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Abstract

Cumulative receiver operator characteristic (ROC) curve analysis extends classic ROC

curve analysis to discriminate three or more ordinal outcome levels on a shared continuous

scale. The procedure combines cumulative logit regression with a cumulative extension to

the ROC curve and performs as expected with ternary (three-level) ordinal outcomes under

a variety of simulated conditions (unbalanced data, proportional and non-proportional odds,

areas under the ROC curve [AUCs] from 0.70 to 0.95). Simulations also compared several

criteria for selecting cutpoints to discriminate outcome levels: the Youden Index, Matthews

Correlation Coefficient, Total Accuracy, and Markedness. Total Accuracy demonstrated

the least absolute percent-bias. Cutpoints computed from maximum likelihood regression

parameters demonstrated bias that was often negligible. The procedure was also applied to

publicly available data related to computer imaging and biomarker exposure science, yield-

ing good to excellent AUCs, as well as cutpoints with sensitivities and specificities of com-

mensurate quality. Implementation of cumulative ROC curve analysis and extension to

more than three outcome levels are straightforward. The author’s programs for ternary ordi-

nal outcomes are publicly available.

Introduction

Classic receiver operator characteristic (ROC) curve analysis addresses the relation of continu-

ous measurements to binary outcomes [1], and enables selection of a cutpoint or threshold on

the continuous measurement scale discriminating the outcome levels. From its origins in sig-

nal detection theory [2] and application in early radio detection and ranging systems, the tech-

nique has been used in fields as diverse as clinical chemistry [3], radiology [4], psychology [5],

and machine learning [6–9].
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Extension beyond binary outcomes would be desirable for the increased scope of applica-

tions. One readily implemented approach is to group multinomial outcome levels into bino-

mial levels and run classic ROC curve analysis, but this loses information and biases test

accuracy [10]. There have been other, more sophisticated proposals spanning a range of theo-

retical approaches [11–18], but the complexity of these noteworthy proposals has limited their

application. Additional methods have been implemented and some enjoy broad use [19–22],

yet theoretical justification may be sparse.

This paper proposes a two-stage, semiparametric approach combining conventional cumula-

tive logit regression with a cumulative extension of ROC curve analysis to discriminate ordinal

outcome levels. The performance of this approach is evaluated under simulation, with compari-

son of several criteria used with classic ROC curves to select cutpoints. Results from these crite-

ria are compared to cutpoints computed from maximum likelihood estimates (MLEs) of the

regression parameters. The procedure is also demonstrated with publicly available data.

Formulation

The classic empirical ROC curve is computed by comparing a binary outcome Y with a contin-

uous measure X where each observed level of X is evaluated as a candidate cutpoint discrimi-

nating observed Y = 1 (positive) from Y = 2 (negative). Observations exceeding the candidate

cutpoint are classified positive with respect to the continuous measurement, while those less

than or equal to the cutpoint are classified negative. As in a 2 × 2 contingency table, the count

of correct classifications among positive outcomes comprises the true positives (TP) and

among negative outcomes the true negatives (TN). The count of incorrect classifications

among negative outcomes comprises the false positives (FP) and among positive outcomes the

false negatives (FN). These counts are used to compute: sensitivity, which is the probability

that an observation with a positive outcome is correctly classified by a continuous measure-

ment above a candidate cutpoint (sensitivity = TP/[TP+FN]); and specificity, which is the

probability that an observed negative outcome is correctly classified by a continuous measure-

ment at or below a candidate cutpoint (specificity = TN/[TN+FP]). Thence, coordinates for

the empirical ROC curve are computed where the abscissa is 1 − specificity (= false positive

rate; FPR) and the ordinate is sensitivity (= true positive rate; TPR).

The best cutpoint X� given the data may be identified from the ROC curve coordinates with

a criterion that maximizes TPR and minimizes FPR. Cross-referencing the identified ROC

curve coordinate with its observed continuous measurement yields the cutpoint distinguishing

the binary outcomes. A variety of cutpoint criteria are available, such as the Youden Index,

Matthews Correlation Coefficient, and Total Accuracy [23–25]. In addition, the ability of the

continuous measurement to discriminate between outcome levels, which is equivalent to the

strength of the association between the two, may be represented by the area under the ROC

curve (AUC; also known as the c-statistic), which is the probability that an observation with a

positive outcome will have a higher continuous measurement than an observation with a nega-

tive outcome.

Since the ROC curve describes the relationship between a binary outcome and continuous

predictor, it is directly related to logistic regression [26–28]. For the binary outcome where

Y = 2 is the reference outcome level, let π1 = Pr[Y = 1]. The univariate logistic model with con-

tinuous predictor X and linear parameters {α, β} is:

logit p1ð Þ ¼ log
p1

1 � p1

� �

¼ aþ bX ð1Þ

Cumulative ROC curves for cutpoints between three or more ordinal outcomes
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Let p̂1i be the probability that Y = 1 predicted by the regression model at the ith observation

Xi for i = 1, . . ., N where N is the number of observations. Analogous to the approach above,

each predicted probability may serve as a candidate cutpoint discriminating Y = 1 from Y = 2.

Coordinates comprising the ROC curve may then be computed, except they are based on

counts on the probability scale monotonically transformed by the regression model from the

original continuous scale. As above, the best probability cutpoint p̂� may be selected with a

suitable optimality criterion. The cutpoint on the scale of the continuous predictor X� can be

recovered by cross-referencing p̂� with its corresponding observed measurement. Whether

using the scale of the continuous predictor or the predicted probability, the resulting ROC

curves are identical because the curve is rank-based and invariant to monotonic transforma-

tions of the continuous predictor [1]. The first stage of the proposed approach exploits this

invariance through a generalization of the logistic model embodied by the cumulative logit

model.

