE LR 0.8535

RFE LR 0.897 Anova SVM 0.8496

RF ET 0.896

ET RF 0.8914

32 RFE LR 0.9685 RFE LR 0.9759 RFE LR 0.8194 RFE KNN 0.8806 RFE ET 0.9792

RFE SVM 0.9674 RFE ET 0.9757 RFE RF 0.8801

RFE KNN 0.966 RF LR 0.9747 RFE ET 0.8717

RFE ET 0.9646 RFE Cos 0.9736 RFE SVM 0.8679

RFE RF 0.9577 RFE RF 0.9734 RFE LR 0.866

RFE SVM 0.9734

64 RFE KNN 0.9911 RF LR 0.9789 RFE LR 0.8379 RFE KNN 0.8746 RFE ET 0.979

RFE LR 0.9892 RFE LR 0.9777 RFE LR 0.8688 RFE LR 0.9782

RF LR 0.9862 RFE Cos 0.977 RFE RF 0.8682 RF LR 0.9731

RFE SVM 0.9843 RFE ET 0.976 RF LR 0.8595 RFE KNN 0.9727

ET LR 0.9837 RFE RF 0.9757 RF Corr 0.8585

RF RF 0.9755 RFE ET 0.8578

ET LR 0.9741 RF KNN 0.8574

RF ET 0.9737 RFE SVM 0.8568

RFE SVM 0.9733 Anova KNN 0.8564

ET RF 0.9728 Anova LR 0.8557

RFE Corr 0.9709 ET LR 0.8539

RFE Corr 0.8537

ET Corr 0.8536

ET KNN 0.852

RFE Cos 0.8492

96 RFE KNN 0.9933 RF LR 0.9808 RFE LR 0.847 RFE LR 0.8697 RF LR 0.979

RF LR 0.9918 RFE LR 0.9787 ET LR 0.8292 RF KNN 0.8657 RFE LR 0.9779

RFE LR 0.9916 RF RF 0.9774 RF LR 0.8643 ET LR 0.9768

ET LR 0.9909 RFE Cos 0.977 ET LR 0.8634 RFE ET 0.9765

RFE RF 0.9762 RFE RF 0.8633 ET ET 0.9734

ET LR 0.9761 RF Corr 0.863 RF ET 0.973

ET RF 0.9758 ET Corr 0.8629

RF ET 0.9746 RFE KNN 0.8628

RFE ET 0.9744 ET KNN 0.8613

Anova KNN 0.8596

Anova LR 0.8573
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The relatively small effect of classifier choice is inter-
esting and unexpected. This indicates that much more
care should be given to choosing the right features, as
this has the biggest effect on model performance.

Data type effects
The rich selection of data types available for these cell
lines provides the opportunity to compare the ability of

many types of biological data to classify the tissue of
origin of a tumor cell line. Some of these data types
fundamentally reflect gene expression levels: mRNA,
protein and microRNA. The other two: CNV and SNP,
are generally assumed to reflect genomic changes at
large (CNV) and small (SNP) scales. Comparisons of
data type effects at all marker sizes are best seen in
Figure 4.

Table 1 AUC by data type and marker count. (Continued)

RFE SVM 0.853

ET RF 0.8483

RFE Corr 0.8477

RF SVM 0.8474

Table of AUC for top performing models for each data type and grouped by marker set size.

Figure 4 AUC boxplots. This figure contains box plots of the best model, for each data type and number of markers. The whiskers represent
the 95% confidence interval, while the green dots represent another model with performance within the confidence interval.
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Figure 5 SNP/mRNA: 16 markers. This figure contains box plots describing the AUC of each model, grouped by the feature selection
component for SNP and mRNA data type at 16 markers.
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The transition from normal tissue to cancerous
tissue is generally associated with changes at the level of
both gene expression and the genome. Frequent muta-
tions, genomic rearrangements and large scale changes

in gene expression are all characteristic of oncogenic
transformation. However, cancer cells also retain many,
if not most, of the essential hallmarks of the tissue of
origin of the cancer. In this study, we use the tissue of

Figure 6 SNP/mRNA: 64 markers. This figure contains box plots describing the AUC of each model, grouped by the feature selection
component for SNP and mRNA data type at 64 markers.
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origin as the ground truth and measure the ability of
each data type to correctly infer the tissue of origin of a
sample based upon each data type.
A priori, we expect some of these data types to be bet-

ter at this task than others. For instance, mRNA profiles
are highly distinct between different tissue types. For this
reason, even after oncogenic transformation, an mRNA
transcriptional profile characteristic of the tissue of origin
is expected to resemble that of the normal tissue, more
than it would the transcriptional profile of tumors
derived from other tissues. For this reason, we expect
(and find) that mRNA transcriptional profiles reliably and
accurately infer the tissue of origin of tumor cell lines.
Similarly, protein expression profiles are also very reliable
indicators of the tissue of origin of a tumor. microRNA
profiles are less powerful than either mRNA or protein
expression profiles, but still fairly powerful indicators of
tissue of origin. The relative weakness of microRNA pro-
files compared to mRNA and protein expression profiles
may in part result from lower tissue specificity of micro-
RNA expression relative to mRNA and protein.
The ability of genomic data to infer the tissue of origin

