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Abstract 

Background:  Accurate measurement of hemorrhage volume is critical for both the prediction of prognosis and the 
selection of appropriate clinical treatment after spontaneous intracerebral hemorrhage (ICH). This study aimed to 
evaluate the performance and accuracy of a deep learning-based automated segmentation algorithm in segmenting 
spontaneous intracerebral hemorrhage (ICH) volume either with or without intraventricular hemorrhage (IVH) exten-
sion. We compared this automated pipeline with two manual segmentation techniques.

Methods:  We retrospectively reviewed 105 patients with acute spontaneous ICH. Depending on the presence of IVH 
extension, patients were divided into two groups: ICH without (n = 56) and with IVH (n = 49). ICH volume of the two 
groups were segmented and measured using a deep learning-based artificial intelligence (AI) diagnostic system and 
computed tomography-based planimetry (CTP), and the ABC/2 score were used to measure hemorrhage volume in 
the ICH without IVH group. Correlations and agreement analyses were used to analyze the differences in volume and 
length of processing time among the three segmentation approaches.

Results:  In the ICH without IVH group, the ICH volumes measured using AI and the ABC/2 score were comparable 
to CTP segmentation. Strong correlations were observed among the three segmentation methods (r = 0.994, 0.976, 
0.974; P < 0.001; concordance correlation coefficient [CCC] = 0.993, 0.968, 0.967). But the absolute error of the ICH 
volume measured by the ABC/2 score was greater than that of the algorithm (P < 0.05). In the ICH with IVH group, 
there is no significant differences were found between algorithm and CTP(P = 0.614). The correlation and agreement 
between CTP and AI were strong (r = 0.996, P < 0.001; CCC = 0.996). The AI segmentation took a significantly shorter 
amount of time than CTP (P < 0.001), but was slightly longer than ABC/2 score technique (P = 0.002).

Conclusions:  The deep learning-based AI diagnostic system accurately quantified volumes of acute spontaneous 
ICH with high fidelity and greater efficiency compared to the CTP measurement and more accurately than the ABC/2 
scores. We believe this is a promising tool to help physicians achieve precise ICH quantification in practice.
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Background
Spontaneous intracerebral hemorrhage (ICH) is a severe 
medical concern and one of the leading causes of mor-
bidity and mortality worldwide [1, 2]. The annual over-
all incidence rate is approximately 24.6 cases per 100,000 
people, and the median case fatality was approximately 
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40.4% during the first month of illness [3]. Moreover, 
hemorrhage volume is a powerful predictor of the 30-day 
prognosis following diagnosis [4]. Hematoma expansion 
and the presence of intraventricular hemorrhage (IVH) 
extension are closely correlated to poor outcomes in 
patients with ICH [5–7]. Recent clinical trials investigat-
ing new ICH treatments have included hematoma vol-
ume as one of the eligibility criteria to determine which 
patients are best suited for intervention [8, 9]. Accord-
ingly, hematoma volume is not only one of the indicators 
of the patient’s prognostic score but also an important 
marker of clinical treatment options. Therefore, quick 
and accurate measurements of ICH volume have become 
clinically essential. Computed tomography (CT)-based 
planimetry (CTP) and ABC/2 score are the two primary 
manual methods used for the measurement of ICH vol-
ume in clinical practice and research [2, 9, 10]; however, 
CTP is time consuming and the accuracy of the ABC/2 
score decreases with large, irregular, or lobar hematoma 
[11–13].

To improve the efficiency of quantitative ICH, research 
has presented various methods based on machine learn-
ing for the automatic segmentation of ICH. Machine 
learning is a subset of artificial intelligence (AI) that 
is widely used in many fields [14]. Deep learning is a 
recently developed machine learning technology that 
simulates the human brain with multiple layers of artifi-
cial neural networks [14, 15]. Traditional computer vision 
techniques are based on handcrafted features; however, 
deep learning models are learned and extracted automat-
ically [16]. Accordingly, its network can learn by analyz-
ing the training data and make predictions as new data 
are entered, requiring little manual engineering [15, 17]. 
Some deep learning-based AI diagnosis systems have 
been developed to detect and segment cerebral hemor-
rhage,[18, 19] but the accuracy of these algorithms and 
their practical clinical value require further external veri-
fication. IVH has been associated with mortality rates as 
high as 50–75% [20, 21] and increasing the accuracy of 
the definitions of IVH volume could improve its ability to 
predict outcomes.[22, 23] However, the presence of IVH 
may blur the boundaries between intraparenchymal and 
intraventricular blood, and consequently, it’s challenging 
to accurately differentiate IVH from the adjacent paren-
chymal hematoma, even for experienced human raters 
[18, 24, 25]. Researchers have tried different techniques 
to find a more efficient way to define hematoma expan-
sion including IVH expansion. By detecting the ICH vol-
ume of patients without and with IVH using CTP, David 
et al. [25] demonstrated that the minimal detectable dif-
ference for total ICH hemorrhage volume measurement 
was greater in the presence of IVH. To our knowledge, 
however, there are few studies that have examined the 

