
Adaptive Sampling of Information in Perceptual
Decision-Making
Thomas C. Cassey1, David R. Evens2, Rafal Bogacz1, James A. R. Marshall3, Casimir J. H. Ludwig2*

1 Department of Computer Science, University of Bristol, Bristol, United Kingdom, 2 School of Experimental Psychology, University of Bristol, Bristol, United Kingdom,

3 Department of Computer Science and Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom

Abstract

In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially,
and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-
alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the
information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to
sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding
perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered
only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory
uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions
and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available
sources of information, that influences the sampling strategy.
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Introduction

In humans and many other biological organisms, the sensory

and cognitive machinery used to pick up and process information

from the environment is extremely limited. For the human visual

system, high resolution vision is only possible in the small part of

the visual scene that projects onto the fovea. As a result, we sample

information selectively and sequentially from the visual world by

frequently shifting the line of sight [1]. We are often presented

with perceptual decision problems which involve sampling

information from multiple sources and then using that information

to make an overall judgement about the ‘‘state of the world’’. For

example, when crossing a road, we must integrate information

from either direction, sampled in serial, to decide whether it is safe

to cross.

Sensory information is typically noisy, and therefore uncertain

[2,3]. The level of uncertainty may vary across different

information sources (e.g., the view of the road in one direction

may be obstructed by a tree). In different situations (e.g., familiar

versus unfamiliar junctions) we may have different amounts of

prior knowledge of such variations in information quality. Internal

processing mechanisms in the brain will insert additional noise

[4,5]. Switching between information sources incurs a temporal

cost, in the form of reduced visual sensitivity for a period during

and around the movement from one source to another [6–8]. A

central challenge in such decision problems is to allocate a limited

amount of time appropriately to different sources of information

that can only be sampled one at a time.

Much of the work on perceptual decision-making involves

observers (humans or non-human primates) making a binary

decision about a single stimulus [9,10]. For instance, observers

may view a noisy pattern and make a decision about the average

direction of motion of the pattern (typically either to the left or

right). In such tasks it has been observed that certain neurons in

frontal and parietal areas integrate information from sensory areas

that encode the evidence for alternative choices [11,12]. It has

been proposed [13–16] that these neural circuits implement the

computation described by the diffusion model (Figure 1a) [17].

This model assumes that the brain computes a decision variable

that corresponds to the integrated difference between inputs from

sensory neurons selective for the two alternatives. The diffusion

model has been shown, under certain assumptions, to be the

continuum limit of sequentially computing the ratio of the

likelihoods of the two alternatives [18], which can be used to

form optimal decisions in fixed time and free-response decision

problems [19,20].

Recently, a modification of the diffusion model has been

proposed which mechanistically describes choice process between

two options that are inspected serially [21] (Figure 1b). In this

modified diffusion model, the average rate of change of the

decision variable depends on which option is currently sampled

(i.e. fixated). In line with the predictions of the model, it was
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observed that the cumulative length of visual fixations on each

target influenced the outcome of the decision process, with choices

biased towards the option that had been viewed for longer.

In this paper, we consider a comparative decision problem in

which multiple sources of information have to be sampled

sequentially, in a fixed period of time, to make a two-alternative

forced choice decision. Critically, we consider the situation in

which different sources of information have different levels of

noise. Our specific aims are threefold. First, given the novelty of

the decision problem under investigation, we identified the

optimal sampling strategy that maximises accuracy in this type

of situation. Second, we developed an experimental paradigm

that extends the classic perceptual decision-making task

described above to this more challenging situation. We assessed

how human sampling behaviour compares to the qualitative

predictions generated by the ideal observer. Third, we

examined the relation between the normative model developed

below and the fixation-dependent drift diffusion model that has

been applied to the specific instance of comparative choice

described above [21].

Results

Optimal observer
As with previous two-alternative perceptual decision studies

[9,10], we assume that evidence for each alternative is encoded in

the firing rates of neurons responding to the visual stimuli. As in

previous studies [13,14], for simplicity we assume that the average

firing rate of a population of neurons selective for a particular

stimulus has a normal distribution across different time intervals

during which a given stimulus is presented. This assumption can

be made because the firing rate of a neural population within an

interval is an average of the rates of many individual neurons and,

according to the central limit theorem, can be approximated by a

normal distribution. We assume these firing rates are integrated

until the available time has elapsed and the decision is determined

by the state of the integrated decision variable (Figure 1). For the

ideal observer we treat the firing rate of the neurons responding to

a given visual stimulus as an independent normally distributed

random variable, which we denote by X*N(mx,s2
x) and

Y*N(my,s2
y) for each of the two information sources. The mean

firing rates, mx and my, are assumed to be linked to the strength of

evidence for each alternative. Finally, we denote the samples

drawn from X and Y by x1 � � � xm and y1 � � � yn respectively,

where m and n denote the numbers of samples obtained from X

and Y.

We assume that one source of information will evoke a greater

response in terms of average firing rate than the other. A

comparative decision can be formulated as a decision between two

hypotheses, Hx and Hy which are shown below:

Hx : mx~hzd my~h{d

Hy : mx~h{d my~hzd:
ð1Þ

Hx is the hypothesis that the sampled evidence supporting

alternative X outweighs that supporting alternative Y and Hy is

the hypothesis that the sampled evidence supporting alternative Y
outweighs that supporting alternative X . We assume that the

observer has learned the relative difference between the two

sources, which we denote by: 2d~ mx{my

�� ��. In the context of the

experimental work reported below, it seems reasonable that

observers would acquire this knowledge after experiencing a

number of trials. Importantly, we assume that the observer does not

know the average of the means of the two sources which we denote

by h. Thus, Equation 1 embodies a comparative decision rule: the

response evoked by one alternative cannot be used to choose

between these two hypotheses (i.e., just ‘‘knowing’’ the mean value

of one source is not sufficient).

Figure 1. Models of the decision process for two different two-alternative decision problems. (a) Decision model for a single source two-
alternative forced choice decision. A frequently used stimulus in such tasks is the random dot kinematogram (RDK), which consists of a number of
dots, only some of which move in a particular ‘‘signal’’ direction. Subjects are typically asked to decide in which of two directions the RDK is moving.
With a single source of visual information the sensory data provide evidence for both alternatives. In motion discrimination tasks this evidence comes
from neurons in area MT whose activity (firing rate) is tuned to respond to motion in a particular direction. At each moment in time, evidence from
two populations of neurons is used to update a single decision variable. (b) Decision model proposed by Krajbich et al. [18] for a comparative two-
alternative decision problem with two sources of visual stimuli. In their study, participants were asked to choose between two food items presented
simultaneously in different locations on the screen. With each stimulus providing evidence about one particular alternative, the decision variable is no
longer updated simultaneously by evidence for all available targets. Instead, as a target is fixated (target X in (b)) evidence supporting that target is
generated and incorporated into the decision variable. During this time, the mechanisms that represent the evidence for the non-fixated target
remain silent (shaded out branch for target Y in (b)).
doi:10.1371/journal.pone.0078993.g001
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Deciding which hypothesis to select on the basis of the available

evidence can be performed optimally using a log-likelihood ratio

test which compares the value of the log-likelihood ratio, denoted

z, to some problem dependent decision criterion g, with Hx chosen

when above the criterion and Hy chosen otherwise. In the

case where both hypotheses are equally likely with

P Hxð Þ~P Hy

� �
~1=2 the optimal decision criterion is g~0 and

the sign of z determines the hypothesis to select with X chosen

when zw0 and Y chosen when zv0. The log-likelihood ratio for

the above problem was derived by Hayre and Gittins [22] (see

Materials S1 for full derivation). The derivation is long and

complicated because Hayre and Gittins avoided making any

assumption about the unknown parameter h. However, the same

value of the log-likelihood ratio can be easily obtained in a special

case where one assumes that all values of h are equally likely. We

outline this simplified derivation below. Assuming that h has a

uniform distribution on the interval between 2B and B, the

likelihood of observed samples given hypothesis Hx is equal to:

P(x1,:::,xm,y1,:::,ynjHx)

~

ðB
{B

1

2B
P(x1,:::,xm,y1,:::,ynjHx,h)dh

~

ðB
{B

C

2B
exp {

Pm
i~1

xi{h{dð Þ2

2s2
x

{

Pn
i~1

yi{hzdð Þ2

2s2
y

0BB@
1CCAdh:

ð2Þ

where C~
ffiffiffiffiffiffi
2p
p

sx

� �{m ffiffiffiffiffiffi
2p
p

sy

� �{n
. Equation 2 can be rear-

ranged to factor out h:

P(x1,:::,xm,y1,:::,ynDHx)~

~
C

2B

ðB
{B

exp {
m

2s2
x

z
n

2s2
y

 !
h2z2

Pm
i~1

xi{dð Þ

2s2
x

z

Pn
i~1

yizdð Þ

2s2
y

0BB@
1CCAh

0BB@

{

Pm
i~1

xi{dð Þ2

2s2
x

z

Pn
i~1

yizdð Þ2

2s2
y

0BB@
1CCA
1CCAdh:

ð3Þ

Assuming that B is large, the above equation can be expressed

without the unknown parameter h using the following identity:

ð?
{?

exp {ah2{2bhzc
� �

dh~

ffiffiffi
p

a

r
exp

b2

a
zc

� �
ð4Þ

Expressing the likelihood of samples given Hy in an analogous way

and taking the ratio of the likelihoods, most of the terms cancel

and the log likelihood ratio becomes:

z~Log
P(x1,:::,xm,y1,:::,ynjHx)

P(x1,:::,xm,y1,:::,ynjHy)

~
4dn

ms2
yzns2

x

Xm

i~1

xi{
4dm

ms2
yzns2

x

Xn

i~1

yi:

ð5Þ

According to Equation 5, at each interval in the decision process,

the log-likelihood ratio is dependent on the difference in the

weighted summation of evidence from each alternative.

The weights on the two evidence sums from both alternatives

(ratios before the summation signs in Equation 5) vary as samples

are drawn from either alternative. This variability in the weight

applied to the accumulation of evidence ensures that when one

source of information has yet to be sampled, i.e. either m~0 or

n~0, the log-likelihood ratio remains fixed at its initial value of

z~0. To illustrate this property, the black curve in Figure 2 shows

how z changes during an illustrative comparative decision, in

which positive values indicate a greater amount of evidence for Hx

– please note that the curve remains at 0 until the second source is

sampled.

Optimal sampling allocation
We now consider how to allocate the available time between the

two information sources to maximize the accuracy in decision

tasks with a fixed time limit. The log-likelihood ratio from

Equation 5 may be reformulated in terms of the total sampling

time T~mzn and the portion of this sampling time allocated to

alternative X , which we denote q~m=(mzn). We can then

rewrite Equation 5 as:

z~
4d

qs2
yz(1{q)s2

x

(1{q)
XqT

1
xi{q

X(1{q)T

1
yi

h i
: ð6Þ

Using the expected value of the log-likelihood ratio at decision

time, we can calculate the expected error rate (see Materials S1,

section 2.1) for a given sampling strategy (i.e. value of q):

ER~W {2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1{qð ÞT

qs2
yz 1{qð Þs2

x

s !
: ð7Þ

In Equation 7, W denotes the standard normal cumulative

distribution function. The portion of sampling allocated to

alternative X that minimises the error rate, can be computed by

finding q for which dER/dq = 0 (see Materials S1, section 2.2 for

details). We find that, in order to minimize the expected error rate,

the decision maker should divide their sampling time between the

two targets such that

m=n~sx
�
sy
: ð8Þ

Thus, we can state simply that the optimal allocation strategy is to

allocate the available sampling time between the two sources such

that each one is sampled for a period of time proportional to its

standard deviation. Therefore the ideal observer would spend

longer sampling the less certain (or noisier) source.

Optimal number of switches
The decision problem analysed here requires the observer to

sample both sources of information, necessitating at least one

switch during the course of each trial. Switching frequently entails

an energetic and/or temporal cost. For instance, in the particular

task outlined below observers make saccades between two stimuli,

which results in a period of strongly reduced visual sensitivity

[6,7,8]. In our mathematical framework, switching between

alternatives incurs a temporal cost by reducing the available

sampling time T in proportion to the number of switches.

According to Equation 7, reducing T increases the error rate

(because W is a monotonic function; see Materials S1, section 3 for

further details). Therefore, when observers have advance knowl-
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edge of the noise levels of the two sources of information, the

optimal strategy is to make just the one switch to maximise the

time available for sampling the evidence. Figure 3a illustrates

schematically the optimal allocation when the observer knows the

noise level of both sources in advance.

However, in many natural situations the observers do not know

the noise level of the two sources before sampling them. Without

prior knowledge multiple switches can, under certain circum-

stances, be adaptive. Consider a scenario in which there are just

two possible noise levels (as in our experiment described below).

There are 4 possible combinations of noise level: a low or high

noise first source coupled with a low or high noise second source.

Figure 3b illustrates the optimal allocation when the observer does

not know the noise level of the sources in advance, but only learns

of their quality upon sampling them. When the observer does not

know the noise level of the second source, say sy, while observing

the first, the timing of the first switch cannot depend on sy.

Therefore, the first switch times are the same in the top two cases

in Figure 3b. In Materials S1 (section 4.1) we show that the

optimal time for the first switch when sy is unknown lies in

between the two optimal switch times when sy is known. For

example, the first switch time in the two top cases in Figure 3b lies

between the switch times in the two top cases in Figure 3a. When

the initial switch has been made and the second source has been

sampled, the observer knows the noise level of both patterns. If the

second source is of good quality so that not all the remaining time

is needed to estimate its mean with sufficient precision, the

observer may decide to switch back and collect more information

from the first source (first and third cases in Figure 3b). In

Materials S1 (section 4.2), we further show that the magnitude of

the switching cost influences the extent to which additional

switches can improve accuracy.

