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Data-based detection and quantification of causation in complex, nonlinear dynamical systems is of paramount importance to
science, engineering, and beyond. Inspired by the widely used methodology in recent years, the cross-map-based techniques,
we develop a general framework to advance towards a comprehensive understanding of dynamical causal mechanisms, which
is consistent with the natural interpretation of causality. In particular, instead of measuring the smoothness of the cross-map
as conventionally implemented, we define causation through measuring the scaling law for the continuity of the investigated
dynamical system directly. The uncovered scaling law enables accurate, reliable, and efficient detection of causation and
assessment of its strength in general complex dynamical systems, outperforming those existing representative methods. The
continuity scaling-based framework is rigorously established and demonstrated using datasets from model complex systems
and the real world.

1. Introduction

Identifying and ascertaining causal relations are a problem
of paramount importance to science and engineering with
broad applications [1–3]. For example, accurate detection
of causation is the key to identifying the origin of diseases
in precision medicine [4] and is important to fields such as
psychiatry [5]. Traditionally, associational concepts are often
misinterpreted as causation [6, 7], while causal analysis in
fact goes one step further beyond association in a sense that,
instead of using static conditions, causation is induced under
changing conditions [8]. The principle of Granger causality

formalizes a paradigmatic framework [9–11], quantifying
causality in terms of prediction improvements, but, because
of its linear, multivariate, and statistical regression nature,
the various derived methods require extensive data [12].
Entropy-based methods [13–20] face a similar difficulty.
Another issue with the Granger causality is the fundamental
requirement of separability of the underlying dynamical var-
iables, which usually cannot be met in the real world sys-
tems. To overcome these difficulties, the cross-map-based
techniques, paradigms tailored to dynamical systems, have
been developed and have gained widespread attention in
the past decade [21–36].
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The cross-map is originated from nonlinear time series
analysis [37–42]. A brief understanding of such a map is as
follows. Consider two subsystems: X and Y . In the recon-
structed phase space of X, if for any state vector at a time a
set of neighboring vectors can be found, the set of the
cross-mapped vectors, which are the partners with equal
time of X, could be available in Y . The cross-map underlying
the reconstructed spaces can be written as Yt =ΦðXtÞ
(where Xt and Yt are delay coordinates with sufficiently
large dimensions) for the case of Y unidirectionally causing
X while, mathematically, its inverse map does not exist
[34]. In practice, using the prior knowledge on the true cau-
sality in toy models or/and the assumption on the expanding
property of Φ (representing by its Jacobian’s singular value
larger than one in the topological causality framework
[24]), scientists developed many practically useful tech-
niques based on the cross-map for causality detection. For
instance, the “activity” method, originally designed to mea-
sure the continuity of the inverse of the cross-map, com-
pares the divergence of the cross-mapped vectors to the
state vector in X with the divergence of the independently-
selected neighboring vectors to the same state vector [22,
23]. The topological causality measures the divergence rate
of the cross-mapped vectors from the state vectors in Y
[24], and the convergent cross-mapping (CCM), increasing
the length of time series, compares the true state vector Y
with the average of the cross-mapped vectors, as the estima-
tion of Y [21, 25–36]. Then, the change of the divergence or
the accuracy of the estimation is statistically evaluated for
determining the causation from Y to X. Inversely, the causa-
tion from X to Y can be evaluated in an analogous manner.
The above evaluations [21, 24, 26–36] can be understood at a
conceptional and qualitative level and perform well in many
demonstrations.

In this work, striving for a comprehensive understanding
of causal mechanisms and inspired by the cross-map-based
techniques, we develop a mathematically rigorous frame-
work for detecting causality in nonlinear dynamical systems,
turning eyes towards investigating the original systems from
their cross-maps, which is also logically consistent with the
natural interpretation of causality as functional dependences
[2, 8]. The skills used in cross-map-based methods are
assimilated in our framework, while we directly study the
original dynamical systems or the reconstructed systems
instead of the cross-maps. The foundation of our framework
is the scaling law for the changing relation of ε with δ arising
from the continuity for the investigated system, henceforth
the term “continuity scaling”. In addition to providing a the-
ory, we demonstrate, using synthetic and real-world data,
that our continuity scaling framework is accurate, computa-
tionally efficient, widely applicable, showing advantages over
the existing methods.