difference in the accuracy of deep learning-based diag-
nosis systems in segmenting ICH volume, either with 
or without IVH extension. In the present study, patients 
with acute spontaneous ICH were divided into two 
groups based on the presence of IVH extension: ICH 
without and with IVH groups. By measuring the total 
hemorrhage volume, we aimed to evaluate the perfor-
mance of a deep learning-based automated segmented 
algorithm and compared it with two manual segmenta-
tion techniques: CTP and ABC/2 score.

Methods
Patient selection and grouping
We retrospectively collected patient data from those who 
were initially diagnosed with ICH in the General Hospi-
tal of Ningxia Medical University, China, between July 
2017 and December 2018. Patients with trauma, vascu-
lar abnormalities, brain tumors, hemorrhagic transfor-
mation after cerebral infarction, or any other secondary 
causes of ICH were excluded. A total of 105 patients with 
acute spontaneous ICH (within 72 h of manifestation of 
clinical symptoms) were included in the current study. 
They were divided into two groups: ICH without IVH (56 
patients) and ICH with IVH (49 patients).

Quantification of ICH
Hemorrhage volume measurements of the two groups 
were conducted using deep learning-based auto-
mated segmentation algorithm and CTP segmenta-
tion techniques, and the ABC/2 scores were used to 
measure hemorrhage volume in the ICH without IVH 
group. Additional file 1: Fig. S1 shows the segmentation 
examples of hematoma using different segmentation 
techniques.

Deep learning‑based automated segmentation algorithm
The InferRead CT Stroke (InferVision, Beijing, China) is 
a standardized and fully automated computer-aided diag-
nostic (CAD) system of stroke diseases and was used as 
the AI diagnostic system. Specifically, the segmentation 
of hemorrhage lesions is one of the main functions of this 
AI system. Using 3000 head CT scans from multi-centers 
as well as multi-scanners and implementing deep convo-
lutional neural networks, refined from Dense-Net and 
U-Net architecture, the hemorrhage segmentation model 
was developed. In an internal test containing a dataset of 
71 cases of ICH, the model achieved an accuracy of 0.99, 
a Dice similarity coefficient of 0.89, and an F1 score of 
0.89.

Manual segmentation techniques
Hematoma volume was first measured with CTP by 
two independent raters (Drs. Z Chen and T Wang, 
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neuroradiologists specialized in stroke and did not 
participate in the training phase of the deep learning 
algorithm) blinded to the results of the algorithm seg-
mentation. They used the Extended Brilliance Worksta-
tion (Philips, Amsterdam, The Netherlands) to segment 
the hematoma area (including intraparenchymal hemor-
rhage and IVH volume, excluding subarachnoid hemor-
rhage) slice-by-slice for hematoma area calculation. The 
volume of hematoma was calculated as follows: V = Σ 
hematoma area × slice thickness, with measurements in 
milliliters. The average of hematoma volume measured 
by the two raters was finally used as the ground-truth 
volume.

The hematoma volume of the ICH without IVH group 
was also independently measured using the ABC/2 score 
by the two raters. In this formula, A is the maximum 
length on the slice with the largest clot area, B is the max-
imum width perpendicular to A on the same slice, and 
the number of slices containing the hematoma were then 
multiplied by the slice thickness to yield C. The hema-
toma volume was then calculated and converted into mil-
liliters. The mean of the bleeding volume, measured by 
the two raters, was used for the final statistical analysis.

Finally, the time to complete each volumetric analysis 
time was recorded separately to compare the measure-
ment speed.

Statistical analysis
Baseline demographics between the two groups of 
patients were compared using Pearson’s or Fisher’s exact 
tests for categorical data, and the t or Mann–Whitney 
U tests for continuous data, as appropriate. ICH vol-
ume and calculation time were analyzed using standard 
descriptive statistics. Agreement between the two radi-
ologists and different measurement approaches were 
assessed using intraclass correlation coefficient (ICC) 
and concordance correlation coefficient (CCC), respec-
tively. Pairwise correlations among ICH volumes meas-
ured from each of the three segmentation methods 
were assessed using the Pearson correlation coefficient. 
Meanwhile, limits of agreement (LOA) were calculated 
and Bland–Altman plots were drawn to assess agree-
ment between different measurement methods [26]. The 
Friedman test or Wilcoxon signed-rank test was used to 
analyze the differences in volume and calculation time 
among the three hematoma segmentation methods. P 
values of < 0.05 were considered significant. All statisti-
cal analyses were performed using Stata (version 15.0; 
StataCorp, College Station, TX, USA), MedCalc (version 
15.6.1; MedCalc Software, Ostend, Belgium) and PRISM 
software (version 8.0.1; GraphPad Software Inc., San 
Diego, CA, USA).