Stage 1: Cumulative logit model

The cumulative logit regression model predicts probabilities for an ordinal outcome Y = j with

j = 1, . . ., J levels, where for demonstration J = 3 and the reference outcome level is Y = 3. Let

πj = Pr[Y� j], then with continuous predictor X and linear parameters {αj, βj} the cumulative

logit regression model is:

logit ðpjÞ ¼ log
pj

1 � pj

 !

¼ aj þ bjX; for j ¼ 1; . . . ; J � 1 ð2Þ

For each jth outcome level up to J − 1, a cumulative logit is estimated with its own regres-

sion parameters fâ j; b̂ jg. The formulation in Eq 2 is known as non-proportional odds where

the log-odds b̂ j differs between outcome levels. Simplification is possible with the proportional

odds formulation where constant log-odds βj = β is assumed among outcome levels [29]. Let

p̂ij ¼ P̂r½Yij � jjXi�, then in terms of the parameter estimates fâ j; b̂ jg the predicted cumulative

probability for the jth outcome level at the ith observation is:

p̂ij ¼
exp

�
â j þ b̂ jXi

�

1þ exp
�
â j þ b̂ jXi

� ; for j ¼ 1; . . . ; J � 1 ð3Þ

and the predicted individual probability is the difference of adjacent cumulative probabilities:

exp
�
â j þ b̂ jXi

�

1þ exp
�
â j þ b̂ jXi

� �
exp

�
â j� 1 þ b̂ j� 1Xi

�

1þ exp
�
â j� 1 þ b̂ j� 1Xi

� ð4Þ

For J = 2 this model reduces to the logistic model, but the cumulative logit model is simi-

larly able to transform the continuous predictor to the predicted probability scale except that

each outcome level gets a predicted probability function.

We have so far recalled that ROC curves are invariant to monotonic transformation of the

continuous measurement, including transformation by a logistic regression model to the pre-

dicted probability scale. In addition, we have reviewed the cumulative logit model and its

transformation of a single continuous predictor to a series of separate predicted probabilities

for each level of the ordinal outcome. These probabilities are comprehensive and mutually

Cumulative ROC curves for cutpoints between three or more ordinal outcomes
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exclusive with respect to the outcome
P

j p̂ ij ¼ 1
� �

and are suitable for computing a series of

“cumulative” ROC curves.

Stage 2: Cumulative ROC curves

Calculation of the classic ROC curve on the predicted probability scale can be readily extended

to count TP, TN, FP, and FN for each cumulative logit, resulting in J − 1 cumulative ROC

curves. For the cumulative logit associated with the jth outcome, let pjk be the kth candidate

cumulative probability cutpoint from among the p̂ ij, then one may count TPjk, TNjk, FPjk, and

FNjk with the indicator function I(�) by comparing the outcome Yi with p̂ij vs. pjk for i = 1, . . .,

N; j = 1, . . ., J − 1; and k = 1, . . ., N:

TPjk ¼
X

i

I ðp̂ij > pjk AND Yi � jÞ ð5Þ

TNjk ¼
X

i

I ðp̂ij � pjk AND Yi > jÞ ð6Þ

FPjk ¼
X

i

I ðp̂ij > pjk AND Yi > jÞ ð7Þ

FNjk ¼
X

i

I ðp̂ij � pjk AND Yi � jÞ ð8Þ

From these counts, the coordinates (FPRjk, TPRjk) for the jth cumulative ROCj curve can be

computed, where FPRjk = 1 − (TNjk/[TNjk + FPjk]) and TPRjk = (TPjk/[TPjk + FNjk]). Continu-

ing with the case of the ternary ordinal outcome, p1k is the kth candidate cutpoint from the

first cumulative logit and p2k from the second, so that the cumulative ROC1 curve discrimi-

nates between Y = 1 vs. Y = 2 or 3, and the cumulative ROC2 curve discriminates between

Y = 1 or 2 vs. Y = 3. Analogous to the binary case, a probability cutpoint for the jth outcome

level p̂�j may be selected from its respective cumulative ROCj curve using a suitable criterion.

The cutpoint on the scale of the continuous predictor X�j is recovered by cross-referencing p̂�j

with its corresponding observed measurement.

Alternatively, ROC curve analysis may be forgone altogether by computing cutpoints from

the MLE cumulative logit regression parameters, where X�j ¼ � â j=b̂ j

� �
. Since this parametric

cutpoint is the ratio of two model parameters, both the Delta Method and Fieller’s Method are

applicable for computing the variance [30]. Fieller’s Method is favored, however, since it tends

to provide better coverage despite potential asymmetry of the confidence interval [31, 32]. In

addition, Hirschberg and Lye 2010 [31] recommend Fieller’s Method when the computed

ratios are positive and correlation between the numerator and denominator is negative.

Accordingly, the standard deviation sX� is estimated here with Fieller’s Method [33] when

computing confidence intervals for parametric cutpoints as ± (tdf = 2,1−(α/2) × sX�).

Simulations

Cumulative ROC curve analysis for a ternary ordinal outcome was evaluated under conditions

simulating AUCs = 0.70, 0.75, 0.85, 0.90, and 0.95. Cutpoints for the continuous predictor were

set at X�
2
¼ � 5 and X�

3
¼ 5 by designating αj and βj based on the relationship X�j ¼ � ðaj=bjÞ.