Active sampling with gaze
To assess how humans allocate sampling time in this type of

decision problem, we performed an experiment in which observers

Figure 2. Temporal evolution of the log-likelihood ratio (Equation 5 – thick black line). We also show a simplified decision variable
described later in the text (dashed dark grey line; section ‘Fixation-dependent drift diffusion model’ in the Results). The decision variables were
computed on the basis of identical sequences of sensory evidence generated from Gaussian distributions with means mx = 4 and my = 1, and equal
standard deviations sx = sy = 2.0. The sampling strategy used for both variables is identical and can be inferred from the background of the figure
with grey indicating alternative X is fixated and white alternative Y, each block of fixation is equally sized. For easier comparison the simplified
decision variable is scaled by c(1-q), where c is the scaling factor in front of square bracket in Equation 6. The simplified decision variable (Equation 10)
in this example assumes time is allocated equally to the two sources (~qq~0:5) and the points marked by black circles on the figure indicate the times
when this assumption holds (q~~qq).
doi:10.1371/journal.pone.0078993.g002

Figure 3. Illustration of optimal switch times in the (a) known and (b) unknown conditions. Each elongated rectangle represents the total
viewing duration. Segments with two different orientations of patterns represent the epochs spent viewing the two stimuli. High contrast segments
correspond to a low noise source, while low contrast segments correspond to a high noise source. The four rows in each panel correspond to four
possible combinations of noise in the two sources.
doi:10.1371/journal.pone.0078993.g003

Adaptive Sampling for Perceptual Decisions
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had to judge which of two RDKs translated in a more clockwise

direction. Figure 4 illustrates the paradigm in detail. The

comparative nature of this judgement meant that both sources

of information had to be inspected in order to come to a decision.

The dots moved only when fixated, so that only one pattern could

be sampled at a particular point in time. Compared to the

standard motion discrimination task with just a single source of

evidence, the observer not only had to accumulate evidence from

each individual source in order to estimate its direction of motion,

but also had to decide at each point in time which information

source to sample (i.e., take more samples from the current source

or switch to the other source?).

Eight observers viewed two RDKs, with either low noise (24%

coherence) or high noise (12% coherence) over a period of

1500 ms. Each observer was tested in two conditions (the order of

which was counter-balanced). In the ‘known’ condition the

luminance of the dots accurately mapped onto noise levels (e.g.,

black dots represent 24% coherence, while white dots represent

12% coherence). Since participants could see luminance of the

dots before motion onset, they had a perfectly reliable cue to the

quality of both patterns before actively sampling them. In the

‘unknown’ condition, the luminance of the RDKs was assigned

randomly from trial-to-trial.

The optimal observer model developed above makes the

following three main predictions for this task: (i) On the trials in

which the two patterns had different levels of coherence, the

participants should spend more time looking at the noisier

stimulus. (ii) The ratio of durations spent looking at the two

stimuli should be equal to the ratio of noise levels in the stimuli. (iii)

Participants should produce more switches in the unknown than

the known condition, in particular when the second stimulus they

sample has a high coherence. In the next section we briefly report

the accuracy of participants. In the following three sections we

compare the above predictions with the experimental data, and

report other effects present in the data that were not predicted by

the model.

Perceptual performance
Table 1 shows the behavioural performance data (discrimina-

tion accuracy) as a function of the noise in the two information

sources, for both levels of prior knowledge. Accuracy averaged

across observers ranged from 70% correct (for two low coherence

patterns) to 84% (for two high coherence patterns). Performance in

conditions with one high and one low coherence pattern, was in

between the two extremes, at 76% correct. We combined the data

from the two mixed coherence conditions and ran a 362 repeated

Figure 4. The trial sequences of the presented experiments. (a) Comparative two-alternative forced choice decision task. During each trial
observers are presented with two stationary RDKs with centres located above and below the centre point of the screen on the vertical axis. The
activation of the RDKs was gaze contingent, with a given RDK activated once the observer’s gaze fell within the appropriate region of the display. The
task was to identify the target pattern: the one whose signal direction was further clockwise through the short angle. RDKs could consist of either
black or white dots in both the full and no prior knowledge conditions but the conditions differed in whether the dot polarity was linked to a noise
level. A trial started with a preview period of 1000 ms in which observers could process the polarity of the patterns and were instructed by an arrow
(appearing 500 ms after trial onset) which pattern to view first. Following the preview, they were free to actively sample the patterns over a period of
1500 ms and subsequently gave their response once both RDKs were extinguished. They were instructed that they must look at each pattern at least
once in the course of a trial but other than that, they could switch between patterns in any way they wanted. The figure shows a trial in which the
observer was instructed to view the upper pattern first and made only one switch. The eye indicates the vertical eye position, the hatched arrows the
signal direction of motion of the moving pattern. The figure is not to scale. (b) Single pattern direction estimation task. Observers viewed a single
pattern between 75 and 1000 ms. Once the RDK had offset, they indicated their estimate of the signal direction by moving an arrow to this direction
with a mouse and clicking.
doi:10.1371/journal.pone.0078993.g004
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measures ANOVA with pattern coherence (low – mixed – high)

and prior knowledge (known – unknown) as factors. The variation

in coherence between the patterns was clearly sufficient to

generate variations in discrimination accuracy: there was a main

effect of pattern coherence, F(2, 14) = 39.87, p,.001. Prior

knowledge did not affect discrimination accuracy, F(1, 7) = 1.17,

p = .32, nor did it interact with coherence, F(2, 14) = 0.53, p = .60.

Gaze time
To test whether participants spent longer sampling the noisier

pattern, we computed the total amount of time spent looking at the

pattern that was cued first, GT1. This time includes re-fixations on

trials in which observers switched more than once. This gaze time

measure is appropriate because the overall presentation time was

fixed at 1.5 s, so that the gaze time on the two patterns was not

independent: the longer the observer sampled pattern 1, the less

time was available for pattern 2 and vice versa. By only taking the

gaze time on the first pattern, we ensured that our outcome

variable was independent across the different conditions. We

converted gaze time into a proportion of the overall sampling time:
GT1

GT1zGT2
. Note that the available sampling time was less than the

presentation time due to (i) the latency of the initial saccade to the

first pattern, and (ii) the movement time associated with switches

from one pattern to another. The former introduced only a

minimal delay of 14 ms (average of mean latency across

observers), because the interval between cue onset and start of

the test period was held constant. As a result, observers frequently

anticipated the offset of the cue (start of the test period) and, on

average, fixated the first pattern around the time of cue offset. The

average saccade duration was ,50 ms, which is a lower bound on

the switch cost (pre- and post-saccadic suppression would prolong

this period). For each observer, the proportion of time spent on the

first pattern was averaged across trials in a given experimental

condition.