Results
Demographic data
We included 56 patients in the ICH without IVH and 49 
patients in the ICH with IVH groups. The two groups did 
not show significant differences in age, gender, or hema-
toma location (P > 0.05). More detailed information is 
shown in Table 1.

ICH quantification
In the ICH without IVH group, ICC between the two 
independent raters indicated excellent interrater agree-
ment for manually measured data (CTP: ICC = 0.979, 
95% confidence interval [CI]: 0.965 to 0.988; ABC/2 
score: ICC = 0.988, 95% CI: 0.979 to 0.993). In the ICH 
with IVH group, agreement between the two raters was 
also strong (CTP; ICC = 0.983, 95% CI: 0.971 to 0.991; 

Table 1  Comparison of the demographics and volumetry 
between two groups of patients

ICH indicates intracerebral hemorrhage; and IVH, intraventricular hemorrhage; 
CTP indicates CT-based planimetry; IQR, interquartile range

*Mann–Whitney test
† Pearson Chi-square tests
‡ Fisher exact test

ICH without 
IVH group 
(n = 56)

ICH with 
IVH group 
(n = 49)

P value

Age, years (mean ± SD) 56.6 ± 14.7 56.4 ± 14.7 0.299*

Male patients (n, %) 36 (64%) 28 (57%) 0.454†

Deep location (n, %) 39 (70%) 39 (80%) 0.245†

Lobar location (n, %) 10 (18%) 8 (16%) 0.836†

Infratentorial location 
(n, %)

7 (12%) 2 (4%) 0.170‡

Oral anticoagulants(n,%) 1 (2%) 1 (2%) –

Deep learning-based automated algorithm segmentation

Mean volume, ml (± SD) 20.60 ± 19.17 51.74 ± 39.57  < 0.001*

Media volume, ml 16.43 40.32

Range (min, max) 0.33, 96.20 3.53, 170.0

IQR, ml 6.89, 28.49 25.80, 72.90

Measure time, min (± SD) 1.02 ± 0.19 0.95 ± 0.09 0.021*

CTP (ground-truth)

Mean volume, ml (± SD) 20.69 ± 18.76 51.63 ± 39.84  < 0.001*

Media volume, ml 15.69 40.99

Range (min, max) 0.73, 91.07 3.33, 172.79

IQR, ml 6.30, 29.93 24.36, 68.66

Measure time, min (± SD) 6.98 ± 5.11 15.22 ± 7.04  < 0.001*

ABC/2 score

Mean volume, ml (± SD) 22.22 ± 20.89 – –

Media volume, ml 15.97 –

Range (min, max) 0.54,89.52 –

IQR, ml 6.84,32.31 –

Measure time, min (± SD) 0.84 ± 0.20 – –
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see Additional file 1: Table S1). Therefore, the CTP seg-
mented ICH volume was regarded as the ground-truth 
volume for further analysis.

Results from the ICH quantification for the two groups 
are shown in Table 1. In the ICH without IVH group, the 
differences in the measured ICH volume between CTP 
and the algorithm or ABC/2 score were not significant 
(P = 0.218 and P = 0.658, respectively, Table 2 and Addi-
tional file 1: Fig. S2). In the ICH with IVH group, the dif-
ference in the measured ICH volume between CTP and 
algorithm was not significant (P = 0.941; Table  2 and 
Additional file 1: Fig. S2).

Correlation and agreement analysis
Figure 1a, b demonstrate the segmented ICH volumes by 
different raters and segmentation methods in each group. 
In the ICH without IVH group, strong correlations 

were observed among the three segmentation methods 
(r = 0.994, 0.976, 0.974, P < 0.001; Fig. 1c–e). In the ICH 
with IVH group, strong correlations were also found 
between the CTP and algorithm (r = 0.996, P < 0.001; 
Fig. 1f ).