Random variates of the continuous predictor were obtained from a normal distribution Xi� N

Cumulative ROC curves for cutpoints between three or more ordinal outcomes
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(0, σ2 = 100) truncated at the 10th and 90th percentiles. Truncation improved the chances of

obtaining random variates that would successfully converge to a maximum likelihood solution

for the regression model. Random variates of the ternary outcome Yi were then obtained from a

multinomial distribution defined by probabilities computed from Eq 4 with αj, βj, and random

variates Xi. For the proportional odds condition with AUC1 = AUC2 = 0.90, parameters were

designated at α1 = −1.70, α2 = 1.70, and β = 0.34. For the first non-proportional odds condition

(referred to as the NPO1 condition) with AUC1 = 0.75 and AUC2 = 0.85, parameters were des-

ignated at α1 = −0.75, β1 = 0.15 and α2 = 1.25, β2 = 0.25; and for the second (NPO2 condition)

with AUC1 = 0.70 and AUC2 = 0.95, parameters were α1 = −0.70, β1 = 0.14 and α2 = 4.70, β2 =

0.94. For each condition, 10,000 datasets were simulated with nested sample sizes n = 75, 150,

and 300 unequally allocated among the outcome levels. A cumulative logit regression model

was fit to each dataset and cumulative ROC curves computed. Simulations were run with the

FREQ, LOGISTIC, and SURVEYSELECT subroutines of the SAS1 software application, ver-

sion 9.4 [34].

Several cutpoint selection criteria were evaluated for their ability to correctly identify desig-

nated cutpoints from cumulative ROC curves: the Youden Index (also known as Informedness

and ΔP0), Matthews Correlation Coefficient, Total Accuracy, and Markedness (ΔP) [35, 36].

These criteria and their ranges are presented in Table 1. Each criterion embodies certain mer-

its, but all achieve their optimal level at the ROC curve coordinate where the criterion is at

its observed maximum. Cutpoints were also computed directly from MLE cumulative logit

regression parameters.

Tables 2 and 3 confirm that distributions realized during the proportional odds and NPO1

simulations were approximately centered at the levels designated above for αj, βj, and AUC.

Table 4 shows, however, that for the NPO2 condition the medians of the realized distributions

for αj and βj were about 14–30 percent above designated levels for α1, α2, and β2 and about 14

percent below for β1. Designated levels for all regression parameters, however, were between

the 2.5th and 97.5th percentiles of their realized distributions, and the realized AUCs were cen-

tered on their designated values.

Table 1. Cutpoint selection criteria based on evaluation of empirical ROC curves.

Criterion Formula Range

Youden Index (or Informedness, ΔP0) sensitivity + specificity − 1 (0,1)

Matthews Correlation Coefficient ðTP�TNÞ� ðFP�FNÞ
ð½TPþFP�½TPþFN�½TNþFP�½TNþFN�Þ1=2

(−1,1)

Total Accuracy TPþTN
TPþFNþTNþFP (0,1)

Markedness (ΔP) TP
TPþFP þ

TN
TNþFN � 1 (0,1)

https://doi.org/10.1371/journal.pone.0221433.t001

Table 2. Proportional odds simulation. Parameter estimates and AUCs realized from cumulative ROC curve analysis of 10,000 simulated datasets parameterized with

proportional odds and AUC1 = AUC2 = 0.90.

α1 = −1.70, α2 = 1.70, β = 0.34, AUC1 = AUC2 = 0.90
n α̂1

[2.5th, 97.5th %ile]

α̂2
[2.5th, 97.5th %ile]

β̂
[2.5th, 97.5th %ile]

AUC1

[2.5th, 97.5th %ile]

AUC2

[2.5th, 97.5th %ile]

75 −1.745

[−2.749, −1.048]

1.742

[1.034, 2.728]

0.352

[0.248, 0.509]

0.9004

[0.8119, 0.9631]

0.8997

[0.8112, 0.9632]

150 −1.724

[−2.343, −1.230]

1.723

[1.236, 2.346]

0.346

[0.272, 0.443]

0.8982

[0.8403, 0.9447]

0.8978

[0.8404, 0.9452]

300 −1.713

[−2.127, −1.355]

1.713

[1.357, 2.127]

0.343

[0.290, 0.408]

0.8974

[0.8576, 0.9317]

0.8975

[0.8568, 0.9322]

https://doi.org/10.1371/journal.pone.0221433.t002
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Tables 5–7 display the median, 2.5th and 97.5th percentiles, and percent-bias of cutpoints

selected by each criterion across sample sizes n. Percent-biases are the median of percent-dif-

ferences between realized cutpoints (selected and parametric) and designated cutpoints. The

ROC curve-based cutpoint selection criteria exhibited a range of biases. Among both propor-

tional (Table 5) and non-proportional (Tables 6 and 7) odds conditions, absolute values of the

percent-biases ranged from 2.8–144.2 percent. Total Accuracy demonstrated the best perfor-

mance with biases ranging from 2.8–11.7 percent, while the other criteria performed consider-

ably worse.

Forgoing ROC curve analysis and calculating cutpoints from the MLE regression parame-

ters yielded small, often negligible absolute percent-biases (<2.3 percent) for both propor-

tional and non-proportional odds conditions. In addition, across all sample sizes, parametric

cutpoints consistently out-performed ROC curve-based cutpoint selection criteria.

Notably, for the NPO2 condition (Table 7), divergence of the realized cumulative logit

parameters from designated values did not entail discrepancies in realized cutpoints compared

to the other simulation conditions, whether the cutpoints were selected by criteria or calcu-

lated parametrically.