Figure 5a shows the sampling allocation for all trials, regardless

of the accuracy of the perceptual decision (average of the subject

means). Clearly the coherence of the first pattern had a substantial

effect on the time it was viewed, with a low coherence pattern

being viewed considerably longer than a high coherence pattern,

F(1,7) = 38.1, p,.001. This effect would be expected if observers

simply sampled the first pattern until (s)he felt sufficiently certain

about the direction of that pattern, and then spent the remaining

time in the trial sampling the second pattern. A more critical and

interesting aspect of sampling behaviour is whether the amount of

time spent on the first pattern depends on the coherence of the

second pattern. The data in Figure 5a do indeed show a modulation

of gaze time by the noise level of the second pattern. When the

second pattern coherence was high, more time was spent on the

first pattern, F(1,7) = 9.35, p = .02, as predicted by the model. It

is worth noting that the effect of first pattern coherence was

larger than that of second pattern coherence, a form of hyper-

sensitivity to the first source of information encountered. As a

consequence of this hyper-sensitivity, one model prediction is

obviously incorrect: when the two patterns have the same

coherence, the amount of time allocated to the patterns should

be equal (and half the available time). However, observers

viewed the low coherence first pattern longer than a high

coherence first pattern, even when they had a perfectly reliable

cue telling them that the second pattern had the same coherence

(i.e. in the known condition).

When prior knowledge about the noise levels of the two

information sources is available, observers have the opportunity to

adjust the time spent sampling the first pattern depending on the

quality of the second pattern already on the first fixation. When no

prior information is available, the quality of the second pattern is

only known once the observer has started sampling it. As such, we

might expect a stronger effect of the second pattern coherence

when prior knowledge is available. Indeed, there was a significant

interaction between the level of knowledge (known vs unknown)

and the second coherence, F(1,7) = 21.67, p = .002. Evidently,

observers used prior information to adjust their sampling

allocation (see also Figure 5c and text below)

In the remaining panels of Figure 5, we demonstrate the pattern

of sampling allocation contingent upon the accuracy of the

perceptual decision (5b) and the number of switches between the

two sources of information (5c). In Figure 5b we pooled the data

across the different noise levels of the first pattern, but split the

data depending on the accuracy of the perceptual decision. The

most salient aspect of this plot is that on error trials, gaze was fixed

longer on the first pattern compared to correct trials. It is possible

that observers were more likely to make an error if they switched

too late from the first source and did not leave sufficient time for

the analysis of the second pattern. Alternatively, it may be that,

due to the stochastic nature of the stimulus, on some trials the first

pattern happened to be more difficult to encode. The greater

difficulty would increase the probability of an error decision, with

subjects (appropriately) spending longer on the difficult first

pattern. We cannot distinguish between these alternative expla-

nations with the current data set.

In Figure 5c we again pooled across the different noise levels of

the first pattern, and included both correct and error trials, but

split the data on the basis of switching frequency. It is

immediately obvious that observers spent more time on the

first pattern when they switched more than once. Indeed, of the

multiple switch trials, the majority of trials (,75%) were those

in which observers switched back to the first pattern and stayed

there until the end of the trial. Another obvious effect is that

when observers switched only once, the coherence of the second

pattern could not influence the time spent on the first pattern in

the unknown condition (solid grey line). In the known condition,

however, the coherence of the second pattern influenced the

fixation duration on the first pattern on single switch trials (solid

black line), again underlining the use of prior information by our

observers. Finally, it is worth pointing out that when observers

switched only once, they allocated time nearly equally to both

sources of information, suggesting that observers had an

accurate representation of the overall amount of time available

and used this knowledge to adjust the timing of a single switch.

Indeed, for these trials, observers spent less than half the

available time on a high coherence first pattern; when the first

pattern had a low coherence, observers spent more than half the

available time on that source (data not shown).

Table 1. Discrimination accuracy for the different
combinations of pattern noise and prior knowledge.

pattern 2 coherence

known unknown

low high low high

pattern 1 coherence Low 0.7 0.76 0.71 0.78

High 0.76 0.83 0.76 0.85

Values are proportion correct averaged over 8 observers. The within-subject
standard error of the mean was 0.01 in all eight conditions.
doi:10.1371/journal.pone.0078993.t001
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Sensory variability and gaze time
To test the second, quantitative prediction on the dependence of

gaze time on the pattern noise levels, we would need to know the

standard deviations of the evidence generated by the two sources

of information (the sx and sy in Equation 8 above). However, the

nature of the RDK stimulus is such that we cannot directly map

coherence onto estimates of the variability of the information

sources. All the observer can know about sx and sy is based on the

precision of his/her own direction estimates: a low coherence

patch will generally elicit less precise direction estimates compared

to a high coherence patch. A complicating factor is that the

precision of an observer’s direction estimate will depend not just

on the external noise in the stimulus, but also on the intrinsic noise

of the neural mechanisms that are involved in processing that

stimulus [24]. Nevertheless, we took the view that internal noise

could not have been so large as to completely swamp the influence

of the external noise on the observers’ direction estimates;

otherwise, discrimination performance would have been equal in

the conditions with two low or two high coherence patterns (see

Table 1). As such, it is informative to examine whether and to

what extent the allocation of gaze time could be predicted from the

directional (un)certainty.

To measure directional uncertainty, observers were shown a

single low or high noise pattern and were asked to indicate the

direction of coherent motion by rotating a dial with the mouse

cursor. The true motion direction was uniformly sampled around

the clock in integer intervals. For each direction judgement, we

calculated the difference between the actual and perceived

direction, with a positive sign given to clockwise deviations. Across

a number of repetitions at a given coherence, we calculated the

circular standard deviation (angular deviation in [25]). We

estimated the variability in this way for a number of different

viewing durations (see Methods; data not shown), but for the

purpose of the present analysis we selected a viewing duration of

750 ms as the one that came closest to average gaze time on

pattern 1. Figure 6a shows these standard deviation estimates for

each individual observer and for the two different levels of

coherence. As expected, uncertainty was much greater for the low

coherence pattern compared to the high coherence pattern for

every individual observer. These variability estimates served as

proxies for the generative sx and sy in the following analysis.

The model prediction given by Equation 8 is straightforward:

the ratio of sampling time allocated to the two patterns should

match the ratio of the standard deviation of the evidence provided

by the two patterns. Of particular interest are of course the trials in

which the quality of the two information sources differed. We

selected only these trials and computed the ratio of the gaze time

on the low coherence pattern (in low – high coherence trials) to the

gaze time on the high coherence pattern (in high – low coherence

trials). In this way, we ensured that the gaze time estimates that

make up the ratio were independent. Figure 6b plots the low/high

coherence gaze time ratio against the low/high coherence ratio of

the perceptual direction judgements, separately for the two levels

of prior knowledge.