2. Continuity Scaling Framework

To explain the mathematical idea behind the development of
our framework, we use the following class of discrete time
dynamical systems: xt+1 = fðxt , ytÞ and yt+1 = gðxt , ytÞ for t
∈ℕ, where the state variables fxtgt∈ℕ, fytgt∈ℕ evolve in

the compact manifolds M, N of dimension DM, DN under
sufficiently smooth map f, g, respectively. We adopt the
common recognition of causality in dynamical systems.

Definition 1. If the dependence of fðx, yÞ on y is nontrivial (i.
e., a directional coupling exists), a variation in y results in a
change in the value of fðx, yÞ for any given x, which, accord-
ing to the natural interpretation of causality [2, 43], admits
that y : fytgt∈ℕ has a direct causal effect on x : fxtgt∈ℕ,
denoted by y↪x, as shown in the upper panel of Figure 1(a).

We now interpret the causal relationship stipulated by
the continuity of a function. Let fxgð·Þ ≜ fðxg, ·Þ for a given

point xg ∈M. For any yP ∈N , we denote its image under
the given function by xI ≜ fxgðyPÞ. Applying the logic state-

ment of a continuous function to fxgð·Þ, we have that, for

any neighborhood OðxI, εÞ centered at xI and of radius ε >
0, there exists a neighborhood OðyP, δÞ centered at yP of
radius δ > 0, such that fxgðOðyP, δÞÞ ⊂ OðxI, εÞ. The neigh-

borhood and its radius are defined by

O p, hð Þ = s ∈ S distSj s, pð Þ < hf g, p ∈ S , h > 0, ð1Þ

where distSð·, · Þ represents an appropriate metric describ-
ing the distance between two given points in a specified
manifold S with S =M or N . The meaning of this mathe-
matical statement is that, if we have a neighborhood of the
resulting variable xI first, we can then find a neighborhood
for the causal variable yP to satisfy the above mapping and
inclusion relation. This operation of “first-ε-then-δ” pro-
vides a rigorous base for the principle that the information
about the resulting variable can be used to estimate the
information of the causal variable and therefore to ascertain
causation, as indicated by the long arrow in the middle
panels of Figure 1(a). Note that, the existence of the δ > 0
neighborhood is always guaranteed for a continuous map
fxg . In fact, due to the compactness of the manifold N , a

largest value of δ exists. However, if yP does not have an
explicit causal effect on the variable xI , i.e., fxg is independent
of yP, the existence of δ is still assured but it is independent
of the value of ε, as shown in the upper panel of Figure 1(b).
This means that merely determining the existence of a δ-
neighborhood is not enough for inferring causation - it is
necessary to vary ε systematically and to examine the scaling
relation between δ and ε. In the following we discuss a num-
ber of scenarios.

Case I. Dynamical variables fðxt , ytÞgt∈ℕ are fully measur-
able. For any given constant εx > 0, the set fxτ ∈Mjτ ∈ Itx
ðεxÞg can be used to approximate the neighborhood Oðxt+1,
εxÞ, where the time index set is

Itx εxð Þ ≜ τ ∈ℕ distMj xt+1, xτð Þ < εxf g: ð2Þ

The radius δty = δtyðεxÞ of the neighborhood Oðyt , δtyÞ
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satisfying fxg=xt ðOðyt , δtyÞÞ ⊂ Oðxt+1, εxÞ can be estimated as

δty εxð Þ ≜ # �Itx εxð Þ
h in o−1

〠
τ∈�Itx εxð Þ

distN yt , yτ−1ð Þ, ð3Þ

where #½·� is the cardinality of the given set and the index set
is �ItxðεxÞ ≜ fτ ∈ ItxðεxÞjdistMðxt , xτ−1Þ < εxg.