of the tumor is subject to a very different set of biological
constraints than expression data. While expression data is
expected to be approximately identical across tissues
regardless of patient identity, and thus similar between
tumors derived from the same tissue but from different
individuals; genomic data is identical across normal tissues
in an individual, and differs between individuals. Thus, at
first glance, genomic data would be expected to track with
the individual, and be a very poor predictor of the tissue of
origin of a cancer. However, dramatic genomic alterations
are a hallmark of cancer progression, and distinct genomic
alterations are often found in distinct cancer types.
Accordingly, we find that copy number variation is about
as powerful as microRNA profiles at inferring the tissue of
origin of a cancer cell. This is likely due to the preferential
occurrence of specific DNA rearrangements in cancers
derived from specific cell types [37]. The SNP arrays
however, which measure the presence of specific alleles in
a sample, show unexpectedly strong ability to infer the
tissue of origin of these cancer cell lines. Indeed, their per-
formance is similar to that of the mRNA and protein
expression profiles (perhaps even better at high numbers
of markers). This was unexpected as SNP’s should be
roughly identical across all tissues in an individual, and by
and large, reflect an individual’s ancestry. However, this
phenomenon has been previously observed in the NCI-60
data, and was found to result from the fact that intensity
of signal on the SNP array was actually reflecting SNP
copy number at duplicated loci, and thus indirectly
measuring likely gene expression levels, rather than homo-
genization of genotypic diversity [38]. This effect was
strongest for linked SNPs, and appears to be the result of

local gene copy number amplification, which in turn
enables increased gene expression. Thus, the ability of
SNP arrays to accurately infer tissue of origin of cancer
cell lines appears to result from increased gene expression
driven by local duplication and increase in copy number.
As the CGH arrays used to profile the NCI-60 lines
provide much lower genomic resolution than the SNP
arrays, they are less powerful at detecting and exploiting
this effect. This unexpected behavior of the SNP arrays
used to characterize the NCI-60 lines could be addressed
by utilizing newer SNP arrays that control for copy
number such as the Affymetrix SNP6 platform.

Number of marker effects
As one uses more biomarkers to classify samples, one
expects increased performance, the possibility of overfit-
ting, and the appearance of a plateau beyond which addi-
tional markers do not increase the power of classification.
However, the rate at which these changes occur as more
markers are used to classify a sample can be very different
for various types of data.
Our analysis shows that mRNA, protein, and SNP data

all plateau at about the same AUC (∼0.97).
However, each of these data types reaches the plateau at

a different number of markers: mRNA plateaus between
16 and 32 markers, while protein plateaus at around 32
markers, and SNP does not reach the same AUC until 64
markers are used. This may result from the fact that each
of these markers appear to measuring aspects of gene
expression, with decreasing directness (SNP) or coverage
(protein), and thus power of discrimination. The mRNA
arrays used to characterize the NCI-60 cell lines provide
direct assessment of the activity of thousands of protein-
coding genes, while the protein arrays measure only some-
what more than 300 proteins. With thousands of potential
markers to choose from, the mRNA-based models can
select informative markers from a larger marker pool, and
thus maximize the performance of a gene expression-
based model more quickly than the protein arrays, which
are restricted to a small subset of the protein coding genes
represented on the mRNA arrays. The more direct nature
of the protein measurement (i.e. closer to the active biolo-
gical component) does not appear to outweigh the disad-
vantage of the lower coverage in the starting set of protein
markers. As discussed in the preceding section, the SNP
array appears to be measuring, in part, gene expression
levels resulting from the amplification of specific regions
of the genome in specific cancer types. However, there is
likely to be a complex and possibly heterogeneous and
non-linear relationship between signal intensity on the
SNP array, and gene expression levels. Thus, despite the
very large number of markers to choose from on the SNP
array, highly informative markers are not as abundant in
this data as they appear to be in the mRNA data. As a
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result, many more SNP markers are required to achieve
the same level of performance as mRNA-based markers. It
is hard to predict how the power of SNPs to infer cancer
type might change when newer arrays, that control for
copy number changes, are used to characterize these cell
lines.
Similarly, CNV and microRNA markers approach the