Absolute percent-bias for Total Accuracy cutpoints usually diminished with increasing

sample size from n = 75 to 300. The only exception was for the upper cutpoint (X = 5.00) in

the NPO2 simulation condition, where absolute percent-bias worsened slightly at n = 150. In

addition, the absolute percent-bias of lower Total Accuracy cutpoints were usually greater

than for upper cutpoints, except for n = 150 and 300 of the NPO2 condition. For parametric

cutpoints, absolute percent-bias was negligible at all sample sizes, except in the NPO2 condi-

tion, where although cutpoint bias was the lowest within the condition (0.1–2.3 percent), it

was slightly greater compared to other conditions (0.0–0.3 percent).

Table 3. Non-proportional odds simulation: NPO1. Parameter estimates and AUCs realized from cumulative ROC curve analysis applied to 10,000 simulated datasets

parameterized for non-proportional odds, AUC1 = 0.75, and AUC2 = 0.85.

α1 = −0.75, α2 = 1.25, β1 = 0.15, β2 = 0.25, AUC1 = 0.75, AUC2 = 0.85
n α̂1

[2.5th, 97.5th %ile]

α̂2
[2.5th, 97.5th %ile]

β̂1
[2.5th, 97.5th %ile]

β̂2
[2.5th, 97.5th %ile]

AUC1

[2.5th, 97.5th %ile]

AUC2

[2.5th, 97.5th %ile]

75 −0.759

[−1.421, −0.226]

1.284

[0.656, 2.289]

0.153

[0.065, 0.267]

0.259

[0.154, 0.451]

0.7492

[0.6158, 0.8605]

0.8445

[0.7416, 0.9247]

150 −0.758

[−1.179, −0.392]

1.267

[0.817, 1.859]

0.152

[0.092, 0.224]

0.253

[0.181, 0.364]

0.7491

[0.6623, 0.8265]

0.8458

[0.7758, 0.9059]

300 −0.755

[−1.042, −0.493]

1.260

[0.935, 1.641]

0.151

[0.108, 0.200]

0.252

[0.198, 0.318]

0.7490

[0.6886, 0.8051]

0.8463

[0.7961, 0.8898]

https://doi.org/10.1371/journal.pone.0221433.t003

Table 4. Non-proportional odds simulation: NPO2. Parameter estimates and AUCs realized from cumulative ROC curve analysis applied to 10,000 simulated datasets

parameterized for non-proportional odds, AUC1 = 0.70, and AUC2 = 0.95.

α1 = −0.70, α2 = 4.70, β1 = 0.14, β2 = 0.94, AUC1 = 0.70, AUC2 = 0.95
n α̂1

[2.5th, 97.5th %ile]

α̂2
[2.5th, 97.5th %ile]

β̂1
[2.5th, 97.5th %ile]

β̂2
[2.5th, 97.5th %ile]

AUC1

[2.5th, 97.5th %ile]

AUC2

[2.5th, 97.5th %ile]

75 −0.501

[−1.209, 0.103]

6.071

[3.243, 20.611]

0.098

[−0.008, 0.230]

1.229

[0.669, 4.370]

0.6979

[0.4786, 0.8292]

0.9483

[0.8488, 0.9872]

150 −0.499

[−0.967, −0.079]

5.768

[3.648, 14.259]

0.098

[0.022, 0.183]

1.150

[0.741, 2.959]

0.6941

[0.5906, 0.7870]

0.9505

[0.8934, 0.9847]

300 −0.520

[−0.832, −0.217]

5.426

[3.943, 8.782]

0.101

[0.048, 0.159]

1.069

[0.791, 1.763]

0.6931

[0.6233, 0.7616]

0.9508

[0.9148, 0.9769]

https://doi.org/10.1371/journal.pone.0221433.t004
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Table 5. Proportional odds simulation. Percentiles and biases of cutpoints selected from cumulative ROC curves with several criteria and computed parametrically:

10,000 simulated datasets parameterized for proportional odds and AUC1 = AUC2 = 0.90.

Cutpoint Criterion n = 75 n = 150 n = 300

%Bias Median

[2.5th, 97.5th %ile]

%Bias Median

[2.5th, 97.5th %ile]

%Bias Median

[2.5th, 97.5th %ile]

5.00 Youden Index −46.4 2.68

[−0.71, 6.00]

−48.5 2.58

[−0.28, 5.22]

−50.4 2.48

[0.26, 4.62]

Total Accuracy 7.7 5.39

[1.88, 9.24]

4.8 5.24

[2.48, 8.16]

2.9 5.15

[2.95, 7.38]

Matthews Correlation −18.8 4.06

[−0.06, 8.22]

−19.9 4.01

[0.59, 7.29]

−22.1 3.89

[1.14, 6.58]

Markedness 78.7 8.93

[3.05, 12.51]

99.4 9.97

[4.35, 12.64]

120.5 11.02

[5.58, 12.73]

Parametric

� ðâ j=b̂ jÞ

−0.2 4.99

[3.06, 7.22]

−0.1 5.00

[3.62, 6.51]

−0.1 5.00

[4.01, 6.06]

−5.00 Youden Index 52.0 −2.40

[−5.65, 1.08]

52.1 −2.39

[−5.06, 0.30]

52.0 −2.40

[−4.51, −0.24]

Total Accuracy 10.0 −4.50

[−8.22, −1.09]

5.9 −4.70

[−7.66, −2.02]

4.1 −4.79

[−7.05, −2.64]

Matthews Correlation 24.6 −3.77

[−7.79, 0.36]

23.6 −3.82

[−7.11, −0.43]

23.8 −3.81

[−6.46, −1.04]

Markedness −70.8 −8.54

[−12.05, −2.60]

−95.2 −9.76

[−12.40, −4.22]

−117.9 −10.89

[−12.60, −5.61]

Parametric

� ðâ j=b̂ jÞ

0.2 −4.99

[−7.23, −3.05]

−0.1 −5.00

[−6.50, −3.64]

0.2 −4.99

[−6.04, −4.03]

https://doi.org/10.1371/journal.pone.0221433.t005

Table 6. Non-proportional odds simulation: NPO1. Percentiles and biases of cutpoints selected from cumulative ROC curves with several criteria and computed para-

metrically: 10,000 simulated datasets parameterized for non-proportional odds, AUC1 = 0.75, and AUC2 = 0.85.