The strict mathematical steps for estimating δty are given
in Section II of Supplementary Information (SI). We empha-
size that here correspondence between xt+1 and yt is investi-
gated, differing from the cross-map-based methods, with
one-step time difference naturally arising. This consider-
ation yields a key condition [DD], which is only need when
considering the original iteration/flow and whose detailed
description and universality are demonstrated in SI. We
reveal a linear scaling law between hδtyit∈ℕ and ln εx , as
shown in the lower panels of Figure 1, whose slope sy↪x is
an indicator of the correspondent relation between ε and δ
and hence the causal relation y↪x. Here, h·it∈ℕ denotes
the average over time. In particular, a larger slope value
implies a stronger causation in the direction from y to x as
represented by the map functions fðxt , ytÞ (Figure 1(a)),
while a near zero slope indicates null causation in this direc-
tion (Figure 1(b)). Likewise, possible causation in the
reversed direction, x↪y, as represented by the function gð
xt , ytÞ, can be assessed analogously. And the unidirectional
case when fðx, yÞ = f0ðxÞ independent of y is uniformly con-
sidered in Case II. We summarize the consideration below

and an argument for the generic existence of the scaling
law is provided in Section II of SI.

Theorem 2. For dynamical variables fðxt , ytÞgt∈ℕ measured
directly from the dynamical systems, if the slope sy↪x defined
above is zero, no causation exists from y to x. Otherwise, a
directional coupling can be confirmed from y to x and the
slope sy↪x increases monotonically with the coupling strength.

Case II. The dynamical variables fðxt , ytÞgt∈ℕ are not
directly accessible but measurable time series futgt∈ℕ and
fvtgt∈ℕ are available, where ut = uðxtÞ and vt = vðytÞ with
u: M⟶ℝru and v: N ⟶ℝrv being smooth observational
functions. To assess causation from y to x, we assume one-
dimensional observational time series (for simplicity): ru =
rv = 1, and use the classical delay-coordinate embedding
method [37–42, 44] to reconstruct the phase space: ut =
ðut , ut+τu ,⋯,ut+ðdu−1ÞτuÞ

T and vt = ðvt , vt+τv ,⋯,vt+ðdv−1ÞτvÞ
T ,

where τu,v is the delay time and du,v > 2ðDM +DN Þ is the
embedding dimension that can be determined using some
standard criteria [45]. As illustrated in Figure 2, the dynam-
ical evolution of the reconstructed states fðut , vtÞgt∈ℕ is gov-
erned by

ut+1 =~f ut , vtð Þ, vt+1 = ~g ut , vtð Þ: ð4Þ

The map functions can be calculated as ~fðu, vÞ ≜ Eu ∘
½ f, g�ðΠ1 ∘ E−1

u ðuÞ,Π2 ∘ E−1
v ðvÞÞ, ~gðu, vÞ ≜ Ev ∘ ½ f, g�ðΠ1 ∘ E−1

u
ðuÞ,Π2 ∘ E−1

v ðvÞÞ, where the embedding (diffeomorphism)

(b)(a)

Figure 1: Illustration of causal relation between two sets of dynamical variables. (a) Existence of causation from y in N to x in M, where
each correspondence from xt+1 to yt is one-to-one, represented by the line or the arrow, respectively, in the upper and the middle panels. In
this case, a change in ln εx results in a direct change in δy (the lower panel) with εx and δy denoting the neighborhood size of the resulting
variable x and of the causal variable y, respectively. (b) Absence of causation from y to x, where every point on each trajectory, fytg, in N

could be the correspondent point from xt+1 in M (the upper panel) and thus every point in N belongs to the largest δ-neighborhood of yt
(the middle panel). In this case, δy does not depend on εx (the lower panel). Also refer to the supplemental animation for illustration.
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Es: M ×N ⟶ ~L s ⊂ℝds with ~L s ≜ EsðM ×N Þ, s = u or v, is
given by