In the ICH without IVH group, strong agreement, 
among the three different segmentation methods, 
was illustrated with CCC and Bland–Altman analy-
ses (Fig.  2a–c and Table  2). The mean deviation val-
ues were − 0.10 for the algorithm versus CTP, 1.53 
for ABC/2 score versus CTP, and − 1.63 for algorithm 
versus ABC/2 score. The 95% LOA values were − 
4.38 to 4.18, 10.96 to − 7.90, and − 11.22 to 7.96 mL, 
respectively. The difference curve showed that the 
absolute error of the ICH volume measured by the 
ABC/2 score was greater than that of the algorithm 
(P < 0.05, Fig. 3).

Table 2  Agreement comparisons among different segmentation methods for spontaneous ICH volume in two groups

ICH indicates intracerebral hemorrhage; IVH, intraventricular hemorrhage; CTP, CT− based planimetry; LOA, limits of agreement; IQR, interquartile range; CCC, 
concordance correlation coefficient; and CI, confidence limit

*Friedman test, followed by pairwise comparisons
† Wilcoxon signed−rank test

Agreement Statistics ICH without IVH group ICH with IVH group

Algorithm versus CTP ABC/2 score versus CTP Algorithm versus 
ABC/2 score

Algorithm versus CTP

Difference, mL

Range (min, max) − 7.00,7.670 − 8.77,21.35 − 22.04, 7.59 − 14.02,10.80

Mean − 0.10 1.53 − 1.63 − 0.11

Median − 0.30 − 0.33 − 0.60 − 0.03

IQR − 0.77,0.47 − 0.50,2.25 − 2.51,0.54 − 0.94,1.43

95% LOA (low, high) − 4.38,4.18 − 7.90,10.96 − 11.22,7.96 − 7.05,6.82

CCC [95% CI] 0.993
[0.989 to 0.996]

0.968
[0.948 to 0.980]

0.967
[0.946 to 0.980]

0.996
[0.993 to 0.998]

P 0.218* 0.658* 0.007* 0.941†

Table 3  Pairwise comparisons of differences in volumetric analysis times among segmentation methods in two groups

ICH indicates intracerebral hemorrhage; IVH, intraventricular hemorrhage; CTP, CT− based planimetry; IQR, interquartile range

*Friedman test, followed by pairwise comparison
†  Wilcoxon signed− rank test

Statistics ICH without IVH group ICH with IVH group

Algorithm versus CTP ABC/2 score versus CTP Algorithm versus 
ABC/2 score

Algorithm versus CTP

Difference, min

Range (min, max) − 25.12,− 0.07 − 25.17,− 0.37 − 1.08,− 0.37 − 31.05,− 1.12

Mean − 5.96 − 6.15 0.18 15.22

Median − 4.51 − 4.66 − 0.16 − 13.97

IQR − 7.88,− 2.17 − 8.03,− 2.47 − 0.28,− 0.03 − 18.97.− 8.64

P  < 0.001*  < 0.001* 0.002*  < 0.001†
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In the ICH with IVH group, agreement between 
the algorithm and CTP was strongly demonstrated 
by the mean deviation of 0.11  mL, 95% LOA of − 6.82 
to 7.05 mL (Fig.  2d), and CCC of 0.996 (0.993 to 0.998; 
Table 2).

Volumetric analysis time
The volumetric analysis times of the different segmenta-
tion methods for the two groups are shown in Table  1. 
The volumetric analysis time of the algorithm was sig-
nificantly shorter than the CTP segmentation method in 
both the groups (median differences were − 4.51 [− 7.88 
to − 2.17] min/scan for the ICH without IVH group and 
− 13.97 [− 18.97 to − 8.64] min/scan for the ICH with 
IVH group; P < 0.001; Table  3). Further, the volumetric 
analysis time of the algorithm was slightly longer than 
the ABC/2 score method (median difference = − 0.16 [− 
0.28 to − 0.03] s/scan; P = 0.002, Table 3).

Discussion
In the present study, we evaluated the efficacy of a deep 
learning-based AI diagnostic system in measuring the 
total volume of acute spontaneous ICH by comparing 
this method with two other manual volume segmenta-
tion techniques. Our agreement analysis of ICH volume 
showed that AI was comparable to CTP segmentation 
in patients either with or without the presence of IVH 
extension. Further, the agreement analysis showed that 
the ABC/2 score was comparable to the CTP in patients 
without IVH extension, but its absolute measurement 
error was greater than the algorithm segmentation. 
Moreover, the average time of the AI system model, 
which was slightly longer than the ABC/2 score, took less 
than one tenth of the time of CTP.

The deep learning algorithm labels a target with a 
pixel-wise precise boundary and segments it.The vol-
ume of each pixel was calculated by combining CT slice 
thickness, and the hemorrhage volume was calculated by 
accumulating all the volumes of pixels in the hemorrhage 
region [19].