Cutpoint Criterion n = 75 n = 150 n = 300

%Bias Median

[2.5th, 97.5th %ile]

%Bias Median

[2.5th, 97.5th %ile]

%Bias Median

[2.5th, 97.5th %ile]

5.00 Youden Index −74.3 1.29

[−3.92, 6.41]

−77.8 1.11

[−3.17, 5.40]

−79.9 1

[−2.45, 4.38]

Total Accuracy 8.4 5.42

[−0.40, 11.64]

5.3 5.26

[0.58, 10.47]

3.5 5.17

[1.43, 9.19]

Matthews Correlation −51.2 2.44

[−4.99, 9.73]

−56.2 2.19

[−4.08, 8.39]

−58.7 2.06

[−3.11, 7.07]

Markedness 113.7 10.69

[−8.21, 12.73]

133.6 11.68

[−7.40, 12.78]

144.2 12.21

[−0.81, 12.80]

Parametric

� ðâ j=b̂ jÞ

0.1 5

[1.47, 11.81]

−0.2 4.99

[2.50, 8.76]

0.0 5.00

[3.21, 7.37]

−5.00 Youden Index 67.3 −1.63

[−5.60, 2.43]

65.1 −1.75

[−4.94, 1.39]

64.7 −1.77

[−4.35, 0.76]

Total Accuracy 11.7 −4.41

[−9.03, −0.32]

7.0 −4.65

[−8.19, −1.39]

4.4 −4.78

[−7.52, −2.15]

Matthews Correlation 38.3 −3.08

[−8.21, 2.14]

35.7 −3.22

[−7.34, 1.06]

36.3 −3.18

[−6.58, 0.32]

Markedness −85.7 −9.28

[−12.27, −1.38]

−116.5 −10.83

[−12.57, −4.31]

−134.6 −11.73

[−12.70, −6.29]

Parametric

� ðâ j=b̂ jÞ

0.3 −4.99

[−8.08, −2.60]

−0.1 −5.01

[−7.03, −3.30]

0.3 −4.99

[−6.35, −3.82]

https://doi.org/10.1371/journal.pone.0221433.t006
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Real-World Data

Two publicly available datasets with ternary ordinal outcomes were analyzed with the cumula-

tive ROC curve approach where cutpoints were selected with the Total Accuracy criterion and

computed parametrically. Fig 1 displays histograms for each dataset overlaid with Total Accu-

racy cutpoints, while Fig 2 shows the cutpoints on their respective cumulative ROC curves.

Tables 8 and 9 present the Total Accuracy and parametric cutpoints, as well as their sensi-

tivities, specificities, and AUCs. Confidence intervals for parametric cutpoints were calculated

with Fieller’s Method [33] and for AUCs with Wald’s Method [37]. Cumulative logit regres-

sion models and cumulative ROC curves were computed with the FREQ and LOGISTIC sub-

routines of the SAS software application, version 9.4 [34].

Cork stopper quality

The data comprise measurements of material defects appearing in digital images of cork stop-

pers [38, 39], available in S1 File. An automated image processing system scanned cork defects

and quantified several characteristics, including the number, area, and perimeter of the defects.

Fifty cork stoppers were quantified in each of three quality levels subjectively assigned by

human experts (N = 150), where Y = 1 (poor), 2 (normal), and 3 (superior). In the Stage 1

cumulative logit model, cork stopper quality was predicted by the total number of pixels with

defects [px]. The score test for proportional odds (p-value = 0.31) supported a proportional

odds configuration for the model. The parameter estimates are: â1 ¼ � 13:64, â2 ¼ � 7:05,

and b̂area ¼ � 0:036.

The ability of defect area to discriminate cork stopper quality is excellent, with AUCs >

0.97 for both cumulative ROC curves (Table 8). Total Accuracy identified cutpoints where the

Table 7. Non-proportional odds simulation: NPO2. Percentiles and biases of cutpoints selected from cumulative ROC curves with several criteria and computed para-

metrically: 10,000 simulated datasets parameterized for non-proportional odds, AUC1 = 0.70, and AUC2 = 0.95.

Cutpoint Criterion n = 75 n = 150 n = 300

%Bias Median

[2.5th, 97.5th %ile]

%Bias Median

[2.5th, 97.5th %ile]

%Bias Median

[2.5th, 97.5th %ile]

5.00 Youden Index −42.6 2.87

[−2.16, 8.43]

−43.4 2.83

[−1.30, 7.12]

−45.5 2.73

[−0.66, 6.25]

Total Accuracy 4.6 5.23

[−2.74, 11.55]

5.0 5.25 3.3 5.17

[1.28, 9.38]

Matthews Correlation −28.3 3.59

[−3.47, 10.90]

−30.3 3.48

[−2.89, 10.14]

−32.9 3.36

[−1.83, 8.74]

Markedness 105.2 10.26

[−5.38, 12.72]

131.8 11.59

[−5.76, 12.78]

143.9 12.2

[−6.08, 12.80]

Parametric

� ðâ j=b̂ jÞ

−1.4 4.93

[−8.12, 30.83]

1.5 5.07

[0.94, 14.99]

2.3 5.11

[2.55, 9.54]

−5.00 Youden Index 41.4 −2.93

[−4.77, −0.28]