Eu x, yð Þ ≜ uð xð Þ, u ∘Π1 ∘ f, g½ �τu x, yð Þ, u ∘Π1 ∘

  f, g½ �2τu x, yð Þ,⋯, u ∘Π1 ∘ f, g½ � du−1ð Þτu x, yð ÞÞ,
Ev x, yð Þ ≜ vð yð Þ, v ∘Π2 ∘ f, g½ �τv x, yð Þ, v ∘Π2 ∘

  f, g½ �2τv x, yð Þ,⋯, v ∘Π2 ∘ f, g½ � dv−1ð Þτv x, yð ÞÞ,

ð5Þ

with the inverse function E−1
s defined on ~L s, ½ f, g�k represent-

ing the kth iteration of the map and the projection mappings
as Π1ðx, yÞ = x and Π2ðx, yÞ = y. Case II has now been
reduced to Case I, and our continuity scaling framework
can be used to ascertain the causation from v to u based on
the measured time series with the indices ItuðεuÞ, δtvðεuÞ and
sv↪u (equations (2) and (3)).

Does the causation from v to u imply causation from y to
x? The answer is affirmative, which can be argued, as follows.
If the original map function f is independent of y: fðx, yÞ =
f0ðxÞ, there is no causation from y to x. In this case, the
embedding Euðx, yÞ becomes independent of y, degenerating
into the form of Euðx, yÞ = Eu0ðxÞ, a diffeomorphism fromM

to ~Lu0 = Eu0ðMÞ only. As a result, equation (4) becomes
ut+1 =~f0ðutÞ and vt+1 = ~gðut , vtÞ, where ~f0ðuÞ = Eu0 ∘ f ∘ E−1

u0ð
uÞ and the resulting mapping ~f0 is independent of v. The
independence can be validated by computing the slope
sv↪u associated with the scaling relation between hδtvit∈ℕ
and ln εu, where a zero slope indicates null causation from
v to u and hence null causation from y to x. Conversely, a
finite slope signifies causation between the variables. Thus,
any type of causal relation (unidirectional or bi-directional)
detected between the reconstructed state variables
fðut , vtÞgt∈ℕ implies the same type of causal relation
between the internal but inaccessible variables x and y of
the original system.

Case III. The structure of the internal variables is completely
unknown. Given the observational functions ~u, ~v: M ×N

⟶ℝ with ~ut = ~uðxt , ytÞ and ~vt = ~vðxt , ytÞ, we first recon-
struct the state space: ~ut = ð~ut , ~ut+τ,⋯,~ut+ðd−1ÞτÞT and ~vt =
ð~vt , ~vt+τ,⋯,~vt+ðd−1ÞτÞT . To detect and quantify causation
from ~v to ~u (or vice versa), we carry out a continuity scaling
analysis with the modified indices It~uðε~uÞ, δt~vðε~uÞ and s~v↪~u.
Differing from Case II, here, due to the lack of knowledge
about the correspondence structure between the internal
and observational variables, a causal relation for the latter
does not definitely imply the same for the former.

Case IV. Continuous-time dynamical systems possessing a
sufficiently smooth flow fSt ; t ∈ℝg on a compact manifold
H : dStðu0Þ/dt = χðStðu0ÞÞ, where χ is the vector field. Let
fût=ωn+νgn∈ℤ and fv̂t=ωn+νgn∈ℤ be two respective time series
from the smooth observational functions û, v̂:H ⟶ℝ with
ût = ûðStÞ and v̂t = v̂ðStÞ, where 1/ω is the sampling rate and
ν is the time shift. Defining Ξ ≜ Sω: H ⟶H and Ŝn ≜
Sωn+νðu0Þ, we obtain a discrete-time system as Ŝn+1 = ΞðŜnÞ
with the observational functions as ûn = ûðŜnÞ and v̂n = v̂ð
ŜnÞ, reducing the case to Case III and rendering applicable
our continuity scaling analysis to unveil and quantify the
causal relation between fût=ωn+νgn∈ℤ and fv̂t=ωn+νgn∈ℤ. If
the domains of û and v̂ have their own restrictions on some
particular subspaces, e.g., û: Hu ⟶ℝ and v̂: H v ⟶ℝ
with H =Hu ⊕H v, the case is further reduced to Case II,
so the detected causal relation between the observational
variables imply causation between the internal variables
belonging to their respective subspaces.

