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Abstract: A direct C� C coupling process that merges Michael
acceptors and Eschenmoser’s salt is presented. Although
reminiscent of the Morita–Baylis–Hillman reaction, this
process requires no Lewis base catalyst. The underlying
mechanism was unveiled by a combination of kinetic, isotopic
labelling experiments as well as computational investigations,
which showcased the critical role of HFIP as a superior
mediator for proton-transfer events as well as the decisive role
of the halide counterion.

Introduction

Since its disclosure in 1968, the Morita–Baylis–Hillman
(MBH)[1] reaction has become a privileged tool for C� C
bond formation, attracting considerable interest and with
numerous variations generated.[2] In this reaction, originally
between an aldehyde and a Michael acceptor, a catalytic
amount of a Lewis base, such as an amine[3] or a phosphine,
is usually deployed (Scheme 1a).[1,4–6] Less studied is the aza-
variation, which employs imine derivatives as electrophiles
and is, therefore, of particular interest for the synthesis of β-
amino carbonyl compounds.[7] Notably, whereas the vast
majority of aza-MBH reactions require the use of imines
bearing electron-withdrawing substituents, the use of N-
dialkyl iminium ions is mostly anecdotal, even though the
resulting products could be of significant interest to polymer
science.[8] In 1992, Koldovski et al. reported the direct aza-
MBH reaction of dimethyl(methylidene)ammonium
chloride (also known as Böhme’s salt) with methyl vinyl
ketone.[9] This reaction was later found to be
irreproducible.[10]

The recent report of an MBH-type direct addition of
tropylium halides to electron-poor alkenes sparked our
interest in the influence of halide ions in these reactions.[11]

Herein, we report an apparently catalyst-free, HFIP (hexa-
fluoro-2-propanol) mediated α-aminomethylation of Mi-
chael acceptors.

Results and Discussion

Employing homobenzylacrylate 1a as a model substrate, we
envisaged its direct combination with different iminium ions.
In agreement with the observations of Porzelle and
Williams,[9,10] Böhme’s salt was completely unreactive with
1a even at elevated temperatures (Table 1, entry 1). Fur-
thermore, no product 2a formed with the bromide deriva-
tive (instead of the chloride; entry 2). Strikingly, the use of
the iodide, commonly known as Eschenmoser’s salt, resulted
in the formation of 2a, with the combination of the iodide
counterion and hexafluoro-2-propanol (HFIP) as a solvent
proving crucial and affording the product in 82% yield
(entries 3–7, see the Supporting Information for full
optimisation).[12] The important role of iodide as the
counterion was confirmed by the addition of tetrabutylam-
monium iodide (TBAI) to the reaction with Böhme’s salt,
which afforded 2a in 64% yield (entry 8).
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Scheme 1. a) The Morita–Baylis–Hillman reaction. b) A catalyst-free
variant relying on Eschenmoser’s salt and HFIP.
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To elucidate the role of the halide counterion, the
interaction of the solvent with Eschenmoser’s salt and with
Böhme’s salt was studied at the DFT level of theory, which
indicated a strong effect of HFIP (PBE0-D3BJ/def2-TZVP//
PBE0-D3BJ/def2-SVP (Scheme 2a); see the Supporting
Information for computational details). We modelled molec-
ular clusters containing one solute molecule (CH3)2NCH2X
and three molecules of solvent HFIP for X=Cl (Böhme’s
salt) and X= I (Eschenmoser’s salt). Scheme 2b presents the
most favourable conformations of these clusters for two
possible states: X is either covalently bonded (left) or
dissociated (right). The calculations indicate a facilitated
dissociation of the halide in the presence of HFIP—these
results are further supported by related reports,[13,14] in which
HFIP has been shown to enable rapid halide abstraction to
form sulfonium salts.