Several features are noteworthy. First, all the data lie below the

identity line (thin grey line), indicating that gaze time was much

less differentiated than the sensory noise would dictate. The

existence of internal noise does not explain this departure from the

model prediction: internal noise – more specifically stimulus-

independent internal noise – would push the ratio of the sensory

variability closer to one (effectively adding a constant to the

squared numerator and denominator on the right side of Equation

8). In other words, for a noiseless observer limited only by the

external noise in the stimulus, the data points would lie even

further to the right. Second, the gaze time ratio was consistently

lower in the unknown condition compared to the known condition

(in 7/8 observers). This finding underlines that prior knowledge

allowed for a stronger dependence of the sampling strategy on the

quality of the information sources, as already shown above

(Figure 5). Third, while the strong identity prediction of the model

did not hold, there clearly was a strong relation between the

precision of the direction estimates and gaze time. The thick black

line corresponds to the regression line derived from all the data

(averaged across known and unknown conditions). The slope is

Figure 5. Sampling allocation as measured by the gaze time on the first pattern. Gaze time on the first pattern includes all re-fixations and
is expressed as a proportion of the overall gaze time on both patterns. In other words, this variable corresponds to the proportion of available
sampling time (excluding the initial saccade latency and the duration of any subsequent movements) spent on the pattern that was cued first. Data
are averaged over eight observers and the error bars display within-subject standard error [23]. (a) Gaze time contingent on the coherence of the first
and second patterns. (b) Gaze time contingent on the accuracy of the perceptual decision. (c) Gaze time contingent on the number of switches.
doi:10.1371/journal.pone.0078993.g005
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significantly greater than 0 (p = .04) and explains over half the

variance, R2 = .55.

Figure 6c shows the relation between sensory variability and

gaze time contingent upon the number of switches made by the

observer (pooled across prior knowledge). The thick black line is

the same regression function from panel b, based on all the data

taken together. The regression line is closer to the single switch

trial data for the simple reason that these represent the majority of

the trials. However, it is notable that the multiple switch trial data

points consistently lie below the single switch observations (for all 8

observers). That is, gaze time was less sensitive to the quality of the

information when observers switched more than once. One

possible explanation is that additional switches may be triggered if

on some trials observers fail to adapt their very first fixation to the

quality of the information. On such trials, any difference in the

gaze times on low and high coherence first patterns may only be

engendered during the third fixation (or any subsequent fixations

on the first pattern), for which much less time is available.

Inevitably then, the gaze time ratio will be closer to unity.

Switching Frequency
Finally, we turn to a description of observers’ switching

behaviour. Recall the strong model prediction that observers

should switch only once in the known condition. It may be

beneficial to switch more than once in the unknown condition,

when the second pattern had a high coherence. Figure 7 shows the

proportion of single switch trials. Clearly, observers did regularly

switch more than once, even when prior knowledge was available

about the quality of the two sources, which is inconsistent with the

prediction of the model. The negatively sloping lines indicate a

dependence of the switching frequency on the coherence of the

second pattern. That is, observers were more likely to switch more

than once when the coherence of the second pattern was high,

F(1,7) = 10.9, p = .01. This result is in line with the prediction of

the model. There was an interaction between prior knowledge and

second pattern coherence, F(1,7) = 7.93, p = .03. Figure 7 suggests

that this interaction is due to an increased propensity to make only

a single switch when prior knowledge was available and the second

pattern had a low coherence. It is tempting to speculate that when

prior knowledge was available, observers were better able to

optimise a single switch point. Setting an appropriate switch point

may be especially important when the quality of the second source

is relatively poor. Arguably, however, choosing the right switch

point is most important when both patterns have a low coherence.

There is no evidence that observers made fewest switches on these

particular trials.

Fixation-dependent drift diffusion model
In the Introduction, we noted the recent development of a

model to account for decision-making in a specific instance of the

more general decision problem we have considered in this article

[21]. Krajbich and colleagues studied choice between two

consumer products, which were inspected sequentially. The two

options were assumed to have equal noise and the decisions were

terminated by the observers themselves, rather than after a fixed

period of time. Given the obvious relation to the more general

problem considered here, we examined the relation between their

model and the ideal observer developed in this study.

We start by simplifying the decision variable described in

Equation 6. As explained before, in tasks with fixed time available

Figure 6. Sensory uncertainty estimates and their relation to gaze time. (a) Standard deviation of the angular errors (angular deviation
metric; see Methods for details) in the single pattern direction estimation task. Patterns were viewed for 750 ms (close to the average gaze time on
the first pattern in the main experiment). (b) Gaze time ratio of low and high coherence first patterns (from trials in which the coherence of the two
patterns differed) versus the ratio of the standard deviation of the single pattern direction estimates. Data are shown separately for known and
unknown conditions (N = 8 in both conditions). The thick black line shows linear regression on the data averaged across the two levels of prior
knowledge. The thin grey line shows the identity correspondence. (c) Same as panel b, but with the gaze time data pooled across prior knowledge
and split depending on the number of switches. The thick black line shows the same regression as in (b).
doi:10.1371/journal.pone.0078993.g006

Figure 7. The proportion of trials on which a single switch
between the RDKs occurred. Data are averaged over 8 observers.
The error bars display within-subject standard error.
doi:10.1371/journal.pone.0078993.g007
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to form a decision and a prior assumption that both hypotheses are

equally likely to be true, the optimal observer chooses an

alternative on the basis of the sign of the final log-likelihood ratio.

Therefore, Equation 6 can be simplified by ignoring the scaling

factor in front of the square bracket; as this scaling factor is positive

it does not change the sign of decision variable and the choices

made by the model. Furthermore, we divide the decision variable

by 1{q, which again does not change its sign. The resulting

decision variable is now:

DVT~
XqT

1
xi{

q

(1{q)

X(1{q)T

1
yi: ð9Þ

In Equation 9, the evidence sampled from Y is weighted by a

factor which depends on the relative time spent viewing the two

stimuli. Such relative weighting is not present in the standard

diffusion model that describes choice between two alternatives for

which evidence comes in simultaneously. The comparative nature

of the current problem results in the relative weights on the two

sources of evidence changing every time one particular source is

sampled. Such continuous adjustment of the weights may be

difficult to achieve computationally in a real biological system.

Therefore, we consider a simplified procedure for updating the

decision variable that does not involve changing the weights of

accumulated evidence over time. Under some specific circum-

stances, this procedure still results in exactly the same value of

decision variable at the end of the available time T and hence the

same choice. Suppose the decision-maker aims to spend a certain

fraction of time on each alternative. In practice this may be

difficult to achieve exactly, but it seems plausible that the observer

has learned how much time is available overall, and how much

time is typically needed to get a reasonable estimate of the stimulus

property under consideration (e.g. motion direction). We denote

the target fraction of samples ~qq. For example, observers might aim

to spend half the available time on each option, so that ~qq~0:5. To

update Equation 9, the observer now uses the target fraction ~qq
instead of the ‘‘true’’, evolving fraction q. As a result, the decision

variable is now updated as follows:

gDVDVtz1~gDVDVtzxt if X Observed

gDVDVtz1~gDVDVt{
~qq

(1{~qq)
yt if Y Observed:

ð10Þ

Note that the decision variables of Equations 9 and 10 are equal if

q~~qq. Thus if the actual allocation of samples matches the target

fraction, then at decision time T this simplified procedure results in

exactly the same decision variable as the ideal solution.