3. Demonstrations: From Complex Dynamical
Models to Real-World Networks

To demonstrate the efficacy of our continuity scaling frame-
work and its superior performance, we have carried out
extensive numerical tests with a large number of synthetic
and empirical datasets, including those from gene regulatory
networks as well as those of air pollution and hospital
admission. The practical steps of the continuity scaling
framework together with the significance test procedures
are described in Methods. We present three representative
examples here, while leaving others of significance to SI.

The first example is an ecological model of two unidirec-
tionally interacting species: x1,t+1 = x1,tð3:8 − 3:8x1,t − μ12
x2,tÞ and x2,t+1 = x2,tð3:7 − 3:7x2,t − μ21x1,tÞ. With time series
fðx1,t , x2,tÞgt∈ℕ obtained from different values of the cou-
pling parameters, our continuity scaling framework yields
correct results of different degree of unidirectional causa-
tion, as shown in Figures 3(a) and 3(b). In all cases, there
exists a reasonable range of ln εx2 (neither too small nor
too large) from which the slope sx1↪x2

of the linear scaling
can be extracted. The statistical significance of the estimated
slope values and consequently the strength of causation can
be assessed with the standard p-value test [46] (Methods and
SI). An ecological model with bidirectional coupling has also
been tested (see Section III of SI). Figures 3(c) and 3(d)
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Figure 2: Illustration of system dynamics before and after
embedding for Case II. In the left panel, the arrows describe how
the original systems ðf, gÞ is equivalent to the system ð~f, ~gÞ after
embedding. In the right panel, causation between the internal
variables x and y can be ascertained by detecting the causation
between the variables u and v reconstructed from measured time
series.
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show the results from ecological networks of five mutually
interacting species on a ring and on a tree structure, respec-
tively, where the color-coded slope values reflect accurately
the interaction patterns in both cases.

The second example is the coupled Lorenz system: _xi =
σiðyi − xiÞ + μijxj, _yi = xiðρi − ziÞ − yi, _zi = xiyi − βizi with i,
j = 1, 2 and i=j. We use time series fy1,t , y2,tgt=nω for
detecting different configurations of causation (see Section
III of SI). Figure 4 presents the overall result, where the
color-coded estimated values of the slope from the continu-
ity scaling are shown for different combinations of the sam-
pling rate 1/ω and coupling strength. Even with relatively
low sampling rate, our continuity scaling framework can
successfully detect and quantify the strength of causation.
Note that the accuracy does not vary monotonously with
the sampling rate, indicating the potential of our framework

to ascertain and quantify causation even with rare data.
Moreover, the proposed index can accurately reflect the true
causal strength (denoting by the coupling parameter), which
is also evidenced by numerical tests in Sections III and IV of
SI. Robustness tests against different noise perturbations are
provided in Section III of SI demonstrating the practical
usefulness of our framework. Additionally, analogous to
the first example, we present in SI several examples on cau-
sation detection in the coupled Lorenz system with nonlin-
ear couplings, and the Rössler-Lorenz system, etc., which
further demonstrates the generic efficacy of our framework.