44.1 −2.79

[−4.46, −0.59]

46.4 −2.68

[−4.04, −0.96]

Total Accuracy 9.4 −4.53

[−6.17, −2.73]

5.0 −4.75

[−6.07, −3.38]

2.8 −4.86

[−5.98, −3.75]

Matthews Correlation 24.5 −3.78

[−5.77, −1.37]

20.1 −3.99

[−5.58, −2.09]

19.7 −4.02

[−5.31, −2.45]

Markedness 2.3 −4.88

[−6.55, −2.06]

−8.0 −5.4

[−6.59, −3.43]

−16.0 −5.8

[−6.63, −4.35]

Parametric

� ðâ j=b̂ jÞ

1.5 −4.93

[−5.96, −3.76]

−0.1 −5.00

[−5.75, −4.20]

−1.3 −5.06

[−5.59, −4.51]

https://doi.org/10.1371/journal.pone.0221433.t007
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total number of pixels with defects were 205 (distinguishing poor or normal quality vs. supe-

rior) and 369 (poor vs. normal, superior), and both had excellent sensitivities and specificities

> 0.93. Parametrically computed cutpoints were at 194.8 [95%CI: 177.1, 213.7] and 376.8

[352.9, 403.9] pixels, with sensitivities and specificities comparable to those of the Total Accu-

racy cutpoints, although specificity for the lower cutpoint and sensitivity for the upper cut-

point were somewhat attenuated.

NHANES tobacco smoke exposure

Human exposure to chemicals can be estimated from measurements of trace compounds in

samples of human urine. Some of these compounds, known as biomarkers, are associated with

Fig 1. Percent distributions overlaid with cutpoints (dashed lines) selected from cumulative ROC curves with the Total Accuracy criterion. A:

Cork Stopper Quality (N = 150): total defective area [px] by cork stopper quality levels. B: NHANES Tobacco Smoke Exposure (N = 16,900): natural log

of urinary NNAL [ng/mL] by tobacco smoke exposure levels.

https://doi.org/10.1371/journal.pone.0221433.g001
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exposure to tobacco smoke, which may arise either from direct inhalation while smoking, or

from indirect inhalation of tobacco smoke present in the environment (i.e., second-hand

tobacco smoke; SHS). One such biomarker is a tobacco-specific N-nitrosamine known as

NNAL (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol; CAS No. 76014-81-8), which is pres-

ent in both mainstream tobacco smoke and smokeless tobacco products. NNAL was measured

in urine from a representative multi-level sample of the United States civilian population� 12

years old (N = 16, 900) obtained during the 2007–2012 cycles of the National Health and

Nutrition Examination Survey (NHANES) [40], available in S2 File. Subjects reported being

in one of three ordinal exposure categories: non-exposed subjects who neither used tobacco

Fig 2. Cumulative ROC curves (focused on upper-left quadrant) indicating coordinates for Total Accuracy cutpoints. A: Cork Stopper Quality:

poor vs. normal, superior quality (solid line) and poor, normal vs. superior (dashed line). B: NHANES Tobacco Smoke Exposure: none vs. second-hand

smoke (SHS), smoker (solid line) and none, SHS vs. smoker (dashed line).

https://doi.org/10.1371/journal.pone.0221433.g002

Table 8. Cork stopper quality (N = 150). Cutpoints of total defective area [px] discriminating cork stopper quality lev-

els were selected from cumulative ROC curves with Total Accuracy criterion and computed parametrically. Propor-

tional odds were assumed among quality levels.

Categories Cutpoint Sn: Sensitivity

Sp: Specificity

AUC

[95%CI]

Total Accuracy

Poor vs. 369 Sn: 0.9400 0.9847

Normal, Superior Sp: 0.9700 [0.9655, 1.0000]

Poor, Normal vs. 205 Sn: 0.9300 0.9732

Superior Sp: 0.9400 [0.9501, 0.9963]

Parametric [95CI]

Poor vs. 376.8 Sn: 0.8800 —

Normal, Superior [352.9, 403.9] Sp: 0.9800

Poor, Normal vs. 194.8 Sn: 0.9300 —

Superior [177.1, 213.7] Sp: 0.9000

https://doi.org/10.1371/journal.pone.0221433.t008
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products nor were exposed to SHS (Y = 1;n1 = 12, 372); SHS-exposed subjects who did not

smoke tobacco (Y = 2;n2 = 927); and exclusive tobacco smokers (Y = 3;n3 = 3, 691). In order

to eliminate a non-combustible source of NNAL, subjects were excluded from analysis if they

reported using smokeless tobacco. The natural log of urinary NNAL concentration predicted

self-reported exposure categories in the Stage 1 cumulative logit model. The score test (p-value

<0.001) supported a non-proportional odds configuration for the model. The parameter esti-

mates are: â1 ¼ � 4:60, â2 ¼ � 4:08, b̂ ln NNALð Þ;1 ¼ � 1:13, and b̂ ln NNALð Þ;2 ¼ � 1:25.

The ability of ln(NNAL) to discriminate ternary tobacco smoke exposure levels is excellent

with AUCs> 0.95 for both cumulative ROC curves (Table 9). Total Accuracy identified cut-

points at ln(NNAL) concentrations of -4.092 (non-exposed vs. SHS-exposed, smokers) and

-3.168 ng/mL (non-exposed, SHS-exposed vs. smokers). Exponentiated, the respective cut-

points are 16.71 and 42.09 pg/mL. Since the non-proportional odds configuration permits each

cumulative ROC curve to differ in discriminatory power, the cumulative ROC curve associated

with the lower cutpoint had an AUC of 0.9535 [95%CI: 0.9497, 0.9573], while the upper cut-

point’s curve had an AUC that was slightly, but significantly better at 0.9679 [0.9646, 0.9712].