To illustrate the relationship between a decision variable with

variable weights (Equation 5) and one with fixed weights (Equation

10), we simulated runs of the two decision variables with identical

sequences of samples used for each (Figure 2). In the simulations of

the simplified decision variable, the weighting was based on a

target of sampling both alternatives equally (i.e. ~qq~0:5) and the

points marked by black circles on the figure indicate the times

when this assumption holds (q~~qq). At each of these points the

simplified decision variable is equal to the log-likelihood ratio

(marked by filled circles). At all other points the true sampling

allocation q differs from the assumed terminal value ~qq and the

simplified decision variable differs from the log-likelihood.

Interestingly, the deviation is such that for these periods the

decision variable drifts toward the fixated alternative.

If the observer using Equation 10 allocated samples to the two

alternatives differently to the target fraction, so that ~qq=q at the

end of sampling time, then the error rate increases (see Materials

S1, section 5). When ~qq~0:5, the decision maker will be biased

towards choosing the alternative sampled for longer. Such an

influence of gaze time was demonstrated in the ‘‘consumer choice’’

paradigm of Krajbich et al [21], and was the basis for the

development of their fixation-dependent drift diffusion model. In

fact, for the specific case illustrated here with ~qq~0:5, the

weighting factor in the bottom of Equation 6 equals 1. The

resulting decision process reduces to that proposed by Krajbich et

al. [21]. In our data there was no such bias for observers to choose

the pattern that had been sampled for longer. In the equal

coherence conditions, the chosen pattern was sampled for 51.3%

of the available time (averaged across observers). In the unequal

coherence conditions, the chosen pattern was sampled for 51.8%.

The small deviations from the equal sampling allocation amounted

to ,40 ms, but the proportional gaze times did not differ reliably

from 0.5 (one-sample t-tests, p..1).

Note that Equation 10 describes the temporal evolution of the

decision variable regardless of whether the observer manages to

match the target fraction ~qq. In our view, it is not unreasonable to

assume that, after some experience on the decision task, observers

have some idea of how long they should spend sampling each

source of information (in the absence of any information about the

upcoming stimulus). The adoption of a certain value for ~qq may be

seen as a heuristic that, while not optimal, typically results in a

decision variable that is reasonably close to optimal to enable

satisfactory performance. With prior knowledge about the quality

of the two information sources, it becomes – in principle – possible

to set a more appropriate value for ~qq. Indeed, we have shown that

on single switch trials, fixation duration on the first source is

adjusted to the quality of the second, un-seen source under such

conditions (Figure 5c). On any one trial, however, there will be

other determinants of gaze time that influence how close the actual

allocation of time matches the target allocation. Some of these

other influences are discussed below.

Discussion

In this paper we studied a challenging decision problem in

which information from two different sources is sampled in order

to come to some overall decision about the ‘‘state’’ of the visual

world (for a recent, related development in the context of visual

search, see [26]). In the majority of studies on the neuroscience of

(perceptual) decision-making, a binary decision is made on the

basis of a single source of information that simultaneously provides

evidence for both alternatives [9,10]. The problem introduced in

this article goes beyond this simple situation in that (i) there is

limited time to sample different sources of information or options;

(ii) sources can only be sampled one at a time; (iii) the quality of

different sources may vary; (iv) the quality of the sources may not

be known beforehand; and (v) switching between sources incurs a

temporal cost. While the specific instantiation of the decision

problem was perceptual in nature, these characteristic features of

the problem are shared with more complex situations such as

economic decisions (e.g., choosing a consumer product based on

sampling user reviews), and different forms of animal behaviour

[27] (e.g., foraging in patchy environments; mate choice).

Given the novelty of the problem under consideration, as a

starting point we identified the optimal solution or ‘‘ideal

observer’’ [28]. We then placed human observers in a similar

decision situation and compared their behaviour with that of the

optimal observer. Finally, we developed a simplified, non-optimal

observer that does not require continuous adjustment of the

weights applied to evidence from the two sources. We showed that
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this simplified model contains the fixation-dependent drift-

diffusion model [21] as a special case. This model has been

developed recently to account for choice behaviour in a similar

decision problem that involved sampling non-stochastic options in

serial, under the assumption that both options were of equal

quality. In the remainder of the Discussion, we focus on the

comparison between optimal and human observers. In particular,

departures from the normative solution should tell us something

about the constraints faced by a real biological system in the

solution to this type of decision problem.

The most trivial prediction of the model is that noisier sources of

information should be sampled for longer and human observers

did exactly that (Figure 5a). A more specific prediction is that the

ratio of gaze time on low and high coherence patterns maps onto

the ratio of the standard deviation of these sources of information.

We did not have direct access to the stimulus noise, but we

inferred the ratio of the sensory variability from observers’

uncertainty about the direction of individual motion patterns

(measured separately). While these data were not in line with the

predicted identity correspondence, there was a clear correlation

between gaze time and the precision of the direction estimates

(Figure 6b). Furthermore, the optimal observer predicts that a

second switch (back to the first pattern) will be more likely if the

second pattern is of good quality, so that not all the remaining time

is needed for its analysis. The downward slopes in Figure 7 are

consistent with this prediction.

An important question concerns how observers know the quality

of a pattern or their direction estimate. For the patterns

themselves, with only two levels of noise it is relatively easy to

rapidly classify a pattern as ‘low noise’ or ‘high noise’. Observers

may simply know that noisier patterns result in less certain

direction estimates, or they may have learned a more precise

mapping during the experiment itself (or, indeed, during the

preliminary threshold estimation phase of the study). In terms of

an online mechanism that estimates the uncertainty while viewing a

particular pattern, it may be possible to monitor the stability of an

internal direction estimate over time. For example, large

fluctuations from time t to time t+n would indicate large variability.

The simplest mechanism would involve a simple comparison

between two (successive) time points; more complex mechanisms

would involve computing the second-order statistics over a

number of direction estimates from a larger temporal window.

It is clear that human behaviour departed from the norm in

several ways. First, even when given prior information, observers

often made more than one switch, whereas the ideal observer

would set just a single switch point. At the very least, we might

have expected the number of switches to be lower when prior

knowledge was available, but no overall reduction in the number

of switches was observed (Figure 7). Second, as stated above, for

the optimal observer the ratio of sampling or gaze times matches

the ratio of variability of the information sources. In our data,

however, the modulation of gaze time was much less than what

would be expected from the precision of the direction estimates

(Figure 6b). Third, the model predicts that when the noise of the

two information sources is equal, gaze time should be equal

regardless of coherence when the noise levels are known

beforehand. That is, gaze time on the first pattern in a trial with

two low coherence patterns should be equal to the gaze time on

the first pattern in a trial with two high coherence patterns.

Indeed, the model makes a stronger prediction that time should be

allocated equally to the two patterns within a trial in both of these

conditions. Neither prediction was supported in our data: gaze

time was longer on the low coherence pattern compared to the

high coherence pattern in the equal coherence trials (Figure 5a). In

addition, overall gaze time on the first pattern was generally

greater than half the available time. The latter result is mostly due

to re-fixations: on trials with just a single switch, gaze time on both

patterns was much more equally distributed (Figure 5c).