Although a chain of hydrogen bonds is established
between successive HFIP molecules, an additional hydrogen
bond can be formed either with the lone pair of electrons on
the nitrogen atom of the neutral, covalently bound molecule
or with the halide X� . In the first case, this intermolecular
interaction induces sp3 hybridisation of the nitrogen atom.
In contrast, in the second case, it increases the halogen–
carbon distance (by 0.528 Å and 0.840 Å in Böhme’s and
Eschenmoser’s salts, respectively), leading to a dissociated
species. Computed Gibbs free energies suggest that the
dissociation of Eschenmoser’s salt in HFIP is thermody-
namically favourable (ΔG= � 7.2 kcalmol� 1). At the same
time, this process seems to be highly reversible in the case of
Böhme’s salt (ΔG= � 0.5 kcalmol� 1), thus suggesting that
the higher dissociation probability for Eschenmoser’s salt is
responsible for the experimentally observed halide effect.

Further studies of the salt’s behavior were conducted in
HFIP-d2 using 1H– and 13C–NMR spectroscopy, which
confirmed the prevalence of the dissociated iminium iodide
over the α-iodoamine. Additionally, this analysis revealed
the salt to be in equilibrium with its solvolysis product
dimethylamine.

The high yield and simple C� C bond-forming reaction
encouraged us to investigate the scope of Michael acceptors
in the process (Scheme 3). A 25-fold scale up for 2a resulted
in a comparable yield of 68%. We found that bulkier esters
were not detrimental to the reaction (2b). Functional groups
such as a boronate (2c), a nitrile (2d), and a phthalimide
(2 f) were well-tolerated under the reaction conditions.
Despite the acidity of HFIP, acetal protecting groups also
remained intact (2e). In contrast to most acrylates, a quinine
derivative was found to react at room temperature (2g),
likely benefiting from additional catalysis enabled by the
quinuclidine moiety. A menthol-derived substrate could also
be easily coupled to product 2h. Additionally, the scope of
the reaction could be expanded to other types of electron-
deficient olefins such as a thioester (2 i) and a sulfone (2 j).
Vinyl ketones also appear to be suitable substrates. The
reaction occurred with both electron-rich (3a,b,e, f) and
electron-deficient (3c,d) aryl ketones. A thiophene substitu-
ent (3g) showed the applicability of the reaction to hetero-
cycles. Products bearing aliphatic enolisable ketones such as
cyclohexyl (3h) and methyl groups (3 i) could also be
synthesised this way without the interference of the addi-
tional reactive α-position. Substitution at the β-position was

Table 1: Solvent and counterion optimisation using 1a as a model
substrate.

Entry X Solvent Yield [%][a]

1 Cl MeCN 0
2 Br MeCN 0
3 I MeCN 31
4 I iPrOH 15
5 Cl HFIP 0
6 Br HFIP 5
7 I HFIP 82
8 Cl HFIP[b] 64

[a] Yield determined by 1H- NMR spectroscopy using mesitylene as an
internal standard. [b] 4 equiv. tetrabutylammonium iodide were added.
HFIP=hexafluoro-2-propanol.

Scheme 2. a) Solvolysis of Eschenmoser’s and Böhme’s salt in HFIP at
the optimised concentration and the computed relative Gibbs free
energies for the dissociation event. b) DFT-optimized structures of the
(CH3)2NCH2X*3HFIP molecular clusters found through the use of
extensive metadynamic sampling.
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also tolerated, as showcased by products 3 j/3k, derived
from cyclopentenone/cyclohexenone, respectively. A direct
methenylation/aza-MBH domino sequence[15] could be ac-
complished with ketone 3 l, the vinyl ketone fragment of
which had been previously shown to be prone to
polymerisation.[16]

The limitations of this approach were met when some
other electron-deficient alkenes were employed, such as a
lactone or dimethyl acrylamide (see the Supporting Infor-
mation for more examples). Bulkier iminium iodide salts
based on diethylamine, pyrrolidine, and piperidine showed a
different reactivity and led mainly to 1,4-addition. We
ascribe this behaviour to a higher preponderance of
solvolysis, which increasingly liberates the parent amine and
reduces the amount of available iminium ions (Scheme 2a,
see the Supporting Information for details).