Parametric cutpoints are at −4.053 [95%CI: −4.108, −3.998] and −3.264 [−3.319, −3.208] ng/mL

(exponentiated: 17.37 [16.44, 18.35] and 38.24 [36.19, 40.44] pg/mL, respectively). Total Accu-

racy’s upper cutpoint was above the parametric upper cutpoint’s upper 95 percent confidence

limit, but it is unclear which is preferable. The Total Accuracy upper cutpoint had excellent sen-

sitivity (0.9689) and good specificity (0.8458), but this was reversed for the parametric upper

cutpoint, which had good sensitivity (0.8537) and excellent specificity (0.9661). Another basis

for comparison is the Total Accuracycriterion, which can be calculated for parametric cutpoints

from their TPj, TNj, FPj, and FNj. This, too, failed to be conclusive since the criterion for the

Total Accuracy vs. parametric upper cutpoints were hardly different at 0.9421 vs. 0.9417.

Discussion

The cumulative logit model subsumes multinomial ordinal outcome levels within a single

model, yet each outcome level gets its own cumulative logit, so that predicted individual proba-

bilities for each level (Eq 4) are mutually exclusive, comprehensive over the outcome levels,

and sum to unity for each observation of the continuous measurement. Another appeal of

the model is that its predicted probabilities (Eqs 3 and 4) change in direct proportion to the

Table 9. Tobacco smoke exposure (N = 16,990). Cutpoints of the natural log of urinary NNAL [ng/ml] discriminating

tobacco smoke exposure levels. Cutpoints were selected from cumulative ROC curves with Total Accuracy criterion

and computed parametrically. Non-proportional odds were assumed among exposure levels.

Categories Cutpoint Sn: Sensitivity

Sp: Specificity

AUC

[95%CI]

Total Accuracy

Non-Exposed vs. −4.092 Sn: 0.9597 0.9535

SHS, Exclusive Smokers Sp: 0.8060 [0.9497, 0.9573]

Non-Exposed, SHS vs. −3.168 Sn: 0.9689 0.9679

Exclusive Smokers Sp: 0.8458 [0.9646, 0.9712]

Parametric [95CI]

Non-Exposed vs. −4.053 Sn: 0.8029 —

SHS, Exclusive Smokers [−4.108, −3.998] Sp: 0.9602

Non-Exposed, SHS vs. −3.264 Sn: 0.8537 —

Exclusive Smokers [−3.319, −3.208] Sp: 0.9661

https://doi.org/10.1371/journal.pone.0221433.t009
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continuous measurement across all outcome levels. Even more, the ordinality of the outcome

ensures that cutpoints separate successive pairs of adjacent outcome levels.

The assumption of proportional odds constrains the log-odds of the continuous predictor

to be constant for all levels of the ordinal outcome. This imposes statistical equivalence on the

AUCs of the cumulative ROC curves, so that the ROC curves will appear approximately over-

lapped. In contrast, when the log-odds of the predictor are non-proportional, which represents

varying strength in the continuous predictor’s association at each outcome level, the AUCs of

the cumulative ROC curves will differ and the curves will appear nested. Notably, the rank-

order of the AUCs (and hence the order of nesting) is independent of the order of the ordinal

outcome levels. This flexibility may be especially desirable in certain settings, such as in a clini-

cal trial where a medication may be associated with greater potency at the worst level of the

health outcome.

Evaluated under simulation, cumulative ROC curve analysis performed as expected for a

variety of conditions, but with the qualification that if ROC curve-based cutpoint criteria are

to be used, results from simulated unbalanced data indicate that Total Accuracy yields mini-

mally biased cutpoints compared to the Youden Index, Matthews Correlation Coefficient, and

Markedness. In contrast to cutpoints selected by criteria, parametric cutpoints have the advan-

tage of being maximum likelihood and consequently had absolute percent-biases that were less

than Total Accuracy’s and were often negligible.

The previously noted divergence of the cumulative logit parameters in the NPO2 simula-

tion condition also suggests that caution may be warranted in some non-proportional odds

situations, particularly when AUCs of the cumulative ROC curves are widely separated, as in

NPO2. If, however, the primary aim is cutpoint estimation, the NPO2 condition indicates that

estimated cutpoints were robust against divergence in the logit parameters. Moreover, qualita-

tive results from the NPO2 condition regarding cutpoint selection criteria and parametric cut-

points were consistent with those from the proportional odds and NPO1 simulations.

Analysis of real-world data demonstrated that cumulative ROC curve analysis yields rea-

sonable results. Continuous measurements in both datasets displayed varying degrees of over-

lap among the ternary outcome levels. The tobacco smoke exposure data were relatively large,

but also strikingly unbalanced across the outcome levels, especially at the intermediate out-

come level. The intermediate SHS-exposed category was small (5.5 percent) and the distribu-

tion was skewed toward the extreme exposure levels (72.8 percent non-exposed vs. 21.7

percent smokers). Notwithstanding, the cumulative ROC curve approach identified cutpoints

with good to excellent sensitivity and specificity.