These departures from the optimal observer are not surprising:

the optimal observer is only driven by the quality of the

information on the current trial and has perfect memory of all

the information sampled. With prior knowledge, the optimal

observer switches only once, at a time that maximises the amount

of information gained from the two patterns. Without prior

knowledge, the optimal observer makes allowances for the un-

known quality of the second pattern. When the second pattern

turns out to be relatively easy to process, a further switch back to

the first pattern may occur. It is clear that our human observers

are influenced by other factors that are not directly linked to the

quality of the current stimulus. We will discuss some of these

factors separately for switch frequency and fixation timing.

Switch frequency
What triggers multiple switches in a trial? In particular, why

would observers go back to a pattern they have already sampled?

In the absence of prior knowledge, we described how it may be

advantageous to switch back if it turns out that the first switch left

more time than necessary for the analysis of the second pattern.

However, our observers switched back almost equally often when

prior information was available. It is of course plausible that the

efficacy with which that information is used fluctuates from trial-

to-trial. Furthermore, even when prior information is used

appropriately, the stochastic nature of the stimulus may make

one of the patterns more difficult to identify than expected, in

which case switching back to that pattern is appropriate. It is also

possible that observers sometimes switch back as a checking

operation in order to verify a preliminary decision, provided

sufficient time is available. Moreover, noise or errors in the timing

of the first switch may necessitate a further switch back to further

process the pattern that was processed too briefly the first time

around.

Finally, it is possible that when the observer switches to the

second source, the representation of the first pattern direction

degrades, perhaps due to passive decay or interference by the

currently sampled stimulus [29,30]. Decay and interference result

in a less certain estimate of the signal direction of the previously

sampled pattern [31]. An observer may then switch back to a

previously sampled source in order to compensate for this loss of

information. The model assumes that each sample contributes

equally to the perceptual decision – in other words, that there is

perfect memory. This assumption is most likely not valid for

human observers. If decay or interference occurs, earlier samples

effectively contribute less and the need for further switches

becomes more pressing.

Fixation timing
The factors listed above may influence switching behaviour and

thereby gaze time. Of course, gaze time is also directly influenced

by how long observers choose to fixate a given pattern. In this

domain too, it is likely that human observers are influenced by

factors other than the quality of the two patterns. In particular, it is

plausible that observers in a task like this develop an overall sense

of the total trial duration and the typical amount of time needed to

identify the direction of the two patterns with sufficient accuracy.

Indeed, on trials with a single switch – especially in the known

condition – observers spent approximately half the available time

on each pattern (Figure 5c). We take this finding to suggest that

observers have a good representation of the overall trial duration
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and use this knowledge to ensure that approximately sufficient

time is available to process both patterns.

In drawing a link between the optimal observer and the fixation-

dependent drift diffusion model, we posited exactly such a

temporal representation (in the form of the target fraction of

samples allocated to a given source, ~qq). For example, observers

may learn that most of the time, they feel reasonably confident

about their decision when they switch somewhere near the mid-

point of the trial. This strategy may then form the basis of their

sampling behaviour, with the specific properties of the stimulus on

any given trial only modulating this ‘‘default setting’’. As a result,

any modulation of the sampling allocation by the quality of the

information sources would be much more subtle than predicted on

the basis of the stimulus qualities alone. Note that some models of

eye movement control in reading [32,33] and scene perception

[34] incorporate the idea of a rhythmic timing mechanism that

paces movements of the eyes at a rate that is typically sufficient to

allow for adequate information uptake during individual fixations

[35].

Is sampling behaviour adaptive?
Given these departures from the norm, it is reasonable to ask

whether, and in what sense, sampling behaviour was adaptive at

all. Human data did not show a strong relationship between gaze

allocation and decision accuracy on a trial-by-trial basis (data not

shown). The absence of such a link between sampling and

accuracy most likely stems from the carefully titrated difficulty of

the discrimination task. That is, we may have set the directional

offset at such a level that relatively small variations in sampling

time are unlikely to generate drastic modulations in perceptual

accuracy. In our view, adaptive sampling means that the time

allocated to the available information sources reflects the

uncertainty in the global task environment, since the quality of all

information sources is relevant to good task performance.

In this paper, we have reported a number of effects that

demonstrate that the quality of multiple sources of information,

beyond the currently fixated source, influences the sampling

strategy. Even in the unknown condition of the present study, we

see an effect of the noise of the second source on the sampling time

of the first source. This effect is necessarily mediated by multiple

switches. As a result of these switches, the quality of both sources of

information influences the sampling time of the first pattern. When

we provide the observer with prior knowledge about the quality of

both information sources, the quality of the global task environ-

ment exerts a more pronounced effect on gaze time, the number of

switches, and even the timing of a single switch. We suggest that

these strategic adjustments to the quality of information in the

global task environment are the hallmark of adaptive sampling.

Methods

Participants
Eight observers (5 females; age: 18–25) received money for

participation. All had normal vision or vision corrected by contact

lenses. Participants provided written consent before testing began,

and once more after testing had been completed and they were

debriefed. The experimental work was approved by the University

of Bristol Faculty of Science Human Research Ethics Committee

and complied with the Declaration of Helsinki.

Stimuli
Stimuli were presented on a 210 Viewsonic G225fB monitor

with 10246768 resolution at 85 Hz and were generated by

custom-written software running in Matlab (The MathWorksLtd.)

using PsychToolbox 3.0.8 [36]. The position of one eye (typically

the right) was recorded at 1000 Hz using an Eyelink 2000 video-

based eye-tracker (SR Research Ltd.).

One RDK consisted of 100 white or black dots (squares of side

length 3 pixels <79) which moved within a circular aperture of

radius 4 deg on a mid-grey background, giving a mean dot density

of 2 dots deg22. The dot patterns moved according to a ‘Brownian

Motion’ algorithm [37]: On each frame, a subset of dots were

chosen as signal dots and translated in the signal direction and the

remaining (noise) dots were given random directions from the

interval [0,360), but moved at the same speed. Each dot moved at

6 deg s21, being translated ,49 on each frame. RDK animations

were independently produced for each trial for each participant.

The two coherences (proportions of signal dots) used throughout

the experiment were 0.12 and 0.24. In the main experiment, a

‘‘standard’’ direction was chosen randomly from the interval

[0,360) and assigned this to either the top or bottom pattern. The

other pattern then moved in the standard direction 6 the

directional offset determined by the preliminary measurement of

the directional discrimination threshold.

Threshold estimation
Participants sat at a desk and viewed the computer screen,

constrained by chin and forehead rests, from a distance of 57 cm.

After the presentation of the fixation cross for 800 ms, two RDKs

of the same coherence were presented sequentially in the centre of

the screen for 600 ms each, separated by a 1 second inter-stimulus

interval. The participants’ task was to identify the target pattern:

the one whose signal direction was further clockwise through the

short angle (no trials involved the signal directions differing by

more than 80 deg). They signalled their decision with a keypad

after the second pattern had offset. Trials began automatically

after a delay of 750 ms following the response to the previous trial

being registered. Observers were given auditory feedback on their

performance (high tone – correct, low tone – error).