same level of performance as one another, but do so at
different rates. While microRNA markers plateau
quickly (at about 16 markers) CNV markers require
64-96 markers to reach the same level of performance.
The quick plateau of microRNA-based markers is likely
due to the highly tissue-specific expression of a minority
of microRNA’s, and the more global expression of the
remaining majority. Once the few highly informative
microRNA’s have been selected and used, adding more
provides little additional classification power. In the case
of CNV’s, like SNP’s these markers reflect changes in
the cancer cells genome that can lead to changes in
gene expression that are distinctive features of cancer
subtypes. However, not only do the CNV markers suffer
from the indirect relationship between the marker and
gene expression expected for SNP’s, they are also a
much lower resolution marker than SNP’s (megabases
vs single bases), and far fewer CNV’s were measured on
the arrays, thus limiting the likelihood that the most
informative CNV’s were available for selection. Thus,
the power of the CNV biomarker panel climbs slowly.
Taken together, these observations suggest that the

absolute performance of a given biomarker data type to
classify a cancer can be understood in the context of: the
number of available markers for the model to choose
from, the power of the most informative markers in the
set, and the directness with which the data type reflects
an informative aspect of the sample biology. Data types
with a large number of markers to choose from, that are
closely related to the biology of the sample, are most
likely to yield highly effective small biomarker panels. On
another hand, data types with lower saturation (fewer
markers measured), and/or a less direct relationship to
the biological differences between samples, will require
more markers to reach maximal performance.

Combined model, data type, and number of marker
effects
Ultimately all parameters should be considered simulta-
neously when attempting to build the best targeted predic-
tive model. In order to do this it is necessary to build a
validation framework to explore all parameters fairly and
efficiently. Although it is a difficult task it is not impracti-
cal and interesting nuances can be extracted.
In this study it was observed that at the lowest number

of markers (8) mRNA and protein were the best data
types for cancer identification. For mRNA, SNP and

protein the SVM-RFE was the best feature selection choice
and ET was the best classifier. For CNV and microRNA
the best classifier was LR and ET respectively. Interestingly
for all data types at 8 markers except CNV a tree based
classifier performed the best as seen in Table 1. It is possi-
ble that if only a few biomarkers are considered the tree
based approaches explicit enumeration of decisions may
be better suited, however it should be noted that the linear
classifiers are typically only marginally worse.
At the highest number of markers tests (96) both RFE

and ET perform strongly on all data types, however LR is
the best classifier for all types except SNP where KNN is
the best. Both of these classification tools are technically
simple, yet they perform best which lends credence to the
Occam’s razor principle which when applied to machine
learning places preference on simpler explanations.

External validation
The amount of over-fitting when building a predictive
model is always a concern. This effect was measured in an
external validation experiment utilizing analogous gene
expression microarray data obtained from several studies
which are part of the TCGA project [26-34]. The results
of this comparison indicated that biomarker and model
selection using AUC as the ranking criteria is robust and
performs well across studies. In Table 2 it can be seen that
colon (CO), CNS and renal (RE) cancer types were distin-
guishable with a high degree of accuracy using between 8
and 96 markers. The CNS type was more challenging to
differentiate after 32 markers, while ovarian (OV) and
lung cancers (LC) were extremely difficult to differentiate
at any number of markers.
The NCI-60 data is derived from decades old cell

lines, while the TCGA data was derived from recently
sampled primary solid tumors. Additionally the matched
cancer types did not have comparable histological classi-
fication. Finally, there were three aditional cancer types
(ME, LE, BR) which were present in NCI-60 but not
included in the external validation set. These classes
were included in the training. Despite these differences
the presented method was able to perform biomarker
selection and build accurate predictive models for this
challenging external validation experiment. A complete

Table 2 External validation accuracy by cancer type.

Marker Set Size CO OV CNS LC RE

8 0.1673 0 1 0.3656 0.0138

16 0.9856 0.037 0.8246 0.686 0.7403

32 1 0.1111 0.9123 0.2384 0.8571

64 1 0.0741 0.5965 0.1163 0.8961

96 1 0.2593 0.5351 0.0116 1

Accuracy of the top performing model for each cancer type and grouped by
marker set size.

Hemphill et al. BMC Bioinformatics 2014, 15(Suppl 13):S4
http://www.biomedcentral.com/1471-2105/15/S13/S4

Page 12 of 14



breakdown of the per-class prediction rate by cancer
marker set size is provided in Supplemental Table 9.

Conclusions
The initial hypothesis motivating this research was that
certain predictive models will perform better on different
data types at different dimensionalities. While this hypoth-
esis holds, the difference in accuracy between models is
often small and allows for several generalizations. Namely
that RFE is clearly the best feature selection algorithm and
both SVM and LR are the best classifiers as seen in Figures
2 and 3. Both mRNA and protein expression are the over-
all best performing data types for the cancer classification
question. However to maximize predictive accuracy all
models at all parameters should be parameterized and
vetted fairly before conclusions are made.

Additional material

Additional file 1: Supplementary figures, methods, and tables are
supplied in PDF format.
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