In addition, we present study on several real-world data-
set, which brings new insights to the evolutionary mecha-
nism of underlying systems. We study gene expression
data from DREAM4 in silico Network Challenge [47, 48],
whose intrinsic gene regulatory networks (GRNs) are known
for verification (Figure 5(a) and Figure S17 of SI). Applying
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Figure 3: Ascertaining and characterizing causation in various ecological systems of interacting species. (a, b) Unidirectional causation of
two coupled species. In (a), the values of the slope sx1↪x2

associated with the causal relation x1↪x2 are approximately 0.0004, 0.1167, 0.1203,
and 0.1238 for four different values of the coupling parameter μ21. (b) Near zero slope values sx2↪x1

for x2↪x1, indicating its
nonexistence. (c, d) Inferred causal network of five species whose interacting structure is, respectively, that of a ring: xi↪xi+1ðmod 5Þ
(i = 1,⋯, 5) and of a tree: xj↪xj+1,j+3 (j = 1, 2), where the estimated slope values are color-coded. Results of a statistical analysis of the
accuracy and reliability of the determined causal interactions are presented in SI Section III. Time series of length 5000 are used in all
these simulations. The embedding parameters are τs = 1 and ds = 3 with s = x1,⋯, x5.
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our framework to these data, we ascertain the causations
between each pair of genes by using the continuity scaling
framework. The corresponding ROC curves for five different
networks as well as their AUROC values are shown in
Figure 5(b), which indicates a high detection accuracy in
dealing with real-world data.

We then test the causal relationship in a marine ecosys-
tem consisting of Pacific sardine landings, northern anchovy
landings and sea surface temperature (SST). We reveal new
findings to support the competing relationship hypothesis
stated in [49] which cannot be detected by CCM [25]. As
pointed out in Figure 6, while common influence from SST
to both species is verified with both methods, our continuity
scaling additionally illuminates notable influence from
anchovy to sardine with its reverse direction being less sig-
nificant. While competing relationship plays an important

role in ecosystems, continuity scaling can reveal more essen-
tial interaction mechanism. See Section III.E of SI for more
details.

Moreover, we study the transmission mechanism of the
recent COVID-19 pandemic. Particularly, we analyze the
daily new cases of COVID-19 of representative countries
for two stages: day 1 (January 22 nd 2020) to day 100 (April
30 th 2020) and day 101 (May 1 st 2020) to day 391 (February
15 th 2021). Our continuity scaling is pairwisely applied to
reconstruct the transmission causal network. As shown in
Figure 7, China shows a significant effect on a few countries
at the first stage and this effect disappears at the second
stage. However, other countries show a different situation
with China, whose external effect lasts as shown in Section
III.E and Figure S18 of SI. Our results accord with that
China holds stringent epidemic control strategies with
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Figure 4: Detecting causation in the unidirectionally coupled Lorenz system. The results are for different values of μ21 (μ12 = 0) and
sampling rate 1/ω. (a, b) Color-coded values of the slopes sy1↪y2

and sy2↪y1
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embedding parameters are ds = 7, τs ≈ 0:05 with ωjτs (s = y1 or y2). See Section III and Table S9 of SI for all the other parameters
including the time series lengths used in the simulations.
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sporadic domestic infections, as evidenced by official daily
briefings, demonstrating the potential of continuity scaling
in detecting causal networks for ongoing complex systems.
Additionally, We emphasize that day 100 is a suitable
critical day to distinguish the early severe stage and the late
well-under-control stage of the pandemic (see Figure S18(a)
of SI), while slight change of the critical day will not nullify
our result. As shown in Figure S18(b) of SI, when the
critical day varies from day 94 to day 106, no significant
change (less than 5%) of the detected causal links occurs at
both stages, and the number of countries under influence of
China at Stage 2 remains zero. See more details in Section
III.E of SI.

Additional real world examples including air pollutants
and hospital admission record from Hong Kong are also
shown in Section III of SI.

4. Discussion

To summarize, we have developed a novel framework for
data-based detection and quantification of causation in com-
plex dynamical systems. On the basis of the widely used
cross-map-based techniques, our framework enjoys a rigor-
ous foundation, focusing on the continuity scaling law of
the concerned system directly instead of only investigating
the continuity of its cross-map. Therefore, our framework

is consistent with the standard interpretation of causality,
and works even in the typical cases where several existing
typical methods do not perform that well or even they fail
(see the comparison results in Section IV of SI). In addition,
the mathematical reasoning leading to the core of our frame-
work, the continuity scaling, helps resolve the long-standing
issue associated with techniques directly using cross-map
that information about the resulting variables is required to
project the dynamical behavior of the causal variables,
whereas several works in the literature [50], which directly
studied the continuity or the smoothness of the cross-map,
likely yielded confused detected results on causal directions.