In order to obtain threshold directions for each level of

coherence, two staircases were implemented using the QUEST

algorithm [38,39]. QUEST sequentially updates a posterior

probability density function (pdf) of the threshold location based

on a psychometric function with specified slope (determined by a

pilot study using the method of constants), chance and lapse-rate

parameters. It then suggests the angle of the next trial at the

median of the posterior pdf. Finally, QUEST estimates the 75%

threshold at the mean of the posterior pdf. Staircases were run

concurrently, with trials from each staircase randomly intermixed.

QUEST’s suggestions for the next trial angle were always

implemented. The session began with between 30 and 60 practice

trials in which participants could familiarise themselves with the

paradigm. Each staircase consisted of 80 trials making a threshold

estimation block of 160 trials with two scheduled breaks.

The average of the two thresholds was used as the directional

offset between the two patterns in the main comparative direction

discrimination task. By setting the directional offset in this manner

we ensured that: (i) the overall difficulty of the main comparative

task was titrated appropriately for each individual observer; and (ii)

the variation in coherence did indeed correspond to a variation in

the quality of the internal, sensory evidence; that is, with a much

larger directional offset, the coherence of the patterns would have

mattered much less.

Single pattern direction estimation
Observers also performed a task in which they viewed single

patterns presented at fixation for a variable duration. Six durations

(75, 125, 250, 500, 750, 1000 ms) were crossed with the 2
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coherences (.12 and .24) to create 12 experimental conditions. A

13th condition consisted of 100% coherence for 1000 ms.

Observers viewed the RDK and then indicated their estimate of

its signal direction using an onscreen arrow positioned with a

mouse (see Figure 4b). For each trial, a mid-grey background was

used with the polarity of the dots (black or white) chosen

randomly. Each condition was repeated 55 times, for a total of

715 trials, performed over one hour with three breaks.

For each trial, we recorded the angular difference between the

true direction of motion and the estimated direction of motion.

Inspection of individual observers’ errors as a function of the true

direction revealed no consistent biases. The circular standard

deviation was computed using the ‘CircStat’ toolbox [25] for

Matlab (The Mathworks, Inc). The particular metric we opted for

was the angular deviation, which can range from 0 to
ffiffiffi
2
p

(inclusive) radians [0u–81u]. This particular metric generally gives

somewhat lower estimates of the variability than the regular

standard deviation that does not take the circularity of the data

into account. However, our specific inferences from the analysis

presented in Figure 6 do not depend on exactly which metric we

select.

Comparative decision task
A block of trials started with a calibration of the eye tracker,

using a nine-point grid. A subsequent validation was used to

ensure the consistency of the calibration (mean difference #.5

deg). Each trial began with a central fixation cross. Once this was

successfully fixated, the experimenter started the trial. Immediately

two stationary RDKs appeared, centred 5.8 deg above and below

the centre of the screen on the vertical axis. After 500 ms the

fixation cross was extinguished and replaced with an arrow

pointing either up or down (with equal probability). The arrow

was displayed for 500 ms, and its offset was the cue for observers

to fixate the cued pattern. Given the fixed duration of the cue, its

offset was frequently anticipated by observers; however, the fixated

pattern would only start moving after the 500 ms cue period was

over. In the ‘known’ condition the luminance (i.e. black or white)

of the RDK mapped onto the coherence (the mapping was

counterbalanced between participants). In this condition the

duration of the cross and arrow gave observers 1 second in which

to process the RDK polarities. In the ‘unknown’ condition, the

mapping was random; that is, each RDK was randomly drawn

with black or white dots.

Participants had to fixate at least 1.8 deg vertically above the

screen centre before the upper RDK moved and the same distance

below the centre for the lower pattern. This gaze contingency was

produced using real-time gaze position information from the eye-

tracker, taking into account the vertical component only.

Participants were free to actively sample the patterns over a

period of 1500 ms. At this point, the patterns disappeared and

participants signalled whether the top or bottom pattern moved in

a direction that was ‘‘more clockwise’’. They were instructed that

they must look at each pattern at least once in the course of a trial

(indeed, the task was impossible without sampling both patterns)

but other than that, they could switch between patterns in any way

they wanted.

After 10–20 practice trials to familiarise themselves with the

main comparative task, participants performed 24 blocks of 64

trials over 4 experimental sessions: 12 blocks in each of the

‘known’ and ‘unknown’ conditions. The ‘known’ and ‘unknown’

conditions were alternated between blocks within a session; the

order was counterbalanced across observers. A block consisted of

16 trials for each combination of the two coherence levels.

Participants were allowed breaks between blocks. The whole study

was performed in six one-hour sessions on different days, in the

following order: threshold estimation, comparative decision 1,

comparative decision 2, single pattern direction estimation,

comparative decision 3, comparative decision 4.

Supporting Information

Figure S1 Division of sampling time for varying com-
binations of high and low noise stimuli for instanta-
neous switching decision problems. In Panel (a) the

timelines show the division of sampling time between the sources

of stimuli for the four possible combinations of high and low noise

stimuli with the noise of both sources known a priori. In each

timeline we show the simplest single switch strategy, the timing of

the switch is indicated by the vertical line, with alternative X

observed from time 0 to the switching point and alternative Y

observed thereafter until the trial ends at time T. In Panel (b) the

timelines show the range of times in which the optimal first

switching point lies when the noise level of stimulus Y is unknown.

Unlike the known variance case, the exact location of the optimal

first switching point depends on not only the two possible noise

levels but also depends on the total sampling time available and

2d, the difference in the response to the stimuli.

(TIFF)

Figure S2 Plots comparing the argument of the DV
(blue lines) and LLR (red lines) error functions across
the interval of valid sampling strategies [0, 1] under a
number of parameterisations of the decision problem.
In each plot the optimal sampling strategy q~ sx

sxzsy
is marked on

both the argument and derivative plots. Plots have been generated

with mHigh~3:0, mLow~1:0, mHigh~2:0, mLow~1:0 and T~10.

From left to right the variances of the alternatives vary in each of

the plots with Figures 2(a) and 2(d) having sx~sHighand

sy~sLow, Figures 2(b) and 2(e) having sx~sy~sHigh, and in

Figures 2(c) and 2(f) sx~sLow and sy~sHigh. From top to bottom

the means of the alternatives vary with Figures 2(a), 2(b) and 2(c)

having mx~mHigh and my~mLow and Figures 2(d), 2(e) and 2(f)

having mx~mLow and my~mHigh. Comparing the DV and LLR

plots it can be seen that, as expected, the two values are coincident

at q~ sx

sxzsy
. Furthermore, from inspection of the DV argument

plot (blue line), it can be seen that as the plot is a straight line, the

derivative has a constant value across [0, 1].

(TIFF)

Material S1 Adaptive sampling of information in per-
ceptual decision-making.

(PDF)
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