Kinetic measurements provided insight into the nature
of this seemingly uncatalysed process (Scheme 4). Notably,
acrylates and vinyl ketones showed significant differences in
terms of their kinetic profile. The coupling of acrylate 1a
displayed a quasi-linear formation of product 2a and much
slower formation of the Michael by-product B (Scheme 4a).
In contrast, the reaction of vinyl ketone 1 ’a proved more
intricate. For this substrate, fast formation of a similar
Michael adduct B and an additional intermediate (C) was
observed, with both compounds disappearing over time and
converging into the observed product 2a. The reaction
between 1 ’a and Böhme’s salt was also studied. Although
the formation of 3a appears to be much slower (estimated t
1=2
of 100 min) than using Eschenmoser’s salt (estimated t1=2 of

50 min), the rate of formation of C is in the same range. This
suggests that the counterion plays a significant role in the
consumption of this intermediate.

Scheme 3. Reaction scope of the MBH-type coupling of Michael acceptors and Eschenmoser’s salt. The reaction was carried out on a 0.2 mmol
scale; a) 79% NMR yield, b) 84% NMR yield, c) reaction conducted at room temperature, d) 75% NMR yield, e) 4 equiv Eschenmoser’s salt were
used.
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The kinetic picture depicted is not entirely conclusive as
to whether acrylates follow the same mechanistic pathway as
vinyl ketones, as no intermediate C could be observed for
acrylates. Therefore, we subjected an isotopically labelled

acrylate 1a-d2 to the reaction conditions (Scheme 4b). The
symmetrical intermediate Cd2 would lead to a statistical
mixture of products 2a-d2, deuterated in the β- or β’-
position, while any other distribution would indicate a
mechanism without the involvement of C. The obtained
ratio of 1 :1 strongly suggests that intermediate C is also a
viable transient species for acrylates, although shorter-lived
(to the point of evading direct observation) than in the
ketone case. This conclusion was further reinforced by the
conversion of by-product 4 into aza-MBH-product 2a under
the standard reaction conditions (Scheme 4c). Additionally,
when p-nitrobenzaldiminium iodide was employed, 5 was
obtained as the sole aminomethylated product (Scheme 4d).
In this case, elimination of dimethylamine from an inter-
mediate such as C is the most reasonable pathway to
account for the formation of 5.

A mechanistic picture for this intriguing, HFIP-mediated
process thus begins to emerge (Scheme 5a). In the first
stage, the amine generated in situ through solvolysis of the
Eschenmoser salt undergoes nucleophilic addition to the
Michael acceptor (A) to form a zwitterionic intermediate
B’.[17] This intermediate B’ can react with the dissociated
iminium cation to afford the intermediate C’. Deprotonation
of the ammonium moiety forms the diamine C. This species
can be converted into the final product by a proton transfer
from the α-carbon atom to one of the amine groups (species
C’’),[18] followed by a β-elimination, which releases dimeth-
ylamine and forms the product D. The experimentally
observed Michael adduct B can be reversibly formed from
the zwitterionic intermediate B’ by proton transfer. The
experimental results (cf. Table 1) strongly suggest a unique
ability of HFIP to mediate the proton-transfers steps B’!B
and C!C’’. To better understand this feature, we performed
DFT calculations for these steps (see the Supporting
Information for computational details).[19,20]

Scheme 4. Experimental observations regarding the mechanism.