Computational complexity. The computational com-
plexity of the algorithm is OðT2NεÞ, which is relatively
smaller than the CCM method, whose computational com-
plexity is OðT2 log TÞ.

Limitations and future works. Nevertheless, there are
still some spaces for improving the presently proposed
framework. First, currently, only bivariate detection algo-
rithm is designed, so generalization to multivariate network
inference requires further considerations, as analogous to
those works presented in Refs. [51–53]. Second, the causal
time delay has not been taken into account in the current
framework, so it also could be further investigated, similar
to the work reported in Ref. [33]. Also, more advanced algo-
rithms, such as the one developed in Ref. [54], could be

Sardine

SST

Anchovy Sardine

SST

Anchovy

Continuity scaling CCM

Figure 6: The comparison of causal network structure detected by continuity scaling and CCM among sea surface temperature, sardine, and
anchovy.

Figure 7: The causal effect from China to other countries of the COVID-19 pandemic detected by continuity scaling between stages 1 and 2.
Here, stage 1 is from January 22 nd 2020 to April 30 th 2020, and stage 2 is from May 1 st 2020 to February 15 th 2021. For those detected
causal links between all countries, refer to Section III.E and Figure S18 of SI. These maps are for illustration only.
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integrated into this framework for detecting those temporal
causal structures. Definitely, we will settle these questions
in our future work.

Detecting causality in complex dynamical systems has
broad applications not only in science and engineering, but
also in many aspects of the modern society, demanding
accurate, efficient, and rigorously justified and hence trust-
worthy methodologies. Our present work provides a vehicle
along this feat and indeed resolves the puzzles arising in the
use of those influential methods.

5. Methods

Continuity scaling framework: a detailed description of algo-
rithms. Let futgt=1,2,⋯,T and fvtgt=1,2,⋯,T be two experimen-
tally measured time series of internal variables fðxt , ytÞgt∈ℕ.
Typically, if the dynamical variables fðxt , ytÞgt∈ℕ are accessi-
ble, fðut , vtÞg reduce to one-dimensional coordinate of the
internal system. The key computational steps of our conti-
nuity scaling framework are described, as follows.

We reconstruct the phase space using the classical
method of delay coordinate embedding [37] with the opti-
mal embedding dimension dz and time lag τz determined
by the methods in Refs. [55, 56] (i.e., the false nearest neigh-
bors and the delayed mutual information, respectively):

Lz ≜ z tð Þ = zt , zt+τz ,⋯, zt+ dz−1ð Þτz
� �

t = 1,⋯, T0j
n o

, ð6Þ

where z = u, v, T0 = min fT − ðdz − 1Þτzjz = u, vg, and
Euclidean distance is used for both Lu,v .

We present the steps for causation detection using the
case of v↪u as an example.

We calculate the respective diameters for Lu,v as

Dz ≜max distLz
z tð Þ, z τð Þð Þ 1 ≤ t, τ ≤ T0j� �

, ð7Þ

where z = u, v, and z = u, v. We set up a group of numbers,
fεu,jgj=1,⋯,Nε

, as εu,1 = e ·Du, εu,Nε
=Du, with the other ele-

ments satisfying

ln εu,j − ln εu,1
j − 1 =

ln εu,Nε
− ln εu,1

Nε − 1 , ð8Þ

for j = 2,⋯,Nε − 1. Then, in light of (2) with (3), we have

δtv εuð Þ = # Itu εuð Þ� �−1 〠
τ∈Itu εuð Þ

distLv
v tð Þ, v τ − 1ð Þð Þ, ð9Þ

with

Itu εuð Þ = τ ∈ℕ distLu

�� u t + 1ð Þ, u τð Þð Þ < εu, t + 1 − τj j > E
� �

ð10Þ

where numerically, εu alters its value successively from the
set fεu,jgj=1,⋯,Nε

, and the threshold E is a positive number

chosen to avoid the situation where the nearest neighboring
points are induced by the consecutive time order only.