Several different deep learning models have been devel-
oped for ICH automated quantification. Research has 
supported that the volume of ICH segmented by deep 
learning models, which is faster than manual CTP, yields 
similar results to CTP; [18, 19, 28–30]this is consistent 
with our present results.

A group of manual methods, including CTP and the 
ABC/2 score, have long been available for measuring 
ICH volume. The ABC/2 score is based on a simplified 
ellipsoid volumetric formula.[4, 10] Many previous 
studies have found that ICH volume measured using 
the ABC/2 score is highly correlated with CTP 

measurement, and volumetric analysis time was less 
than 1  min per case.[4, 12, 31] Therefore, the ABC/2 
score has been commonly used in clinical settings and 
research to rapidly quantify the volume of ICH. Our 
current analysis demonstrated that the accuracy of the 
deep learning-based AI model was the same as that of 
the ABC/2 score in segmenting ICH volume without 
IVH extension. Several studies reported that the meas-
urement errors of the ABC/2 score increased with 
larger ICH hematoma and clot irregularity [11, 12, 
32–34]. We also observed that the ABC/2 score over-
estimated some ICH volumes when confronting larger 
and irregular morphology features (Additional file  1: 
Fig. S3).

Various studies have shown that deep learning also 
performs well in detecting and measuring the mid-
line shift [35–37]. Accordingly, we also extracted 
midline shift data (maximum septum pellucidum 
shift), measured by the algorithm and radiologist 
(reference standard), from 73 patients with spon-
taneous supratentorial ICH out of all the patients 
enrolled. A strong correlation and agreement was 
observed between the algorithm and reference stand-
ard (r = 0.858, P < 0.001; ICC = 0.853 [0.775 to 0.905]; 
Additional file  1: Fig. S4a and Additional file  1: 
Table  S2) for midline shift measurement. Consistent 
with previous reports, our results revealed that the 
algorithm showed potential advantages in the evalua-
tion of the midline shift.

Our study has some limitations. First, random sam-
ple selection does not balance different hematoma 
locations or morphology features, which may nega-
tively influence the accuracy of ABC/2 in the agree-
ment analysis. Second, we used the agreement analysis 
and Bland–Altman plots to compare the volumetric 
results among different methods. The dice coefficient, 
however, which can compare not only the volumetric 
results, but also the clot shape between any two meth-
ods, should be considered in future studies. Third, 
hypodensities on noncontrast CT were reported to 
be frequently present in patients with oral anticoagu-
lants [38], which may affect accuracy of ICH volume 
segmentation results using the algorithm. There were 
only two cases with oral anticoagulants in our study, 
and more research work focusing on this subject is 
warranted in the future. Lastly, it would be interesting 
and meaningful to retrieve ICH and IVH volumes sepa-
rately to specify volumetric analysis with regards to 
its prognostic significance in ICH. More practical and 
effective function, including this promising selective 
segmentation technique in the algorithm system of AI 
is still anticipated.
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Fig. 1  Scatter plots comparing segmented spontaneous intracerebral hemorrhage (ICH) volumes among the algorithm, ABC/2 score and 
CTP segmentation methods. a, b Comparison of the segmented ICH volumes for each user between different segmentation methods in ICH 
without intraventricular hemorrhage (IVH) group (a), and ICH with IVH group (b). c–f, Comparison of segmented ICH volumes among both user 
for algorithm versus CTP (c) ABC/2 score versus CTP (d) algorithm versus ABC/2 score (e) in ICH without IVH group, and algorithm versus CTP (f) 
segmentation methods in ICH with IVH group
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Conclusion
In summary, the deep learning-based AI diagnostic 
system accurately quantified volumes of acute spon-
taneous ICH with high fidelity and greater efficiency 
compared to the CTP measurement and more accu-
rately than the ABC/2 scores. We believe this is a 
promising tool to help physicians achieve precise ICH 
quantification in practice.

Further research is needed to determine the appli-
cation of AI for hematoma volume measurement in a 
larger sample size or in other types as well as different 
phases of cerebral hemorrhage.

Fig. 2  Agreement analysis of spontaneous intracerebral hemorrhage (ICH) volume segmented by different methods in two groups. a–c, 
Agreement illustrated for algorithm versus CTP (a), ABC/2 versus CTP (b), and algorithm versus ABC/2 score (c) segmentation methods in ICH 
without intraventricular hemorrhage (IVH) group, and algorithm versus CTP (d) segmentation methods in ICH with IVH group

Fig. 3  The difference curve of absolute error of the ICH volume 
measured by the ABC/2 score and algorithm in intracerebral 
hemorrhage without intraventricular hemorrhage group
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