Scheme 5. Proposed mechanism (a) and computed relative Gibbs free energy profiles (b)–(e) in the proton-transfer steps for HFIP (green) and
iPrOH (brown). The relative free energies are presented in kcalmol� 1 for each proton-transfer step individually having the respective reactant
complex as a reference (0.0 kcalmol� 1).
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The computed relative Gibbs free energy profiles are
shown in Scheme 5b–e. These are displayed for proton-
transfer events involving the protic solvent (CX3)2CHOH,
where X=F (green line) or X=H (brown line), and adducts
B/C leading to the zwitterionic intermediates B’/C’’. Two
different substituents, R=OC2H4Ph (ester) and R=

C6H4OMe (ketone), are compared (Scheme 5b,c).
All the obtained transition states describe two concerted

proton transfers, in which the protic solvent acts as both a
Brønsted acid and base, protonating an amine moiety while
simultaneously removing a proton from the α-carbon atom
to the carbonyl group. In this manner, the solvent-mediated
proton transfer allows formation of a six-membered tran-
sition state, in accordance to Aggarwal’s proposed mecha-
nism for the MBH reaction.[18,20a]

For step B’!B, the calculated barriers for the solvent-
mediated proton transfer are lower with HFIP than with
iPrOH for both considered substituents: ΔΔG�(ester)=

4.9 kcalmol� 1 and ΔΔG�(ketone)=6.2 kcalmol� 1, thus show-
casing the “hidden” role of HFIP as a catalyst for proton
transfer. Although this step is endergonic for both substitu-
ents, stabilisation of the zwitterionic intermediate B’ is
critically dependent on the specific substituent R, with
ΔGHFIP(ketone, 2B!2B’)=9.3 kcalmol� 1 and ΔGHFIP (ester,
1B!1B’)=17.9 kcalmol� 1.

The same trend can be observed for the conversion of
the diamine C into the final intermediate C’’ (Scheme 5d,e).
As shown, the ketone moiety stabilises the zwitterionic
intermediate C’’ analogously to the stabilisation of the
intermediate B’: ΔGHFIP(ketone, 2C!2C’’)=4.9 kcalmol� 1

and ΔGHFIP(ester, 1C!1C’’)=14.7 kcalmol� 1. The activa-
tion barriers for this concerted proton transfer are again
lower with HFIP than iPrOH, by 6.2 kcalmol� 1 and
8.0 kcalmol� 1 for the ester and ketone, respectively. These
results accentuate the importance of HFIP in the reaction
conditions as an acidic protic solvent that can easily form
and stabilise the key zwitterionic intermediates of the
studied transformation.

The synthesised aza-MBH-adducts are useful com-
pounds for further transformation (Scheme 6). A [2,3]-
Stevens-type rearrangement could be triggered by nitrogen
alkylation with α-bromo carbonyl compounds,[21] thereby
capitalising on the in situ formation of a nitrogen ylide E
(see the Supporting Information for further details). The
reaction was compatible with aryl and alkyl ketones as well
as esters, readily affording the α-amino derivatives 6a–e
(Scheme 6a).

The direct domino methenylation/aza-MBH sequence
mentioned above enabled direct capture of these products
using Meldrum’s acid, thereby affording zwitterionic amino
acids that could be isolated in high yields without the need
for chromatographic purification (Scheme 6b). Three of
these salts (7a, 7c, and 7b) yielded crystals suitable for X-
ray crystallography, whereby the solid-state arrangements
were dominated by intermolecular hydrogen bonding.

Conclusion

In conclusion, we have uncovered a C� C coupling process
that merges Michael acceptors and Eschenmoser’s salt and
is reminiscent of the aza-Morita–Baylis–Hillman reaction.[22]

In contrast to common (aza-)MBH reaction conditions, no
additional reagents, in particular the common Lewis base
catalysts associated with the process, need to be added. The
intrinsic features of the underlying mechanism could be
unveiled by a combination of kinetics and isotope labelling
experiments as well as computational investigations, which
showcased the critical role of HFIP as a superior mediator

Scheme 6. Derivatisation of aza-MBH products. a) A [2,3]-Stevens-type
alkylation/rearrangement cascade. b) A direct synthesis of zwitterionic
amino acids. 7a_CCDC_2079100; 7c_CCDC_2079101; 7d_
CCDC 2079099.
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for proton-transfer events as well as the decisive role of the
halide counterion.
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