The cumulative ROC curve approach readily generalizes to more than three outcome levels

through specification of the cumulative logit model. Nonetheless, discriminating discrete out-

come levels postulates that the continuous measurement is associated with an a priori number

of latent and ordinal classes. If the cumulative logit model in Stage 1 specifies an outcome with

J> 2 ordinal levels, determination of cutpoints may be difficult if the outcome is actually bino-

mial or is otherwise different than assumed. The magnitude of this difficulty may be revealed

in exploratory data analysis, by poor model fit, and by cutpoints with poor sensitivity and spec-

ificity. For the tobacco smoke exposure data, although prior assumption of an intermediate

outcome level (i.e., secondhand smoke-exposed) was plausible, there was cause for doubt since

this level was observed infrequently. In addition, the infrequency of the SHS-exposed outcome

level contrasts with the simulated data, where use of a normal distribution as a source of ran-

dom variates for the continuous predictor leads to more frequent intermediate outcomes (~40

percent) compared to the extreme outcomes (~20 percent each). These considerations not-

withstanding, the natural log of urinary NNAL was an excellent discriminator of the three

tobacco smoke exposure levels.
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The proposed approach admits alternative formulations of the Stage 1 model, where other

multinomial models may be implemented through substitution of the cumulative logit link

function. Alternative models for ordinal outcomes, such as adjacent categories and continua-

tion ratio (including complementary log-log and Cox proportional hazards), and nominal

outcomes (with the generalized logit) all predict probabilities entirely suitable for subsequent

calculation of cumulative ROC curves. Conceptual interpretation of these alternative link func-

tions, however, necessarily varies, sometimes substantially, and may therefore be less directly

interpretable than the cumulative logit. Exploring the performance and utility of these alterna-

tive link functions may nonetheless be fruitful.

Cumulative ROC curve analysis appears to be efficacious for a univariate continuous pre-

dictor, and the regression framework may be extended with the addition of covariates to the

Stage 1 cumulative logit model. This can be expected to enhance discriminatory power by

accounting for other influential or potentially confounding influences [41]. In any particular

case, however, it may not be clear whether additional covariates will adversely affect the overall

concavity of the cumulative ROC curves for the continuous predictor of interest, thereby hin-

dering selection of cutpoints. Stratification by discrete factors may be helpful in resolving

some of these difficulties.

One challenge posed by the cumulative logit model is its sample size demands, which arise

from the potentially numerous parameters that must be estimated. In the proportional odds

configuration, the univariate cumulative logit model has J − 1 intercepts plus one slope for

the continuous predictor, but this nearly doubles in the non-proportional odds configuration,

which has 2 × (J − 1) regression parameters.

Conclusions

The cumulative ROC curve method comprises a straightforward combination of cumulative

logit regression with ROC curve analysis, and is readily implemented with available statistical

software. Cutpoint selection criteria from classic ROC curve analysis are still applicable, as well

as established performance measures, such as sensitivity, specificity, and AUC. Cumulative

ROC curve analysis performed as expected under simulation and with real-world data for a

variety of conditions, including balanced and unbalanced data, proportional and non-propor-

tional odds assumptions for the cumulative logit model, and AUCs associated with fair, good,

and excellent performance (AUC = 0.70–0.95). Of the ROC curve-based cutpoint criteria,

Total Accuracy was the least biased in simulation compared to the Youden Index, Mathews

Correlation Coefficient, and Markedness. Calculation of cutpoints from cumulative logit

regression parameters, which forgoes evaluation of cumulative ROC curves, demonstrated

minimal bias, owing to parameter estimation with maximum likelihood methods. The author’s

SAS programs implementing cumulative ROC curve analysis for ternary ordinal outcomes

(J = 3) with parametric cutpoints are freely available for download in S1 Programs and from

the author’s GitHub repository [42]: https://github.com/intelligo1466/cumRoc3.

Supporting information

S1 Programs. %cumRoc3—Cumulative ROC curve analysis of three-level ordinal out-

comes. A SAS macro that implements cumulative ROC curve analysis for three-level (ternary)

ordinal outcomes, as described in this article. Requires SAS v9.4 or later.

(ZIP)

S1 File. Data, cork quality. Demonstration dataset comprising a ternary ordinal outcome

representing levels of cork quality and a predictor representing the number of image pixels
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exhibiting defects.

(ZIP)

S2 File. Data, NHANES NNAL tobacco smoke exposure. Demonstration dataset comprising

a ternary ordinal outcome representing levels of self-reported tobacco smoke exposure and a

predictor representing measurements of a tobacco-specific biomarker in urine.

(ZIP)
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39. de Sá JPM. Pattern Recognition: Concepts, Methods and Applications. Berlin: Springer-Verlag; 2001.

Available from: http://extras.springer.com/2007/978-3-540-71972-4/DATASETS/Cork%20Stoppers/

Cork%20Stoppers.xls.

40. US Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey;

2017. Available from: http://www.cdc.gov/nchs/nhanes.htm.

41. Tosteson ANA, Begg CB. A General Regression Methodology for ROC Curve Estimation. Medical Deci-

sion Making. 1988; 8(3):204–215. https://doi.org/10.1177/0272989X8800800309 PMID: 3294553

42. deCastro BR. %cumRoc3—Cumulative ROC curve analysis of three-level ordinal outcomes, v1.0.1.

2019.

Cumulative ROC curves for cutpoints between three or more ordinal outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0221433 August 30, 2019 16 / 16

http://dspace2.flinders.edu.au/xmlui/handle/2328/27165
http://dspace2.flinders.edu.au/xmlui/handle/2328/27165
https://doi.org/10.1214/aoms/1177732209
http://extras.springer.com/2007/978-3-540-71972-4/DATASETS/Cork%20Stoppers/Cork%20Stoppers.xls
http://extras.springer.com/2007/978-3-540-71972-4/DATASETS/Cork%20Stoppers/Cork%20Stoppers.xls
http://www.cdc.gov/nchs/nhanes.htm
https://doi.org/10.1177/0272989X8800800309
http://www.ncbi.nlm.nih.gov/pubmed/3294553
https://doi.org/10.1371/journal.pone.0221433