As defined, hδtvðεuÞit∈ℕ is the average of δtvðεuÞ over all
possible time t. We use a finite number of pairs
fðhδtvðεu,jÞit∈ℕT0

, ln εu,jÞg
j=1,⋯,Nε

to approximate the scaling

relation between hδtvðεuÞit∈ℕ and ln εu, where ℕT0
= f1,

2,⋯,T0g. Theoretically, a larger value of Nε and a smaller
value of e will result in a more accurate approximation of
the scaling relation. In practice, the accuracy is determined
by the length of the observational time series, the sampling
duration, and different types of noise perturbations. In
numerical simulations, we set e = 0:001 and Nε = 33. In addi-
tion, a too large or a too small value of εu can induce insuffi-
cient data to restore the neighborhood and/or the entire
manifold. We thus set δtvðεu,jÞ = δtvðεu,j+1Þ as a practical tech-
nique as the number of points is limited practically in a small
neighborhood. As a result, near zero slope values would
appear on both sides of the scaling curve hδtvðεuÞit∈ℕ-ln εu,
as demonstrated in Figure 3 and in SI. In such a case, to esti-
mate the slope of the scaling relation, we take the following
approach.

Define a group of numbers by

Sj ≜
δtv εu,j+1
	 
� �

t∈ℕT0
− δtv εu,j

	 
� �
t∈ℕT0

ln εu,j+1 − ln εu,j
, ð11Þ

where j = 1,⋯,Nε − 1, sort them in a descending order,
from which we determine the ½Nε + 1/2� largest numbers,
collect their subscripts - j’s together as an index set Ĵ , and
set H ≜ fj, j + 1jj ∈ Ĵg. Applying the least squares method
to the linear regression model:

δtv εuð Þ� �
t∈ℕ = S · ln εu + b ð12Þ

with the dataset fðhδtvðεu,jÞit∈ℕT0
, ln εu,jÞg

j∈H
, we get the

optimal values ðŜ, b̂Þ for the parameters ðS, bÞ in (12) and
finally obtain the slope of the scaling relation as sv↪u ≜ Ŝ.

For the other causal direction from u to v, these steps are
equally applicable to estimating the slope su↪v .

To assess the statistical significance of the numerically
determined causation, we devise the following surrogate test
using the case of v causing u as an illustrative example.

Divide the time series fuðtÞgt∈ℕT0
into NG consecutive

segments of equal length (except for the last segment - the
shortest segment). Randomly shuffle these segments and
then regroup them into a surrogate sequence fûðtÞgt∈ℕT0

.

Applying such a random permutation method to fvðtÞgt∈ℕT0
generates another surrogate sequence fv̂ðtÞgt∈ℕT0

. Carrying

out the slope computation yields sv̂↪û. The procedure can
be repeated for a sufficient number of times, say Q, which
consequently yields a group of estimated slopes, denoted as
fsqv̂↪ûgq=0,1⋯,Q, where s0v̂↪û is set as sv↪u obtained from the

original time series. For all the estimated slopes, we calculate
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their mean bμv↪u and the standard deviation bσv↪u. The p
-value for sv↪u is calculated as

psv↪u
≜ 1 − normcdf sv↪u − bμv↪ubσv↪u


 �
, ð13Þ

where normcdf ½·� is the cumulative Gaussian distribution
function. The principle of statistical hypothesis testing guar-
antees the existence of causation from v to u if psv↪u

< 0:05.
In simulations, we set the number of segments to be

NG = 25 and the number of times for random permutations
to be Q ≥ 20.

Additional Points

Code Availability. The source codes for our CS framework are
available at https://github.com/bianzhiyu/ContinuityScaling.
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